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Let A=(ay,.,8;) be a vector with positive integer components. The set

McZ, is called A-sum-free if for any choice of xy, - . x%eM,
ayxi+ - FaxceM holds, For AeZ%, 1<isr, denote by f(niAy, -+ A)
the grealest integer h such that for some partition of the set {n, ---, h} of
consecutive integers into 8, + - -, &, the sets §; are A-sum-free for all /. In this

paper a lower bound for {n;4, B} is given and some special cases are treated
which support the conjecture that f(n; A, B) always equals this lower bound,

Let A=(a), ---, &) be a vector with positive integer components. The set
MCZ, is  called A-sum-free ‘if for any  choice of
Xy, xeeM, ayx+ - aexeM holds. Inm the  case  when
a = - =q =] the classical definition of k-sum-free sets of integers is
obtained. For A,-eZ’i,ic—:{l, cee,r), let f(n; A4y, - A;) be the greatest
number k such that there exists a partition of the set {n, - - -, h} of consecu-
tive integers into S, - - -, S, with the property that all S; are A;-sum-free for
alligfl, - ,r).

Itky=.-  =k,=1 then fin; Ay, -+ -,A4,) is not a finite number because
We can get decompositions of Z. into Sy, - - -, S, such that xS, implies
A;xeS, We describe below two cases: 1) the A4; are distinct prime numbers,
and 2) all 4; are equal. In the first case consider the decomposition of an
asbitrary integer n =AY" - - - A" M where (M, 4;)=1 for every i, and set w;
for the residue modulo 2 of w; considered as an element of {0,1}. Therefore

Si = {n;w+ -+« 4w, =i(modr)}, ie{l,---,r}

I 2 partition of Z, with A;5; C8; 1, so that the §; are A;-sum-free. In the

ilm“d case take neZ . and write n =A’m, meZ,, peZ, maximal. Then

S, = {nip=i(modr)}, ie(l, - - -, r).

Simi . .
wlljr_bul muci? more mvolved decompositions of Z, can be given for gen-
- =“ ":hz - . This suggests that we must consider k;=2. Moreover we don’t
at happens when some k; equal 1, others being preater or equal than

L Nowif 4 = .
o l.{ A’—h(alj)‘je{la Tt ,kf}, k,-_22, and A,—":(a”‘ ﬂ,-2+ <t +a,-k )EZ?_'i.,
obwousl_\' )




L, FUna,-

f(?’l;A;,“',Ar) é_f(n;-A'l’:“'sA-r’) (])

so that the finiteness question may be reduced to the case k;=2. Under this
assumption, for r=2, a result of RapO [7] assures an upper bound for
f(n; 4,4), namely:

f(1; 4,4) < max{(bmec* —1)(c —1)+bme, bmc*(c —1)/a) 5
2)

where
A z(asb)a m =a/(a1b)’ szax(xo,}’o: ZU)

(%g, Yo, 20) being a minimal solution for the diophantine equation ax +by =:.
In general, for r>3 and 4; arbitrary it is not known whether f(n; 41, - - -, 4,)
is finite, but there are a lot of particular results, especially for 4;=(1, - - -, 1)
(we shall denote (I, -- -, 1)eZ* by k(1)). For example, Kasa [6] proved
that:

3k —3, if k is odd
SL2AD, k()= (3
3k —2, if k is even
and for n even, k=1, ;
fin; 2D, k(1) = @k +Dn—1 (4)

SERESS [9] extended (2) to all n>1 and also gave
fln;m{1), k(13) = (mk+m—1n—1 ‘ (5)
for 3=xm=k. Earlier ScHUR [8] has proved that
FLAL, A, -, KD) < kle ' ()
———
k

Sharp estimates for Schur numbers may be found in [5]. Related questions
about sum-free sets are contained in a lot of papers from which we mention
[1,2,3,4]. Our paper focusses on the case r =2.

For A =(a,, - -, %)€Z% we put s(4)=a;+ -+ +a and 1(4)= min a;.

If B=(b;, * * -, by)EZT then set
h(A4) = t{A)ns(A)s(B) + n(s(4)—t{A)—1 )]
h(B) = t(B)ns(A)s(B) + n(s(B)—t(B)— 1
h(4), if s(4)<s(B)

h = {h(B), if s{A)>s(B)
max (h(4), h(B)), if s(4)=s(B).

Suppose that s(4)<s(B) and consider the sets
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S = {n, n+l, .- ,ns(A)—]} 4] {NS(A}S(B), . ,h}
Sy = {ns(4), - - -, ns(4)s(B)—1).

Ifxy, »+ %, €5y then byx;+ - -+ +8,x, =ns(4)s(B) so that §, is B-sum-
free. For xy, - - -, x: €8, there are two possibilities: we have x,<ns(4)—1,
for all i when the following inequalities hold

ns{d)sa;x,;+ --- +apx <5(A)ns(4)— 1)<ns(4)s(B)
else some x; lies in {ns(4)s(B), - - -, h} so that
ayxyt+ o hax, = R+
Reasoning in a similar way in the remaining cases it follows that
Jn;4,B) = h (8)
We now state the following
Conjecture:  fin;A,B) = h

which we shall be able to prove in several cases. As before, k{d) denotes the
vector (d, + - -, dy with k components.

THEOREM. ;
fn;A,BY = h if one of the following conditions is Sfulfilled :

I 1(4)=t(B)=1,5(4)=5(B) and k, m=3

1 A=B=k(d),deven and k>d

3. A=B=k(d),dodd, k=3(d+1)/2 and k odd
4 A=B=i(a), d off, k=d and k even

5. 4=p =k{d), d arbitrary and £ =2,3,4,5,6

PROOF 1. Set 5 =s{A). According to (4) and (5) we must prove that
(e n(s2gs 1)} cannot be partitioned into two sets S, S, such that S,
i A-sum-free and S, is B-sum-free. We suppose the contrary. Let neS§,. If
= =X =n&S; then ns=ag;x;+ --- +ax28; so nseS,. Put
x'f ) , *a=nseS;. We obtain ns?eS,. Now suppose that a, =5, =1; if
1 GBXy= . =y, =peS§, then because S is A-sum-free it follows that
Bl +s ~1)es,,
@) fnis+1)eS) we take X1=n, %= - =x=n(s +1), and from ns’eS,
) _‘; Yields that 5, is not A-sum-free, which is false.

B onls+DeS, we take X1 =ns, xp=--+=x,=n(s+1) and

2 4 . - - - -
(s "S=DeS, is obtained because S, is B-sum-free, which is a con-
tradiction,

) .
R :&(1; 15 clear that we may treat only the case when n =1, which yields
o ) k(d)) =k2a? +jeg—g—1. Suppose it is possible to partition

..‘k2d3+kd__ . . . .
2 solution of d} into two sets S, and S, neither of which contains

(N




L. Funar

d(xy+ - X)) = X %)

Then, if 1€S;, we must have dkeS, and d*k?eS,. Furthermore 1€5, and
PkteS, implies k2d’+kd—deS,, since otherwise x=d*k?,

Xy =X3= 0 ==, e = k2d®+kd —d is a solution of (5) in ;. We
claim that the following hold:
(d*— )k +1(d + Dk — €S, (10}
(d® —ld2)k? +(ld +1+ Dkd—( + 1)dESy (1

for all / such that the expressions involved are positive integers.

This is proved by induction on L. It has been shown for / =0. Suppose we -
have shown it for /=0, - - ,m—L If (@ —md)k® +m(d+ 1k —meS, then
x, =(d*—md)k*+m(d + 1)k —m, xp= - =xp=dk, Xp+1= 4
(d* —(m —)d +m)dk ~md is a solution of (9) in ;. Thus (10) holds for -
I=m. Ao if (d°—md®) k2 +(md +m +1)dk —(m +1)deS,  then .
xy=(d*—md) k*+m(d+Dk—m, x3=-°" =x=1, xp+1=(d>—md®)
k2 +(md +m -+ )dk —(m +1)d is a solution of (9) in §,. Thus (11) holds for
! =m. This establishes the claim. Now take I=d in (10). This shows that
d(d+1k—deS,. Take I=d—1 in (1. This shows that d*k?
+d’k —d*eS,. Now if 2dk—1eS;, then x;=-"" =x;=2dk —1,
Xga1= 0 =xp=dk, Xg 41 —d2k? +d%k —d? is a solution of (9) in S,. Thus
2dk —1€8,. Since (d +1,2)=1 we can find non negative integers s and ¢ such
that (d+1)s+2r=k Then x;=--- =x,=d(d+1xk—d, x4 = """
=x,4, =2k =1, Xgpr1= """ =x; +1=d?k?® is a solution of (5) in Sy, 2
contradiction.

3. As in case 2. we have 2dk —1eSi, A2k +dk—d*eS,. I
1/72d{dk ~1)+dk &S, we  find that  x,=x,=1/2d(dk ~1)+dk,:
x3=Xx4= - - =dk, X, 41 =d2k?+d*k —d* is a solution of (9) in S». Thus;
1/2d(dk —1)+dkeS,. Since (d +2,4)=1, we may find integers s, 1=0 such
that (d +2)s -+4¢ =2k. (Every integer n=3(d +1) has such a representation.)

Then xy,=--'= x,=1/2d(dk —)+dk, X41= " =x, 4., =2dk —1

Xepr g1 =" =x=1, g1 =d?k? is seen to be a solution of (9) in Sy, &

contradiction. :
4. We may argue as in case 2. that 2dk —1€S,. Let k=2p. Then

x = =x=2dk—1, %= 0 =x, =1, xp »1 =d*k? is a solution of (9)

in S;, which is a contradiction. E
5

(a) k=2 Let 1€S,. Then 2d€5; s0 4d%eS,. If x, =4d*, x,=1 then it fol-
lows that 44> +deS,. Take /=24 —1 in (11) and we obtain 4d*eS3, &
contradiction. 3

(b) k=3. We have 1€5, and 3d&S,. If d odd we get on setting / =d in (19

that 3d2+2d€S, and on setting [ =1/2(3d —1) in (11) that 6d* +deSa]

1t now follows that 1/2(3d +1)€S,, since otherwise x; =X = 1/72(3d +1)
x3=1 x4=3d*+2d is a soluion of (9) in §,. But them

x1=x2=1/2(3d +1), x3=3d, x4=6d>+d is a solution of (9) in Sz, 2

contradiction. If d is even, we find that on setting ! =d in (10 3deSi

]

¥
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(d)
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another contradiction.
k =4. We have 15, 4deS,. If d =0 (mod 3) put /=44/3 in (10). This
shows that 4de S, a contradiction. If d=1 (mod 3) put /={(4d ~1)/3 in
(10). This shows that 8d —1eS,. Setting /=0 in (10) shows 164*€S.
But then x| =x,=8d —1, x3=x4=1, x5=164" is a solution of (9) in S,
a contradiction. If d=1 (mod 3) put /=(4d —1)/3 in (10). This shows
that 84 —1eS;. Setting /=0 in (10) shows 16d>€S;. But then
x1=x7=8d—1, x3=x4=1, x5 =164 is a solution of (9) in S, a con-
tradiction. If d=2 (mod 3) put /=(4d —2)/3 in (10). This shows that
i2d —2eS,. We must then have 24d°—3deS,, since otherwise
x,=x,=12d =2, x3=x4=1, x5 =24d* —2d is a solution of (9) in §,. It
now follows that 84 — 18 since otherwise x, =x, =8d —1, x3=x4=44,
x5=24d*—2d is a solution of (9) in §,. But now x;=x;=8d—1,
x3=x4=1, xs=164% is a solution of (9) in §;, a contradiction.
k =5. We have 1€S,, SdeS,. If d =0 (mod 4), put / =5d/4 in (10). This
gives 5d eS8, a contradiction. If 4 =1(mod 4), put I =(5d —1)/4 in (10).
This shows that 10d —1e8,. Taking x; =10d — 1, x;=x3;=x3=xs5=1 it
follows that 10d%2+3d&S,. It then follows that (54 +3)/4€S, since oth-
erwise X;=x,=x3=x4=(5d +3)/4, x5=5d, xg=10d>+3d would be
solution of (9) in S,. Take /=4 in (10). This shows 54*+4deS;. But
then x; =x3=x3=x,=(5d +3)/4, x5 =1, and x4 =5d>+4d is a solution
of (%) in S, a contradiction. If 4 =2(mod 4), put /=(5d —2)/4 in (10).
This shows that 154 —2eS,;. Then we must have 45d%—4deS, since
otherwise xy=x,;=x3=15d —2, x4=x5=1, x¢=45d>—4d would be a
solution of (9) in . It follows from this that 104 —1eS, since otherwise
X1 =x;=x3=x4=10d — 1, x5 =5d, x5=45d*> —4d is a solution of (9) in
S;. But then x,=10d—1,x,=15d =2, x3=x4=x5=1, x4=25d* is a
solution of (9) in §,, which is false. If & =3(mod 4), put [=(5d —3)/4 in
( 10)_. This shows that 20d —3€S,. We must have 204> +d &S, since oth-
m_e we could take x1=20d =3, x3=x3=x4=x5=1, x5:20d2 as a
solution of (9) in S;. We must have 1/2(5d +1)eS,; since otherwise
X =x=1/25d +1), x3=x4=x5=>5d, x4 =20d>+d is a solution of (9)
In 5,. However we now have x,=20—3,x,=x3=1/2(5d+1),
X4=x5=1,x5=254" as a solution of (9) in S, a contradiction.
‘-'.':6. We have 15, 6deS,: If d =0(mod 5} take [=64/5 in (10). This
Bves 84<S), a contradiction. If d =1(mod 5) take [ =(64 —1)/5 in (10).
This gives 12d~1eS,. Then x,=x;=x;=12d—1, x4=xs=x¢=1,
}“_ = 6316d 1S a solution of (9) in S, a contradiction. If d=2(mod 5) take
xqi :2)/5 in  (10). This shows that 184d—2&8,. Then
Sk TX:=184 T2 x3=xg=xs=xg=1, x7=364> is a solution of (9) in
ﬂ*:owni gzztradlcnon. If d=3(mod 5) take !/=(6d—3)/5 in (10). This
N tr~—74;3esl‘ We cannot have 484° —2deS, since, if this is so,
m 5. _}'3" —3 xy=x4=xs=xg=1, x;=484* —2d is a solution of (9)
x____iéd:‘i‘ now we find that x;=18d —2, x; =x3=X4=x5 =x¢ =6d,
ooy —-ii verifies (9) so 1984 —2eS,. Also x,=x,;=18d 2,
4745 =x6=1, x;=364% is a solution of (9) in S, contradiction. If
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d =4(mod 5) take I =(6d —4)/5 in (10). This shows that 30d ~4&S,. We
cannot have 60d*—4deS,; x,=x;=30d—4, X3=x4=Xs=Xx;=1
x7=60d> —4d would be a solution of (9) in §,. Thus 60d>—4deS,. We
must then have 12d —1&8, since otherwise x| =x;=x3=x4=12d —1,
x5=x¢=6d, x;=60d>—4d is a solution of (9) in S,. But this shows tha;
x| =x,=x3=12d —1, x4=x5=x¢=1, x;=364" is a solution of (9) in
5, a contradiction.

RemMark 1. It is easy to see that the conjecture also holds for
d>k, d=0(mod(k —1)) and possibly for certain specific values of
d(mod(k — 1)) not necessarily zero, but the above analysis becomes very long
for k=17.

ReMARK 2. In all cases covered by the theorem, 4 and B satisfy s(4)=s(B)
and ¢(4)=1(B). However the conjecture has been verified using a computer in
a few cases when A, B do not satisfy these restrictions e.g ., 4 =(1,1) B =(1,2);
A=(1,3),B=(2,2) and 4 =(1,4), B=(2,2).
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