Generalized Sum-Free Sets of Integers

Louis Funar

Department of Mathematics, University of Bucharest, Academiei 14 Bucharest, R-70109, Romania

Let $A=(a_1,...,a_k)$ be a vector with positive integer components. The set $M\subset Z_+$ is called A-sum-free if for any choice of $x_1,\cdots,x_k\in M$, $a_1x_1+\cdots+a_kx_k\notin M$ holds. For $A_i\in Z_+^k$, $1\le i\le r$, denote by $f(n;A_1,\cdots,A_r)$ the greatest integer h such that for some partition of the set $\{n,\cdots,h\}$ of consecutive integers into S_1,\cdots,S_r the sets S_i are A_i -sum-free for all i. In this paper a lower bound for f(n;A,B) is given and some special cases are treated which support the conjecture that f(n;A,B) always equals this lower bound.

Let $A = (a_1, \dots, a_k)$ be a vector with positive integer components. The set $M \subset Z_+$ called A-sum-free is if for any choice $x_1, \dots, x_k \in M, a_1x_1 + \dots + a_kx_k \notin M$ holds. the In case $a_1 = \cdots = a_k = 1$ the classical definition of k-sum-free sets of integers is obtained. For $A_i \in \mathbb{Z}_+^{k_i}$, $i \in \{1, \dots, r\}$, let $f(n; A_1, \dots, A_r)$ be the greatest number h such that there exists a partition of the set $\{n, \dots, h\}$ of consecutive integers into S_1, \dots, S_r with the property that all S_i are A_i -sum-free for all $i \in \{1, \dots, r\}$.

If $k_1 = \cdots = k_r = 1$ then $f(n; A_1, \cdots, A_r)$ is not a finite number because we can get decompositions of Z_+ into S_1, \cdots, S_r such that $x \in S_i$ implies $A_i x \in S_i$. We describe below two cases: 1) the A_i are distinct prime numbers, and 2) all A_i are equal. In the first case consider the decomposition of an arbitrary integer $n = A_1^{w_1} \cdots A_r^{w_r} M$ where $(M, A_i) = 1$ for every i, and set $\overline{w_i}$ for the residue modulo 2 of w_i considered as an element of $\{0,1\}$. Therefore

$$S_i = \{n; \overline{w}_1 + \cdots + \overline{w}_r = i \pmod{r}\}, i \in \{1, \cdots, r\}$$

is a partition of Z_+ with $A_iS_i \subset S_{i+1}$ so that the S_i are A_i -sum-free. In the second case take $n \in Z_+$ and write $n = A^p m$, $m \in Z_+$, $p \in Z_+$ maximal. Then set

$$S_i = \{n; p = i \pmod{r}\}, i \in \{1, \dots, r\}.$$

Similar but much more involved decompositions of Z_+ can be given for general $A_i \in Z_-$. This suggests that we must consider $k_i \ge 2$. Moreover we don't know what happens when some k_i equal 1, others being greater or equal than 2. Now if $A_i = (a_{ij}), j \in \{1, \dots, k_i\}, k_i \ge 2$, and $A_i' = (a_{i1}, a_{i2} + \dots + a_{ik_i}) \in Z_+^2$, then obviously

$$f(n; A_1, \cdots, A_r) \leq f(n; A_1', \cdots, A_r')$$
(1)

so that the finiteness question may be reduced to the case $k_i = 2$. Under this assumption, for r = 2, a result of RADO [7] assures an upper bound for f(n; A, A), namely:

$$f(1; A, A) \le \max\{(bmc^2 - 1)(c - 1) + bmc, bmc^2(c - 1)/a\}$$
 (2)

where

$$A = (a,b), m = a/(a,b), c = \max(x_0, y_0, z_0)$$

 (x_0, y_0, z_0) being a minimal solution for the diophantine equation ax + by = z. In general, for $r \ge 3$ and A_i arbitrary it is not known whether $f(n; A_1, \dots, A_r)$ is finite, but there are a lot of particular results, especially for $A_i = (1, \dots, 1)$ (we shall denote $(1, \dots, 1) \in \mathbb{Z}^k$ by k(1)). For example, KASA [6] proved that:

$$f(1; 2\langle 1 \rangle, k\langle 1 \rangle) = \begin{cases} 3k - 3, & \text{if } k \text{ is odd} \\ 3k - 2, & \text{if } k \text{ is even} \end{cases}$$
 (3)

and for *n* even, $k \ge 2$,

$$f(n; 2\langle 1 \rangle, k\langle 1 \rangle) = (2k+1)n-1. \tag{4}$$

SERESS [9] extended (2) to all n>1 and also gave

$$f(n; m\langle 1 \rangle, k\langle 1 \rangle) = (mk + m - 1)n - 1 \tag{5}$$

for $3 \le m \le k$. Earlier SCHUR [8] has proved that

$$f(1; 2\langle 1 \rangle, 2\langle 1 \rangle, \cdots, 2\langle 1 \rangle) < k!e.$$
(6)

Sharp estimates for Schur numbers may be found in [5]. Related questions about sum-free sets are contained in a lot of papers from which we mention [1,2,3,4]. Our paper focusses on the case r=2.

For $A = (a_1, \dots, a_k) \in \mathbb{Z}_+^k$ we put $s(A) = a_1 + \dots + a_k$ and $t(A) = \min_{1 \le i \le k} a_i$.

If $B = (b_1, \dots, b_m) \in \mathbb{Z}_+^m$ then set

$$h(A) = t(A)ns(A)s(B) + n(s(A) - t(A)) - 1$$

$$h(B) = t(B)ns(A)s(B) + n(s(B) - t(B)) - 1$$

$$h(B) = t(B)ns(A)s(B) + n(s(B) - t(B)) - 1$$

$$h(B) = \begin{cases} h(A), & \text{if } s(A) < s(B) \\ h(B), & \text{if } s(A) > s(B) \\ max(h(A), h(B)), & \text{if } s(A) = s(B). \end{cases}$$
(7)

Suppose that s(A) < s(B) and consider the sets

$$S_1 = \{n, n+1, \dots, ns(A)-1\} \cup \{ns(A)s(B), \dots, h\}$$

 $S_2 = \{ns(A), \dots, ns(A)s(B)-1\}.$

If $x_1, \dots, x_m \in S_2$ then $b_1 x_1 + \dots + b_m x_m \ge ns(A)s(B)$ so that S_2 is B-sumfree. For $x_1, \dots, x_k \in S_1$ there are two possibilities: we have $x_1 \le ns(A) - 1$, for all i when the following inequalities hold

$$ns(A) \leq a_1x_1 + \cdots + a_kx_k \leq s(A)(ns(A) - 1) < ns(A)s(B)$$

else some x_i lies in $\{ns(A)s(B), \dots, h\}$ so that

$$a_1x_1 + \cdots + a_kx_k \geqslant h+1$$
.

Reasoning in a similar way in the remaining cases it follows that

$$f(n;A,B) \ge h. \tag{8}$$

We now state the following

Conjecture: f(n; A, B) = h

which we shall be able to prove in several cases. As before, $k\langle d \rangle$ denotes the vector (d, \dots, d) with k components.

THEOREM.

f(n; A, B) = h if one of the following conditions is fulfilled:

- 1. t(A)=t(B)=1, s(A)=s(B) and $k, m \ge 3$
- 2. $A = B = k\langle d \rangle$, d even and $k \ge d$
- 3. $A = B = k\langle d \rangle$, d odd, $k \ge 3(d+1)/2$ and k odd
- 4. $A = B = k\langle d \rangle$, d off, $k \ge d$ and k even
- 5. $A = B = k \langle d \rangle$, d arbitrary and k = 2,3,4,5,6

PROOF 1. Set s=s(A). According to (4) and (5) we must prove that $\{n, \dots, n(s^2+s-1)\}$ cannot be partitioned into two sets S_1, S_2 such that S_1 is A-sum-free and S_2 is B-sum-free. We suppose the contrary. Let $n \in S_1$. If $x_1 = \dots = x_k = n \in S_1$ then $ns = a_1x_1 + \dots + a_kx_k \notin S_1$ so $ns \in S_2$. Put $x_1 = \dots = x_n = ns \in S_2$. We obtain $ns^2 \in S_1$. Now suppose that $a_1 = b_1 = 1$; if $x_1 = ns^2, x_2 = \dots = x_k = n \in S_1$ then because S_1 is A-sum-free it follows that $n(s^2 + s - 1) \in S_2$.

- (i) if $n(s+1) \in S_1$ we take $x_1 = n$, $x_2 = \cdots = x_k = n(s+1)$, and from $ns^2 \in S_1$ it yields that S_1 is not A-sum-free, which is false.
- (u) if $n(s+1) \in S_2$ we take $x_1 = ns$, $x_2 = \cdots = x_m = n(s+1)$ and $n(s^2 + s 1) \notin S_2$ is obtained because S_2 is B-sum-free, which is a contradiction.
- 2. It is clear that we may treat only the case when n=1, which yields $h=h(k(d),k(d))=k^2d^2+kd-d-1$. Suppose it is possible to partition $\{1.2...k^2d^3+kd-d\}$ into two sets S_1 and S_2 , neither of which contains

$$d(x_1 + \cdots + x_k) = x_{k+1}. \tag{9}$$

Then, if $1 \in S_1$, we must have $dk \in S_2$ and $d^2k^2 \in S_1$. Furthermore $1 \in S_1$ and otherwise $x_1 = d^2k^2$, $d^2k^2 \in S_1$ implies $k^2d^3 + kd - d \in S_2$, since $x_2 = x_3 = \cdots = x_k = 1$, $x_{k+1} = k^2 d^3 + k d - d$ is a solution of (9) in S_1 . We claim that the following hold:

$$(d^2 - ld)k^2 + l(d+1)k - l \in S_1$$
(10)

$$(d^3 - ld^2)k^2 + (ld + l + 1)kd - (l + 1)d \in S_2$$
(11)

for all l such that the expressions involved are positive integers.

This is proved by induction on l. It has been shown for l=0. Suppose we have shown it for $l=0, \dots, m-1$. If $(d^2-md)k^2+m(d+1)k-m\in S_2$ then $x_2 = \cdots = x_k = dk$ $x_1 = (d^2 - md)k^2 + m(d+1)k - m,$ $(d^3 - (m-1)d + m)dk - md$ is a solution of (9) in S_2 . Thus (10) holds for l = m. Also if $(d^3 - md^2)$ $k^2 + (md + m + 1)dk - (m + 1)d \in S_1$ then $x_1 = (d^2 - md)$ $k^2 + m(d+1)k - m$, $x_2 = \cdots = x_k = 1$, $x_{k+1} = (d^3 - md^2)$ $k^2 + (md + m + 1)dk - (m + 1)d$ is a solution of (9) in S_1 . Thus (11) holds for l=m. This establishes the claim. Now take l=d in (10). This shows that Take l=d-1 in (11). This shows that d^2k^2 $d(d+1)k-d\in S_1.$ $+d^3k - d^2 \in S_2$. Now if $2dk - 1 \in S_2$, then $x_1 = \cdots = x_d = 2dk - 1$, $x_{d+1} = \cdots = x_k = dk$, $x_{k+1} = d^2k^2 + d^3k - d^2$ is a solution of (9) in S_2 . Thus $2dk-1 \in S_1$. Since (d+1,2)=1 we can find non negative integers s and t such that (d+1)s + 2t = k. Then $x_1 = \cdots = x_s = d(d+1)xk - d$, $x_{s+1} = \cdots$ $=x_{s+t}=2dk-1$, $x_{s+t+1}=\cdots=x_{k+1}=d^2k^2$ is a solution of (9) in S_1 , a contradiction.

- 3. As in case 2. we have $2dk-1 \in S_1$, $d^2k^2 + d^3k d^2 \in S_2$. If that $x_1 = x_2 = 1/2d(dk - 1) + dk$, $1/2d(dk-1)+dk \in S_2 \qquad \text{we}$ find $x_3 = x_4 = \cdots = dk$, $x_{k+1} = d^2k^2 + d^3k - d^2$ is a solution of (9) in S_2 . Thus $1/2d(dk-1)+dk \in S_1$. Since (d+2,4)=1, we may find integers $s, t \ge 0$ such that (d+2)s+4t=2k. (Every integer $n \ge 3(d+1)$ has such a representation.) $x_1 = \cdots = x_s = 1/2d(dk-1) + dk, \quad x_{s+1} = \cdots = x_{s+t} = 2dk-1$ $x_{s+t+1} = \cdots = x_k = 1$, $x_{k+1} = d^2k^2$ is seen to be a solution of (9) in S_1 , a contradiction.
- 4. We may argue as in case 2. that $2dk-1 \in S_1$. Let k=2p. Then $x_1 = \cdots = x_p = 2dk - 1$, $x_{p+1} = \cdots = x_k = 1$, $x_{k+1} = d^2k^2$ is a solution of (9) in S_1 , which is a contradiction.
- (a) k=2. Let $1 \in S_1$. Then $2d \in S_2$ so $4d^2 \in S_1$. If $x_1 = 4d^2$, $x_2 = 1$ then it follows: lows that $4d^3 + d \in S_2$. Take l = 2d - 1 in (11) and we obtain $4d^2 \in S_2$, a contradiction.
- (b) k=3. We have $1 \in S_1$ and $3d \in S_2$. If d odd we get on setting l=d in (10) that $3d^2 + 2d \in S_1$ and on setting l = 1/2(3d - 1) in (11) that $6d^2 + d \in S_2$. It now follows that $1/2(3d+1) \in S_2$, since otherwise $x_1 = x_2 = 1/2(3d+1)$, $x_3=1$ $x_4=3d^2+2d$ is a solution of (9) in S_1 . But then $x_1 = x_2 = 1/2(3d+1)$, $x_3 = 3d$, $x_4 = 6d^2 + d$ is a solution of (9) in S_2 , a contradiction. If d is even, we find that on setting l=d in (10) $3d \in S_1$

another contradiction.

- (c) k = 4. We have $1 \in S_1$, $4d \in S_2$. If $d = 0 \pmod{3}$ put l = 4d/3 in (10). This shows that $4d \in S_1$, a contradiction. If $d = 1 \pmod{3}$ put l = (4d-1)/3 in (10). This shows that $8d 1 \in S_1$. Setting l = 0 in (10) shows $16d^2 \in S_1$. But then $x_1 = x_2 = 8d 1$, $x_3 = x_4 = 1$, $x_5 = 16d^2$ is a solution of (9) in S_1 , a contradiction. If $d = 1 \pmod{3}$ put l = (4d 1)/3 in (10). This shows that $8d 1 \in S_1$. Setting l = 0 in (10) shows $16d^2 \in S_1$. But then $x_1 = x_2 = 8d 1$, $x_3 = x_4 = 1$, $x_5 = 16d^2$ is a solution of (9) in S_1 , a contradiction. If $d = 2 \pmod{3}$ put l = (4d 2)/3 in (10). This shows that $12d 2e S_1$. We must then have $24d^2 3d \in S_2$, since otherwise $x_1 = x_2 = 12d 2$, $x_3 = x_4 = 1$, $x_5 = 24d^2 2d$ is a solution of (9) in S_1 . It now follows that $8d 1e S_1$ since otherwise $x_1 = x_2 = 8d 1$, $x_3 = x_4 = 4d$, $x_5 = 24d^2 2d$ is a solution of (9) in S_2 . But now $x_1 = x_2 = 8d 1$, $x_3 = x_4 = 1$, $x_5 = 16d^2$ is a solution of (9) in S_1 , a contradiction.
- (d) k=5. We have $1 \in S_1$, $5d \in S_2$. If $d=0 \pmod{4}$, put l=5d/4 in (10). This gives $5d \in S_1$, a contradiction. If $d = 1 \pmod{4}$, put l = (5d - 1)/4 in (10). This shows that $10d - 1 \in S_1$. Taking $x_1 = 10d - 1$, $x_2 = x_3 = x_4 = x_5 = 1$ it follows that $10d^2 + 3d \in S_2$. It then follows that $(5d + 3)/4 \in S_1$ since otherwise $x_1 = x_2 = x_3 = x_4 = (5d + 3)/4$, $x_5 = 5d$, $x_6 = 10d^2 + 3d$ would be solution of (9) in S_2 . Take l=d in (10). This shows $5d^2+4d \in S_1$. But then $x_1 = x_2 = x_3 = x_4 = (5d + 3)/4$, $x_5 = 1$, and $x_6 = 5d^2 + 4d$ is a solution of (9) in S_1 a contradiction. If $d = 2 \pmod{4}$, put l = (5d - 2)/4 in (10). This shows that $15d - 2 \in S_1$. Then we must have $45d^2 - 4d \in S_2$ since otherwise $x_1 = x_2 = x_3 = 15d - 2$, $x_4 = x_5 = 1$, $x_6 = 45d^2 - 4d$ would be a solution of (9) in S_1 . It follows from this that $10d - 1 \in S_1$ since otherwise $x_1 = x_2 = x_3 = x_4 = 10d - 1$, $x_5 = 5d$, $x_6 = 45d^2 - 4d$ is a solution of (9) in S_2 . But then $x_1 = 10d - 1$, $x_2 = 15d - 2$, $x_3 = x_4 = x_5 = 1$, $x_6 = 25d^2$ is a solution of (9) in S_1 , which is false. If $d = 3 \pmod{4}$, put l = (5d - 3)/4 in (10). This shows that $20d - 3 \in S_1$. We must have $20d^2 + d \in S_2$ since otherwise we could take $x_1 = 20d - 3$, $x_2 = x_3 = x_4 = x_5 = 1$, $x_6 = 20d^2$ as a solution of (9) in S_1 . We must have $1/2(5d+1) \in S_1$ since otherwise $x_1 = x_2 = 1/2(5d+1)$, $x_3 = x_4 = x_5 = 5d$, $x_6 = 20d^2 + d$ is a solution of (9) in S_2 . However we now have $x_1 = 20 - 3$, $x_2 = x_3 = 1/2(5d + 1)$, $x_4 = x_5 = 1$, $x_6 = 25d^2$ as a solution of (9) in S_1 , a contradiction.
- (e) k = 6. We have $1 \in S_1$, $6d \in S_2$: If $d = 0 \pmod{5}$ take l = 6d/5 in (10). This gives $6d \in S_1$, a contradiction. If $d = 1 \pmod{5}$ take l = (6d-1)/5 in (10). This gives $12d-1 \in S_1$. Then $x_1 = x_2 = x_3 = 12d-1$, $x_4 = x_5 = x_6 = 1$, $x_7 = 36d^2$ is a solution of (9) in S_1 , a contradiction. If $d = 2 \pmod{5}$ take l = (6d-2)/5 in (10). This shows that $18d-2 \in S_1$. Then $x_1 = x_2 = 18d-2$, $x_3 = x_4 = x_5 = x_6 = 1$, $x_7 = 36d^2$ is a solution of (9) in S_1 , a contradiction. If $d = 3 \pmod{5}$ take l = (6d-3)/5 in (10). This shows $24d-3 \in S_1$. We cannot have $48d^2-2d \in S_1$ since, if this is so, $x_1 = x_2 = 24d-3$ $x_3 = x_4 = x_5 = x_6 = 1$, $x_7 = 48d^2-2d$ is a solution of (9) in S_2 . But now we find that $x_1 = 18d-2$, $x_2 = x_3 = x_4 = x_5 = x_6 = 6d$, $x_7 = 48d^2-2d$ verifies (9) so $198d-2 \in S_1$. Also $x_1 = x_2 = 18d-2$, $x_3 = x_4 = x_5 = x_6 = 1$, $x_7 = 36d^2$ is a solution of (9) in S_1 contradiction. If

 S_1 , a contradiction.

 $d = 4 \pmod{5}$ take l = (6d - 4)/5 in (10). This shows that $30d - 4 \in S_1$. We cannot have $60d^2 - 4d \in S_1$; $x_1 = x_2 = 30d - 4$, $x_3 = x_4 = x_5 = x_6 = 1$. $x_7 = 60d^2 - 4d$ would be a solution of (9) in S_1 . Thus $60d^2 - 4d \in S_2$. We must then have $12d - 1 \in S_1$ since otherwise $x_1 = x_2 = x_3 = x_4 = 12d - 1$. $x_5 = x_6 = 6d$, $x_7 = 60d^2 - 4d$ is a solution of (9) in S_2 . But this shows that

 $x_1 = x_2 = x_3 = 12d - 1$, $x_4 = x_5 = x_6 = 1$, $x_7 = 36d^2$ is a solution of (9) in

REMARK 1. It is easy to see that the conjecture also holds for d>k, d=0(mod(k-1)) and possibly for certain specific values of d(mod(k-1)) not necessarily zero, but the above analysis becomes very long for $k \ge 7$.

REMARK 2. In all cases covered by the theorem, A and B satisfy s(A) = s(B) and t(A) = t(B). However the conjecture has been verified using a computer in a few cases when A, B do not satisfy these restrictions e.g., A = (1,1)B = (1,2); A = (1,3), B = (2,2) and A = (1,4), B = (2,2).

ACKNOWLEDGEMENTS. The author wishes to thank R.K. Guy for very helpful discussions about this subject and to the referee for pointing out some errors in the initial version of this paper.

REFERENCES

- 1. H.L. ABBOTT and D. HANSON, 1977, Sum-free-sets of integers, Proc. Amer. Math. Soc. 67, pp. 11-16.
- 2. H.L. ABBOTT and E.T.H. WANG, 1972, A problem of Schur and its generalizations, Acta Arith. 20, pp. 175-187.
- 3. P. Erdős, 1979, Combinatorial problems in geometry and number theory, Proc. Symposia Pure Math. 34, pp. 149-163.
- 4. R.K. Guy, 1981, Unsolved problems in intuitive mathematics, Springer-Verlag, Publ. or Perish.
- 5. R.W. IRVING, 1973, An extension of Schur's theorem on sum-free partitions, Acta Arith. 25, pp. 55-63.
- 6. Z. KASA, 1975, On k-thin sets and their relation to generalized Ramsey numbers, Studia Univ. Babes-Bolyai 20, pp. 55-59.
- 7. R. RADO, 1933, Studien zur Kombinatorik, Math. Zeitschrift 36, pp. 424-480.
- 8. I. SCHUR, 1916, Uber die Kongruenz $x^m + y^m = z^m \pmod{p}$, Jahresb. der Deutschen Math. Verein. 25, pp. 114-117.
- A. SERESS (1978-1983), k-sum-free decompositions, Matematikai Lapok 31, pp. 191-195.