PRODUCTS OF BIJECTIONS by Louis FUNAR and Dan CALISTRATE

1. Introduction and statement of results

The aim of this paper is to give some necessary or sufficient conditions for a map from a group (B, \times) in itself being the product of two bijections. The product of the mappings $f,g:B\to B$ is defined by (f*g)(x) = f(x)*g(x). The case when the group is (R, +) is assigned to M. Rădulescu and S. Rădulescu (see [1]) and treated by J.Ceder ([1]); also appeared formulated by L.Funar [2] as an open problem.

The main results of Ceder are concerned in :

THEOREM 1 Every map $f:R \rightarrow R$ can be written as a sum of three bijections of R in itself.

THEOREM 2 If the map $f: R \rightarrow R$ is constant or has an uncountable range, then f can be written as the sum of two bijections.

It has been not settled the case when f is not constant and is range is at most countable. Miller [4] extends theorem 2, by proving the following:

THEOREM 3 For every map $f:R \to R$ there exist a finite set $A \to R$ and the bijections g, $h:R \to R$ such that f(x)=g(x)+h(x), $\forall x \in R \setminus A$. Closely related are the problems when the bijections are constrained to be isomorphisms for some additional structures, by example homeomorphisms of R. We mention here the result of Ceder [1] and Ho[3]:

THEOREM 4 The continuous mapping f: R —R is the sum of two homeomorphisms of R iff f has finite total variation on each finite interval.

Our main result is an improvement of theorems 1,2,3 above stated. Below (B,*) is a fixed group.

THEOREM 5. (i) If B is infinite and f: B — B has infinite range then f is the product of two bijections.

(ii) If B is not finitely generated, $f(B) = \{a_1, \dots, a_k\}$ and $f^{-1}(a_j)$ are infinite $\forall j \in \{1, \dots, k\}$ then f is the product of bijections

(iii) If B is a torsion free abelian group, f(E): = $\{a_1,a_2\}$ and f is the product of two bijections, then $f^{-1}(a_i)$ are infinite $\forall i \in \{1,2\}$.

(iv) If B is an abelian group f (B) = $\left\{a_0, a_1, \dots, a_k\right\}$ card $f^{-1}(a_i) = y_i$ for $i \in \left\{1, \dots, k\right\}$, then f is the product of two bijections iff $a_1^{y_1} a_2^{y_2} \dots a_k^{y_k} = a_o^{y_k + \dots + y_k}$

As a corollary we shall obtain :

THEOREM 6 If B is infinite, f:B-B, then f is the sum of three bijections.

We denote below card A or |A| the cardinal of A, rg f the range and dom f the definition set of the map f. Our proof follows the lines developed in [4].

2. Preliminary lemmas

For the proof of the above theorems we need some prerequisites. Lemma 1 If G is a subgroup of B, f:B—B is a map such that rg f \subseteq G, card rg f = card G, and for every $x \in rg$ f, $f^{-1}(x) \cap G \neq \emptyset$ then there exist two bijections h,g: G \rightarrow G such that f $\mid_{\mathbf{G}} = h$ $\downarrow_{\mathbf{F}} = h$ $\downarrow_$

Denote by \$\foat{F}\$ the family of maps (h.g) having the following properties:

- 1. dom h = dom $g \subseteq G$, rg f,rg $g \subseteq G$
- 2. $f \mid dom h = h * g$
- 3. $|\Gamma_h| = |\Gamma_g| \leq |\varphi(\text{dom } h)|$
- 4. $\varphi(\text{dom h}) \leqslant \varphi(\text{rg h}), \varphi(\text{rg g})$
- 5. h, g are injective

We start with $\Gamma_{h_c} = \Gamma_{g_c} = \phi$. The family \Im has an obvious induced ordering. If $K = \{(h_{\lambda}, g_{\lambda})\}$ is a totally ordered sequence inclused in \Im then $\Gamma_h = \bigcup_{\lambda} \Gamma_{h_{\lambda}}$, $\Gamma_g = \bigcup_{\lambda} \Gamma_{g_{\lambda}}$ define a majorant for K which lies in \Im . By Zorn's lemma \Im has a maximal element say (h,g). Let $\alpha = \gamma$ (dom h). If $\alpha = \xi$ then (h,g) will answer our question, else \propto < γ . Then there exists $z \in G \backslash rg$ h such that $z^{-1} * f(y_{\alpha}) \notin rg \mid g$. In fact $\Lambda = \{z^{-1} * f(y_{\alpha}) ; z \in G \mid rg h\}$ has all elements distinct, $|A| = |G \setminus rg h|$ but $|rg h| \leq |\gamma(dom h)| = |\alpha| < |\gamma|$ bence we cannot have $A \subseteq rg$ g because |A| > |rg| g. Consider the extensions h. g of h, g by $\Gamma_{\widetilde{h}} = \Gamma_{h} \cup (y_{\chi}, z)$, $\Gamma_{\widetilde{g}} = \Gamma_{g} \cup (y_{\chi}, z^{-1} * f(y))$, Now if $y_{\alpha} \notin rg \stackrel{\sim}{h}$ we can choose $t \in G \setminus dom \stackrel{\sim}{h}$ such that $y_{\alpha}^{-1} * f(t) \notin rg \stackrel{\sim}{g}$. Indeed set $B = \{y_{\mathcal{A}}^{-1} * f(t) ; t \in G \setminus dom h\}$ then $B = \{f(t) ; t \in G \setminus dom h\}$ -dom h | .We have $|\{f(t); t \in G\}| = |rg f| = |G|$ because $f^{-1}(x) \cap G \neq \emptyset \quad \forall x \in rg \ f. \ \text{It follows that } |B| = |G \setminus dom \ h| > |rg \ g|$ hence the desired element t could be chosen in B\rg \widetilde{g} . Now put $\Gamma_{h^*} = \Gamma_{\widetilde{h}} \cup (t, y_{\alpha})$, $\Gamma_{g^*} = \Gamma_{\widetilde{g}} \cup (t, y_{\alpha}^{-1} * f(t))$. The same arguments hold in the case $y_{\alpha} \notin rg g^{\times}$ and a pair $(h^{\times *}, g^{**})$ is obtained. Now (n^{**},g^{**}) ; (h,g) and lies in \mathcal{F} contradicting pur assumption of maximality of (h,g) in 3.

Lemma 2. Let G be an infinite subgroup of B, f:B —B with rg $f \subseteq G$ such that : card $f^{-1}(a) \leqslant \text{card } G$ implies $f^{-1}(a) \subseteq G$. Then there exist the bijections h,g: B\G — B\G for which $f|_{B\setminus G} = h \not = g$.

Proof. Define the equivalence relation $x \sim y$ iff $x \not = y^{-1} \in G$ and set $F_0 = \{a \in B \mid f^{-1}(a) \neq G\}$, $H_a = f^{-1}(a) \setminus G$ for $a \in F_0$.

If $F_o = \phi$ then B = G and the result is trivial valid. For $F_o \neq \phi$ it rollows from hypothese that $\{H_a\}_{a \in F_o}$ is a partition of B\G and card $H_a > \text{card } G$.

Let $\{K_a\}_{a\in F_c}$ a partition of B\G in reunions of cosets with respect to G (i.e. sets ~invariant), and card $K_a = \operatorname{card} H_a$. This is possible because card $H_a > \operatorname{card} G$. Now consider $\mathcal{X}: B \setminus G \to B \setminus G$ a dijection with the property that $\mathcal{X}(K_a) = H_a$, $\forall a \in F_o$. Then it is surficient to prove the lemma for $f_1 = f|_{B\setminus G} \circ \mathcal{X}$. Observe that $f_1^{-1}(a) = K_a$ so $\operatorname{rg} f_1 \subseteq B \setminus G$. Set h(x) = a * x for $x \in K_a$, $g(x) = x^{-1}$. Then $f_1 = h * g$ and h_{K_a} is a dijection onto K_a , so the lemma is proved.

<u>LEMMA 3</u> Let $f : B \rightarrow B$, F = rg f. There exists an subgroup $G \subseteq B$ which satisfies:

- F ⊆ G and card G ≤ card F + h_e
- 2. $\forall x \in \mathbb{F}$, $f^{-1}(x) \cap G \neq \emptyset$
- 3. $\forall x \in F \text{ with card } f^{-1}(x) \leqslant \text{card } G \text{ we have } f^{-1}(x) \subseteq G$.

<u>Proof.</u> Let G_0 be the group generated by $F \cup \{x_a, a \in F\}$ where $x_a \in f^{-1}(a)$. Then set $X = \bigcup_{\substack{c \text{ard } f^{-1}(a) \leqslant c \text{ard } G_0}} f^{-1}(a)$ and G be the group $a \in F$

generated by $X \cup G_0$. Then card $X \leqslant \operatorname{card} G_0 + \%_0 \leqslant \operatorname{card} F + \%_0$ so card $G \leqslant \operatorname{card} F + \%_0$. Also for $a \in F$, $f^{-1}(a) \cap G \ni x_a$ and the group G satisfies the requirements of lemma 3.

3. Proof of theorems and comments

If card $F \geqslant \frac{\pi}{0}$ and G is the group given by lemma 3 then according to lemmas 1 and 2 f is the product of two bijections. If F is finite, card $B \geqslant \frac{\pi}{0}$ then f^* defined by $f^*(x) = f(x) * x$ has an infinite range, so f is the product of there bijections, which proves theorem 6 and theorem 5 (i). Let now G be the countable subgroup of B given by lemma 3 and H another subgroup of B such

that $G \subseteq H$, card $H/G \geqslant card \ F$. (this is possible since B is not finitely generated). We consider the partition $\{K_a\}_{a \in F}$ of H in G-cosets, and a bijection $\widehat{\pi}: H \to H$ such that $\mathcal{K}(K_a) = f^{-1}(a) \cap H$. Then set $h(x) = a * x_0 f$ or $x \in K_a$, $g(x) = x^{-1}$, which satisfies $f|_{H} = h * g$. From lemma 2 applied to the subgroup H, theorem 5 (ii) follows. In the casee (iii) we suppose f = h * g, $f^{-1}(a_2) = \{z_1, \ldots, z_n\}$, $g(z_1) = t_1^{-1}$. Then $h(z_1) = a_2 * t_1$ and $h(x) = a_1 * g(x)^{-1}$ for $x \notin \{z_1, \ldots, z_n\}$. If we set $T = \{t_1, \ldots, t_n\}$ then it follows that $a_1^{-1} * a_2 * T = T$ so $\prod_{x \in T} x = \prod_{x \in A_1 \land a_2 \land T} x$. This gives $(a_1^{-1} * a_2)^n = e$,

e being the null element of B and since B is torsion free $a_1=a_2$; a contradiction,

Therefore the assertion of theorem 5 (iii) is valid. In the last case we put $A_i = f^{-1}(a_i)$, $C_i = g(A_i)$. Observe that the family of subsets $\{a_i^{-1} \times C_i\}$ i $\in \{0,1,\ldots,k\}$ is a partition of B, hence we can define a map $\mathcal C: B \setminus C_0$ setting $\mathcal C(x) = a_0 \times a_j^{-1} \times x$ for $x \in C_j$, $1 \le j \le k$. Then $\mathcal C$ is injective, so it is a bijection since C_j are finite for $1 \le j \le k$. Therefore $\bigcap_{x \in B \setminus C_0} x \in B \setminus C_0$, equivative.

lent to $a_0^{y_1+\cdots+y_k} = a_1^{y_1} \cdots a_k^{y_k}$. Conversely let consider the sets $c_j = \{x \mid x = a_0^{i-1}a_j^{1-i} \mid a_0^{y_5}a_s^{-y_5}, \text{for } 1 \le i \le y_j\}, 1 \le j \le k \text{ and } 1 \le s \le k$

 $C_0 = B \setminus \bigcup_{j=1}^k C_j$. Then we can give the bijections $h_i g_i : A_i - C_i$ because card $A_i = \operatorname{card} C_i$, such that $g_i(x) = h_i(x)^{-1} + a_i$. The maps $g(x) = g_i(x)$ for $x \in A_i$, $h(x) = h_i(x)$ for $x \in A_i$ satisfy the requirements of the theorem 5 (iv).

BLLLIOGRAPHY

- [1.] CEDER, I. Sums of permutations, Rev. Roum. Math. Puros et Appliques, 9(1985)
- [2.] FUNAR, L. Froblem proposed In Amer. Math. Monthly, 4, 9(1986)
- [3.] IIC, C-w. tersonal communication, 1986
- [4.] MILLER, A. Personal communication, 1986

Departament of Mathematics, Univ. of Bucharest, Academiei 14, R- 70109, ROMARIA