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Abstract

This work studies the Deligne-Mostow lattices in PU(2, 1). These were intro-

duced by Deligne and Mostow in several works (see [Mos80], [DM86], [Mos86],

[Mos88]), using monodromy of hypergeometric functions. The same lattices were

rediscovered by Thurston (see [Thu98]) using a geometric construction, which con-

sists of studying possible con�gurations of cone points on a sphere of area 1, when

the cone angles are prescribed. This space has a complex hyperbolic structure and

certain automorphisms of the sphere which swap pairs of cone points, generate a

lattice for some choice of initial cone angles (more precisely, the Deligne-Mostow

lattices). Among these, we will consider the ones in PU(2, 1). We use Thurston's

approach to study the metric completion of this space, which is obtained by mak-

ing pairs of cone points coalesce. Following the works of Parker [Par06] and Boadi-

Parker [BP15], we build a polyhedron. Using the Poincaré polyhedron theorem,

we prove that the polyhedron we �nd is indeed a fundamental domain. More-

over, we give presentations for all Deligne-Mostow lattices in PU(2, 1), calculate

their volumes and show that they are coherent with the known commensurability

theorems.
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Chapter 1

Introduction

One of the main goals in complex hyperbolic geometry is to study lattices in

PU(n, 1). In fact, there are relatively few methods to construct them and they

are rarely explicit. Moreover, many of these constructions use number theory

to �nd arithmetic lattices, which makes it more interesting to study non arith-

metic lattices arising by geometric constructions. The relation between arithmetic

groups and lattices in symmetric spaces is interesting on its own. Complex hy-

perbolic space is the only rank one symmetric space of non-compact type where

the relation is not completely settled. While we know that all arithmetic groups

are lattices, examples of non arithmetic lattices are only known in low dimension

(≤ 3). More details about arithmeticity can be found in Section 2.5. An ac-

count of the known constructions (not including some recent developments) can

be found in the survey from Parker [Par09].

For a long time the Deligne-Mostow lattices were the only known (commensu-

rability classes of) non arithmetic complex hyperbolic lattices and even now there

are very few known. Outside the Deligne-Mostow lattices, we only have the lat-

tices in PU(2, 1) found in the recent work from Deraux-Parker-Paupert [DPP16]

and a group constructed by Couwenberg-Heckman-Looijenga, recently identi�ed

by Deraux (see [Der17]) as the only known non-arithmetic lattice in PU(3, 1),

other than the one found by Deligne and Mostow.

Deligne-Mostow lattices �rst appeared in [Mos80], [DM86], [Mos86] and in

[Mos88]. They arise as monodromy of hypergeometric functions, a construction
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that dates back to Picard, Lauricella and others. More precisely, they start with

a ball N -tuple µ = (µ1, . . . µN ), i.e. a set of N real numbers between 0 and 1

such that
∑
µi = 2, from which they construct some lattices in PU(N − 3, 1).

Then, in [Mos86], Mostow deduced a su�cient condition on µ for the monodromy

group to be discrete, called condition ΣINT. This improved the su�cient condition

called INT and introduced by Picard, who worked on the case of PU(2, 1). Only

�nitely many ball N -tuples satisfy condition ΣINT, giving a �nite list of lattices

in dimensions between 2 and 9 (i.e. 5 ≤ N ≤ 12). Mostow in [Mos88] proved

that for N ≥ 7 condition ΣINT exactly characterises discreteness, while for N = 6

there is exactly one ball 6-tuple which does not satisfy the condition but still gives

discrete monodromy. For N = 5, Mostow found nine ball 5-tuples which do not

satisfy ΣINT but for which he could not prove that the monodromy groups were

not discrete. Sauter in [Sau90] proved that all nine give monodromy groups that

are commensurable to one arising from a ball 5-tuple that satis�es the condition

ΣINT and hence they are also discrete. Combining the works of Deligne, Mostow

and Sauter, one gets a �nite and exhaustive list of ball N -tuples µ that give rise

to a lattice using this construction (see also the book from Deligne and Mostow

[DM93], which extends Sauter's work about commensurability classes). Any other

value gives non-discrete monodromy. The construction from Deligne and Mostow

is summarised in Section 3.1.

An alternative interpretation of these lattices was given by Thurston [Thu98]

in terms of cone metrics on a sphere. Thurston's construction is more geometric

and is the one at the origin of our work. His construction consists of considering

a sphere with N cone singularities vi for i = 1, . . . , N , of cone angle θi at vi

between 0 and 2π. They must then satisfy the discrete Gauss-Bonnet formula

(i.e.
∑
αi = 4π, where αi = 2π − θi are the curvatures at the cone points). He

proves that the moduli space of such cone metrics with prescribed cone angles

and area 1 has a complex hyperbolic structure of dimension N − 3. He considers

the group of automorphisms of the sphere swapping cone points with same cone

angles and their squares when the cone angles are di�erent. These are half or full

Dehn twists along a curve passing through the two cone points. He then gives

an explicit, su�cient condition on the cone angles for this group to be a lattice.

2



This condition is called the orbifold condition and is equivalent to Mostow's ΣINT

condition. More details about Thurston's construction can be found in Section

3.2.

In [Koj01], Kojima proved that the two constructions from Deligne-Mostow

and from Thurston are equivalent and can be seen as putting the same complex

hyperbolic structure on the same space Q. This is summarised in Section 3.3.

This work deals with the Deligne-Mostow lattices in PU(2, 1), which arise

from ball 5-tuples. Our goal is to build fundamental domains and give explicit

presentations for all of them. This answers Problem 6.5 and partly answers Prob-

lem 6.4 of [Par09].

All of the Deligne-Mostow lattices in PU(2, 1) have some symmetries, given

by some of the µi's having the same value. In Thurston's approach, this means

that some of the cone points on the sphere have same cone angle. In particular,

the lattices will have (at least) either a 2-fold or 3-fold symmetry (i.e. they will

have two or three cone points with same cone angle respectively). They may have

more symmetries, which re�ect in symmetries of the fundamental polyhedra.

For some of the lattices with 3-fold symmetry, a fundamental domain has

already been constructed, since the higher symmetry makes them a little easier

to work on. These lattices can be parametrised using two values (p, k) (or (p, t)

following Mostow) and can be divided in four broad types according to the values

of these parameters, which determine the type (i.e. the dynamical behaviour, see

Section 2.2) of some special maps. In particular, Deraux, Falbel and Paupert in

[DFP05] gave a construction for some of the Deligne-Mostow groups, which we

say are of second type (see Section 3.4.1). Later, Parker in [Par06] constructed a

fundamental polyhedron for the Livné lattices (or lattices of third type) using a

di�erent method. Later on, Boadi and Parker in [BP15] used the same method

to obtain a fundamental domain for Mostow groups of the �rst type. The part

of this work about lattices with 3-fold symmetry (Chapter 5) �lls in the �nal gap

in the sense that it provides a construction for a fundamental domain for lattices

of the fourth type as well. Moreover, the construction described contains all the

previous constructions in the following sense. One can build a single polyhedron

and see all the polyhedra found in the previous cases as a deformation of the
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one constructed here, which is obtained by making triplets of points collapse to a

single one. Section 5.7 is dedicated to the study of the relation between the work

presented here and the fundamental domains previously built. The contents of

Chapter 5 has been published in [Pas16].

The method to build the fundamental domain for the 3-fold symmetry lattices

can also be adapted to construct building blocks for the fundamental domain for

lattices with 2-fold symmetry in the following sense. One could forget about the

symmetries and give a completely general construction, which is valid whatever

the initial cone points are. Considering a generic cone metric on the sphere

(without any symmetry), we can parametrise it by cutting along a curve passing

through the cone points and develop the metric on a plane in a polygonal form,

getting an octagon Π with pairs of sides of same length identi�ed. One can recover

the cone metrics by gluing the associated sides of the polygon back together. Such

polygon can be described by three complex parameters which are related to the

sides of the polygon, and we use them to give a set of projective coordinates.

One can then use these coordinates to show that Thurston's theorem holds: by

expressing the area in terms of the parameters one can see that it is a Hermitian

form H of signature (1,2) on C3; since the area must be positive and we consider

metrics of area one (hence con�gurations up to rescaling), we get a complex

hyperbolic 2-space as the moduli space.

One can then introduce the moves on the cone structures, which are maps on

the sphere corresponding to swapping two cone points, i.e. applying a half Dehn

twist along a curve containing two cone points or applying a full Dehn twist.

These are automorphisms of the sphere (and hence isometries of H2
C) when the

cone points which are swapped have same cone angle. Before specialising to the

case with symmetries, we also consider maps that swap cone points with di�erent

cone angles. This means that we land on a new cone metric after applying the

move. We will hence apply the move twice in order to come back to the same

cone metric and have an automorphism of the sphere. While swapping cone points

with same cone angle in the symmetric case is natural, the moves corresponding

to full Dehn twists (i.e. swapping twice cone points with di�erent cone angles)

were �rst introduced by Thurston (and called butter�y moves) and generalised

4



here to our case.

Moreover, we show how one can build a polyhedron associated to the ordered

set of cone angles. Following Thurston's idea, we consider what happens when

pairs of cone singularities approach each other until they coalesce, becoming a

single point. These con�gurations are the vertices of the polyhedron. We want

to remark that this is completely general and a cone manifold can be built even

if the cone angles we started from do not give a lattice. This is described in

Chapter 4, where the structure of these polyhedra is studied. Each side of the

polyhedron (i.e. maximal dimension facet) is contained in a bisector. Bisectors

are among the best understood subspaces of the complex hyperbolic plane and

have some useful properties. In fact, one of the main di�culties in building

fundamental domains in complex hyperbolic space is that there are no totally

geodesic real hypersurfaces. Some possible substitutes, successful in some cases,

are bisectors. Bisectors are foliated in two ways by totally geodesic subspaces

and their intersection is well understood. More details about the structure of

bisectors and bisector intersections can be found in Section 2.3. By intersecting

the sides and calculating the dimension of these intersections we then �nd also

2-dimensional and 1-dimensional facets of the polyhedron. These are referred to

as the ridges and the edges respectively.

For suitable initial cone points (in the lists in Sections 3.4.1 and 3.4.2), some

of the moves will be automorphisms of the sphere with cone singularities (i.e.

swap cone points with same cone angle or swap cone points twice), and we will

consider the group Γ generated by the moves (or their compositions). Then, in

the 3-fold symmetry case the polyhedron is actually a fundamental domain for

the lattice Γ, provided we start from the right set of cone singularities and up

to collapsing triplets of points. In the 2-fold symmetry case this polyhedron is a

building block for the fundamental domain of Γ, which will consist of the union

of three copies of this polyhedron, each for a di�erent ordering of the cone points.

Chapter 6 describes how to take the three copies and how they are glued. The

content of Chapters 4 and 6 have been submitted for publication in [Pas17].

To prove that the polyhedra built are e�ectively fundamental domains, we

use the Poincaré polyhedron theorem. Section 2.4 explains the version we will
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use in detail. To use the Poincaré theorem, the polyhedron needs to satisfy a

few conditions. In particular, the generators have to pair the sides, sending one

in the other, in a way that satis�es certain properties. Because of this they are

called side pairing maps. Moreover, we also have some conditions on the ridges,

the most di�cult of which has been to prove that the polyhedron and its images

under the side pairing maps tessellate a neighbourhood of the interior of each

ridge (local tessellation property).

The power of the Poincaré polyhedron theorem lies not only in the fact that

it proves that the group is discrete and the polyhedron is indeed a fundamental

domain for the group, but also in the fact that it gives a presentation for the

group. The conditions on sides and ridges consist, in fact, also of some relations

on the maps, called re�ection relations and cycle relations respectively. Using the

side pairing maps as generators and such relations, we obtain a full presentation

for the group.

In the presentation, the relations are given only by cycle transformations which

are complex re�ections with certain parameters related to the lattice as their order.

When an order is positive, we have a complex re�ection with respect to a complex

line. When the associated parameter is negative, the transformation is a complex

re�ection in a point so it is not a cycle transformation and it does not appear

in the presentation. When it is ∞ we have a parabolic element, a �xed point

on the boundary and again no relation in the presentation. The last two cases

are related to the modi�cations of the polyhedron that we mentioned. In fact,

when one of the parameters is negative or in�nite, a triangular ridge collapses to

a single point, which is on the boundary when the parameter is in�nite. Although

a presentation for the lattices was already given in the work from Deligne and

Mostow, it is not explicit and hence very hard to use.

The description of the polyhedra is also very explicit, due to the use of two

or three suitable sets of coordinates (for the 3- and 2-fold symmetry cases respec-

tively), which enormously simplify the calculations. This allows us to calculate

the orbifold Euler characteristic of the polyhedron, as the sum (with alternating

signs with the dimension of the facets) of the order of the stabiliser of one element

for each orbit of facets. Then we can calculate the volume of the quotient Γ�
H2
C,

6



which is a multiple of the orbifold Euler characteristic. The calculations of the

volumes and the coherence check with the commensurability theorems known for

these lattices (see 3.5) can be found in Chapter 7.

The main method used in this work is a generalisation of the construction

that Parker used in [Par06] to build fundamental domains.

This work is organised as follows. Chapter 2 contains all the background about

complex hyperbolic geometry needed for the main results. It starts with the basic

de�nition of complex hyperbolic space, then describes its space of isometries and

how to classify them according to their dynamical behaviour. It continues with

a detailed description of the structure of bisectors, which contain the sides of our

fundamental polyhedra. We will then give the version of the Poincaré polyhedron

theorem which we will use to prove that the polyhedra constructed are indeed

fundamental domains. Chapter 2 ends with a brief account of the relation between

arithmeticity and lattices in our setting.

Chapter 3 talks about the history of the lattices that are the main topic of

this work. It summarises the works of Deligne and Mostow which constructs the

lattices as monodromy of hypergeometric functions. Moreover, it brie�y gives

an account of Thurston's reinterpretation of the same lattices, using cone metric

on a sphere of area 1 and it explains why they are di�erent interpretations of

the same lattices, following the work from Kojima. It also gives a complete list

of the Deligne-Mostow lattices in dimension 2, split in those with 3- and 2-fold

symmetry and explains how to parametrise them. Finally, it summarises the

known commensurability theorems which relate the lattices we are considering.

Chapter 4 explains how to equip any cone metric on a sphere (independently

on the symmetry on the cone angles) with a complex hyperbolic structure and

how to associate certain maps and a polyhedron to it. Then it studies in detail the

structure of the polyhedron, proving that the sides are all contained in bisectors

and studying their intersections.

Chapters 5 and 6 explain how to build the polyhedron in the two speci�c

cases, specify which of the moves previously introduced we want to consider to

generate the lattice and use the Poincaré polyhedron theorem to prove that the

polyhedron is a fundamental domain. These chapters include the main theorems

7



5.4.1 and 6.3.1 and their proofs. It also includes an explicit presentation for each

of the groups and an explanation of how to deform the polyhedron to cover all

cases.

Chapter 7 is devoted to the calculations related to the volumes of the quotients

of H2
C by the lattices. The tables with the orbits of the facets, the stabilisers

and their orders are presented here, considering each possible deformation of the

polyhedra. Moreover, the chapter ends with an explanation of how the volumes

calculated are coherent with the known commensurability theorems (see Section

3.5).

Chapter 8 is an account of the future directions this research can take. On

the one hand, one could try and generalise this construction to Deligne-Mostow

lattices in dimension 3, using the complex 2-dimensional polyhedra found here as

facets of the new polyhedra. On the other, it is also known that a similar analysis

as Thurston's can be done for a torus with certain cone singularities (see Veech

[Vee93] and Ghazouani-Pirio [GP17]). One could then parametrise the cone met-

rics and hope to use a similar procedure as done here to �nd lattices, potentially

new (non-arithmetic) ones. The chapter mentions some of the preliminary work

we did in these two new directions.
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Chapter 2

Complex hyperbolic geometry

In this chapter we will �rst de�ne the complex hyperbolic space, give some of

its main properties and describe some of its subspaces. Then we will talk about

its group of isometries and how to classify them. Finally we will present a version

of the Poincaré polyhedron theorem, which is a very useful tool to prove that a

polyhedron is a fundamental domain for a certain discrete subgroup and discuss

arithmeticity of lattices. Most of the information presented here can be found in

the book from Goldman [Gol99].

The complex hyperbolic space arises naturally as a complex analogue to the

real hyperbolic space Hn
R. The real hyperbolic plane is, in fact, an example of

complex hyperbolic space of dimension 1. Generalising this construction to a

complex vector space we get complex hyperbolic space.

2.1 The complex hyperbolic space

Let us take a complex vector space Cn,1 of dimension n + 1, equipped with

a Hermitian form of signature (n, 1). We consider the Hermitian form in matrix

form, given by a Hermitian matrix H (i.e. H = H∗), which is non singular, with n

positive eigenvalues and one negative. Here A∗ will always be de�ned by A∗ = AT

and the same notation will be used for vectors.

Such a matrix gives a Hermitian inner product on Cn,1, which we denote

〈z,w〉 = w∗Hz.
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For any z ∈ Cn,1, its norm under the product just de�ned, 〈z, z〉 = z∗Hz, is real,

but can be positive, negative or zero. We hence decompose the space Cn,1 \ {0}

into subspaces V+, V0, V− made of vectors where 〈z, z〉 is positive, zero or negative,

respectively.

We now projectivise Cn,1 \ {0} by identifying all non-zero complex multiples

of a given vector. In other words, we are considering the projection P of Cn,1 \{0}

onto CPn. The projection P is well de�ned on the subspaces V+, V0 \ {0} and V−,

because for λ ∈ C \ {0}, we have

〈λz, λz〉 = (λz)∗H(λz) = |λ|2z∗Hz = |λ|2〈z, z〉

and hence 〈λz, λz〉 and 〈z, z〉 have the same sign. In other words z and λz must

be in the same subspace.

We are now ready to de�ne the complex hyperbolic space.

De�nition 2.1.1. The n-dimensional complex hyperbolic space for a Hermitian

form H is Hn
C = PV−, i.e. the space of vectors of negative norm, up to multipli-

cation by complex numbers.

Its boundary is ∂Hn
C = PV0 and we will denote H

n
C = Hn

C ∪ ∂Hn
C for the

compacti�cation of complex hyperbolic space.

On such space we consider the Bergman metric, given by the formula

ds2 =
−4

〈z, z〉2
det

 〈z, z〉 〈dz, z〉

〈z, dz〉 〈dz, dz〉

 .

For two points z and w, their distance %(z,w) is given by

cosh2

(
%(z,w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉

. (2.1.1)

The (real) sectional curvature is no longer constant as it was the case for real

hyperbolic space, but is pinched between −1/4 and −1.

2.2 The group of isometries and its subgroups

The group of holomorphic isometries ofHn
C is generated by the projectivisation

of the group of matrices that are unitary with respect to H. More precisely, let
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U(H) be the group of square matrices of dimension n+ 1 such that A∗HA = H.

We say that such matrices are unitary with respect to H. Naturally, we will have

SU(H) the subgroup of such matrices with determinant equal 1.

To get the holomorphic isometries of Hn
C, we need to projectivise such a group

as we did for the space itself, so the holomorphic isometry group of Hn
C is

PU(H) = U(H)�{eiθI : θ ∈ [0, 2π)}.

This group and complex conjugation generate the full isometry group of Hn
C.

Sometimes, to stress the dimension of the complex hyperbolic space this group

acts on, we will denote it as PU(n, 1). As a symmetric space, we can write

Hn
C = PU(n, 1)�U(n).

The elements of PU(H) can be classi�ed in the following way.

As we mentioned before, when n = 1 the space H1
C coincides with H2

R and

the group PU(n, 1) is the same as PSL(2,R). In this case, the isometries are

classi�ed into three types: elliptic, parabolic and hyperbolic. Their class in com-

pletely determined by their dynamics, i.e. by the number and position of the �xed

points. A similar classi�cation holds for the elements of PU(n, 1). An element

γ ∈ PU(n, 1) can be either

1. loxodromic if it �xes two points on ∂Hn
C.

2. parabolic if it has a unique �xed point on ∂Hn
C.

3. elliptic, if it has one or more �xed points inside Hn
C.

Let us now set n = 2 and look more closely at the holomorphic isometries of

H2
C (i.e. the elements of PU(2, 1)), which are the ones we will be using in this

work. In this case we can also relate the dynamics with the algebraic properties

(in particular with their eigenvalues).

1. Let A ∈ PU(2, 1) be loxodromic. Since �xed points on the boundary corre-

spond to null eigenvectors (i.e. eigenvectors v with 〈v,v〉 = 0), A must have

two null eigenvectors corresponding to two eigenvalues λ and λ
−1

such that

|λ| > 1 and hence |λ−1| < 1. This means that one of the two directions of the

eigenvectors will be one expanding and the other will be contracting. The

11



element A preserves the complex line L spanned by the two eigenvectors.

Moreover, loxodromic elements are semisimple and hence diagonalisable.

Its diagonal form will have diagonal elements λ = reiθ, λ
−1

= r−1eiθ and

λλ−1 = e−2iθ. When A has all real eigenvalues, we say that A is strictly

hyperbolic.

2. Let now A ∈ PU(2, 1) be parabolic. Parabolic isometries are the only ones

that are not semisimple (i.e. that are not diagonalisable). In this case A

has a repeated eigenvalue of modulus 1, whose corresponding eigenspace is

generated by a null vector. Parabolic isometries can be of two types:

� If there is one eigenvalue with multiplicity 3, then A is pure parabolic.

This means that is has a unipotent lift in SU(2, 1) so these are some-

times also called unipotent, as the case where all eigenvalues are 1

belongs to this class. In other words, pure parabolic isometries have

all eigenvalues equal the same cube root of unity. These are conjugate

to Heisenberg translations, which can be either horizontal or vertical.

� If A has one eigenvalue with multiplicity 2, then it is said to be ellipto-

parabolic or screw-parabolic. In other words, the eigenvalues are eiθ,

eiθ and e−2iθ. Then A will act as a composition of a rotation around

the complex line along which it translates, This produces a spiralling

screw-like dynamics (possibly tilted), hence the name.

3. Finally, let A ∈ PU(2, 1) be an elliptic isometry. In this case the group

generated by A is a cyclic group that is compact in PU(2, 1). Again, the

eigenvalues corresponding to A all have norm 1. Elliptic isometries are of

two types.

� When all eigenvalues are distinct, we say that A is regular elliptic.

Then A �xes a unique point inside H2
C corresponding to a negative

eigenvector.

� When there is a repeated eigenvalue, A is a complex re�ection. It can

either be a complex re�ection in a complex line L or on a point w.

In the �rst case the eigenspace associated to the repeated eigenvalue
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is generated by a positive and a negative vector (generating L). In

the second case, it is generated by two positive vectors. Complex

re�ections in lines are also called boundary elliptic, since they also �x

points on the boundary. The name of complex re�ection comes from

the fact that they �x a line (or a point) and rotate H2
C around it.

This should not lead the reader to think that they have order 2 like

Euclidian re�ections do. Complex re�ection can in fact have higher

order.

One can also describe the classes of isometries in terms of traces. Take A to be

one of the representative in the projective equivalence class such that detA = 1,

i.e. A ∈ SU(2, 1). Since each matrix in PU(2, 1) has three lifts to SU(2, 1) which

di�er by a cube root of unity, A is well de�ned up to multiplication by a cube

root of unity. Let f(t) = |t|4 − 8 Re(t3) + 18|t|2 − 27 and τ(A) = Tr(A) be the

trace function. Since the function f is invariant under multiplication by roots of

unity, the discussion is independent on the lift, when calculated on the trace of A

(see below). Then A is

• loxodromic if and only if f(τ(A)) > 0;

• pure-parabolic if and only if τ(A) is 3 times a cube root of unity; in particular

it will satisfy f(τ(A)) = 0;

• screw-parabolic if and only if the following three conditions are satis�ed:

1. τ(A) is not 3 times a cube root of unity,

2. f(τ(A)) = 0,

3. A is not diagonalisable (i.e. is it parabolic);

• a complex re�ection (in either a complex line or a point) if and only if the

following three conditions are satis�ed:

1. τ(A) is not 3 times a cube root of unity,

2. f(τ(A)) = 0,

3. A is diagonalisable (i.e. it is elliptic);

13



3

-1

regular 
elliptic

loxodromic

pure
parabolic

Figure 2.1: The deltoid of zeros of the trace function.

• regular elliptic if and only if f(τ(A)) < 0.

One can draw the set of zeros of the trace function in the complex plane

representing the possible values of the trace, obtaining a curve called a deltoid

(see Figure 2.1). If the trace is a complex number inside the deltoid, then the

corresponding isometry is regular elliptic. If it is outside the deltoid, then the

isometry is loxodromic. The three possible traces of pure parabolic isometries

correspond to the three corners of the deltoid. The smooth points on the deltoid

correspond to either screw-parabolic maps or to complex re�ections.

Of all the subgroups of this group of holomorphic isometries, in this work we

will consider those that are lattices, in the following sense.

De�nition 2.2.1. A subgroup Γ < PU(H) is a lattice when it is discrete and

the quotient Γ�
Hn
C has �nite volume with respect to the Bergman metric.

One way to give a lattice is to build a fundamental domain for it.

De�nition 2.2.2. Consider Γ < PU(n, 1) acting on Hn
C. A fundamental domain

for the action is an open and connected set D ⊂ Hn
C such that

• D ∩A(D) = ∅, for all A ∈ Γ, A 6= Id,

•
⋃
A∈ΓA(D) = Hn

C, where D is the closure of D in Hn
C.
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We will be interested in commensurability classes of lattices.

De�nition 2.2.3. We say that two subgroups Γ1 and Γ2 of PU(n, 1) are commen-

surable if there is an element A ∈ PU(n, 1) such that the intersection Γ1∩AΓ2A
−1

has �nite index in both Γ1 and AΓ2A
−1.

2.3 Bisectors

One of the most important classes of submanifolds in complex hyperbolic

geometry is that of bisectors. In this section we will give a brief description and

describe the main properties we will need. These subspaces have been widely

studied and more details can be found in [Gol99].

Bisectors are de�ned as the locus of points in the complex hyperbolic space

which are equidistant from two given points, say [zi] and [zj ], which denote the

equivalence classes under the projection P of points zi and zj in V−. By the

formula in (2.1.1), we have

〈z, zj〉〈zj , z〉
〈z, z〉〈zj , zj〉

= cosh2

(
%([z], [zj ])

2

)
= cosh2

(
%([z], [zi])

2

)
=
〈z, zi〉〈zi, z〉
〈z, z〉〈zi, zi〉

.

If the lifts zi and zj of [zi] and [zj ] are chosen to have the same norm (which

is always possible), the de�nition becomes:

B = B([zi], [zj ]) = {[z] ∈ H2
C : |〈z, zi〉| = |〈z, zj〉|}.

From now on, since everything we do will be independent of the lift chosen,

we will omit the square brackets and use the notation z for both [z] ∈ H2
C and a

lift z ∈ V−.

Remark that this holds even for null vectors, i.e. one can de�ne B([zi], [zj ])

even if 〈zi, zi〉 = 〈zj , zj〉 = 0. One can also extend this de�nition to the case when

the lifts of zi and zj are in V+. The extension of these to CP2 are called extors

and more details can be found in [Gol99].

The complex line L spanned by zi and zj is called the complex spine of the

bisector. Inside L there is a geodesic γ which is the intersection between the

complex spine and the bisector and it is called the spine of the bisector.
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In the complex hyperbolic space there are no totally geodesic real hypersur-

faces, and therefore also the bisectors are obviously not totally geodesic. However,

they can be foliated by totally geodesic subspaces in two di�erent ways: with slices

or with meridians.

The foliation by slices �rst appeared in the works of Giraud [Gir21] and

Mostow [Mos80]. To de�ne the slices �rst take the map ΠL, which is the or-

thogonal projection of the whole space onto the complex spine L. Then B is the

preimage under ΠL of the spine γ. We hence de�ne a slice to be a �bre of the

map ΠL, i.e. the preimage of a point of γ. Slices are complex lines and hence em-

bedded copies of H1
C with the Poincaré metric, seen as restriction of the Bergman

metric. They realise the curvature bound of -1.

The other foliation is by meridians and can be found in Goldman's book

[Gol99]. A meridian is a totally geodesic Lagrangian plane containing the spine

γ. Lagrangian planes are the images under elements of PU(2, 1) of points in

H2
C with real coordinates. They are embedded copies of the real hyperbolic plane

equipped with the Klein-Beltrami metric and realise the curvature bound of −1/4.

The bisector is the union of all its meridian. A meridian is also the set of points

�xed by an antiholomorphic involution which swaps zi and zj .

Other important subspaces related to bisectors are Giraud discs, which are

motivated by the theorem below, stated by Giraud in Theorem 4 of [Gir21] and

can also be found as Theorem 8.3.3 in Goldman's book [Gol99]. Roughly speaking,

every time that two bisectors are in a generic position (in the sense speci�ed

in the theorem below), one can �nd a third bisector which also contains their

intersection. Giraud discs are discs contained in the intersection of the three

bisectors.

Theorem 2.3.1. Let B1 and B2 be two bisectors with complex spines L1 and L2

respectively. Assume that

• L1 and L2 are distinct,

• B1 ∩ L2 = B2 ∩ L1 = ∅.

Then there is at most one other bisector B3 containing B1 ∩B2.
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If we want to understand bisector intersections, we need to look at the complex

spines. If the two complex spines coincide, the bisectors are said to be cospinal

and this means that the four points are contained in a common complex line

(the complex spine). In this case the bisectors intersect if and only if the spines

intersect and the bisector intersection is a complex line (for more details, see

Section 2.5 of [DPP16]). This case is ruled out by the �rst condition in the

theorem. Since complex lines that intersect in two or more points necessarily

coincide, the only other possible case is when the complex spines intersect in a

single point. We will only consider the case when the intersection point is inside

complex hyperbolic space (if it is not, then one would have to be more careful

to some details, but a similar analysis could be done). The second condition in

Theorem 2.3.1 ensures that the intersection point does not belong to the spines

(since the spines lie in the bisectors). Then the bisectors are called coequidistant

because there exist three points zi, zj and zk (not all contained in a complex line)

such that the two bisectors can be written as B1 = B(zi, zj) and B2 = B(zi, zk).

Now we can reformulate Giraud's theorem following Proposition 2.4 of [DPP16]

as

Theorem 2.3.2. Let zi, zj and zk be three points in H2
C not contained in a com-

mon complex line. Then, when it is non-empty, the intersection of B1 = B(zi, zj)

and B2 = B(zi, zk) is a smooth non totally geodesic disc contained in exactly three

bisectors B(zi, zj), B(zi, zk) and B(zj , zk).

We are now ready to de�ne a Giraud disc as follows.

De�nition 2.3.3. In the setting of the previous theorem, the intersection of B1

and B2 is called a Giraud disc and denoted B(zi, zj , zk).

Bisectors are very important because the lack of totally geodesic real hyper-

surfaces is one of the biggest obstructions to the usual methods for constructing

lattices. In fact, the "walls" of fundamental domains in the real hyperbolic case

are totally geodesic and one needs a suitable substitute with "nice enough" prop-

erties for the complex hyperbolic space. Bisectors have been successful so far

because of this special structure they have and they will indeed be the "walls" of

the fundamental domains built in this work.
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2.4 The Poincaré polyhedron theorem

Once we have built polyhedra whose sides are contained in bisectors, we will

use the Poincaré polyhedron theorem to prove that they are indeed fundamental

domains for the lattices we want. Here we will present the version of the Poincaré

polyhedron theorem that we will use, following the one in [Par06].

De�nition 2.4.1. A combinatorial polyhedron is a cellular space homeomorphic

to a compact polytope, with ridges contained in exactly two sides. A polyhedron

D is the realisation of a combinatorial polyhedron as a cell complex in a manifold

X. A polyhedron is smooth if its cells are smooth. Again, by convention, we will

take the polyhedron to be open.

For the Poincaré polyhedron theorem we will need some conditions on the

sides and on the ridges of the polyhedron. We will now present such conditions.

A smooth polyhedron satisfying all of them is called a Poincaré polyhedron.

Let D be a smooth polyhedron in X with sides Sj , side pairing maps Tj ∈

Is(X) such that:

(S.1) For each side Si of D, there is another side Sj of D and a side-pairing

map Ti such that Ti(Si) = Sj .

(S.2)[re�ection relation] If Ti(Si) = Sj , then Ti = T−1
j . This implies that

if i = j, then T 2
i = Id. So if a map sends a bisector to itself, then it �xes it

pointwise. The relations Ti = T−1
j are called re�ection relations.

(S.3) T−1
i (D) ∩D = ∅.

(S.4) T−1
i (D) ∩D = Si.

(S.5) There are only �nitely many sides in D and each side contains only

�nitely many ridges.

(S.6) There exists δ > 0 such that for each pair of disjoint sides, they are at

distance at least δ apart.

To list the conditions on the ridges we �rst need to explain what the cycle

transformations are. Let S1 be a side of D and F be a ridge in the boundary of

S1. Also, let T1 be the side pairing map associated to S1 and consider the image

under T1 of the ridge F . Each ridge is contained in the boundary of exactly two

sides. T1(F ) will hence be in the boundary of T1(S1), but also in the boundary
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of some other side S2. We call T2 the side-pairing map associated to S2 and we

apply it to the ridge T1(F ). Iterating this procedure, we get a sequence of ridges,

a sequence of sides Si and a sequence of maps Ti. Since we know that the number

of sides and the number of ridges are �nite, these sequences must be periodic. Let

k be the smallest integer such that all three sequences are periodic with period k.

Then Tk ◦· · ·◦T2 ◦T1(F ) = F and we call Tk ◦· · ·◦T2 ◦T1 the cycle transformation

at the ridge F . Now, for T = Tk ◦ · · · ◦ T2 ◦ T1 and m an integer, we de�ne:

U0 = 1, U1 = T1, .. Uk−1 = Tk−1 ◦ .. ◦ T2 ◦ T1,

Uk = T, Uk+1 = T1 ◦ T, .. U2k−1 = Tk−1 ◦ .. ◦ T1 ◦ T,
...

...
...

U(m−1)k = Tm−1, U(m−1)k+1 = T1 ◦ Tm−1, .. Umk−1 = Tk−1 ◦ .. ◦ T1 ◦ Tm−1.

The ridge conditions are then the following.

(F.1) Every ridge is a submanifold of X, homeomorphic to a ball of codimen-

sion 2.

(F.2) For each ridge F with cycle transformation T , there exists an integer `

such that T ` restricted to F is the identity. This means that a power of T �xes

F pointwise.

(F.3)[cycle relations] For each ridge F with cycle transformation T , there ex-

ists an integer m such that (T `)m is the identity on the whole space X. Moreover,

for the Ui de�ned previously, the preimages U−1
i (D), for i = 0, . . . ,m`k − 1 are

disjoint and the closures of such polyhedra U−1
i (D) cover a neighbourhood of the

interior of F . In this case we say that D and its images tessellate a neighbourhood

of F . The relations T `m = Id are called cycle relations.

The Poincaré polyhedron theorem now states

Theorem 2.4.2. Let D be a Poincaré polyhedron with side-pairing transforma-

tions Tj ∈ Σ, satisfying side conditions (S.1)�(S.6) and ridge conditions (F.1)�

(F.3). Then the group Γ generated by the side-pairing transformations is a discrete

subgroup of Is(X) and D is a fundamental domain for its action. A presentation

for such group is given by

Γ =

〈
Σ:

re�ection relations

cycle relations

〉
.
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In Section 5.6 we will use an alternative version of the Poincaré polyhedron

theorem, as we will consider fundamental polyhedra for coset decompositions,

which can be found in Section 3.2 of [DPP16]. We will here give a brief account

of the di�erences with the version above.

This is used when the polyhedron D is invariant under the action of a non

trivial �nite group Υ preserving the cells. Moreover, we need Υ to be compatible

with the side pairing maps in the following sense.

De�nition 2.4.3. For a side Si with associated side pairing map Ti and a K ∈ Υ,

let Sj = K(Si) with its side pairing Tj . Then we say that the action of Υ on D

is compatible with the action of the side pairing maps if for each K ∈ Υ and Si

side, Tj = KTiK
−1.

In our case Υ will be a �nite cyclic group. Then we will need to consider Γ as

the group generated by Υ and the side pairing maps. When considering the cycles

described above one needs to consider the orbits under Υ of the ridges. Cycles

then will stop as soon as we land in the same orbit under the action of Υ on the

initial ridge. The cycle relation will be obtained by applying the element of Υ

that sends the new ridge back to the initial one. Changing the initial ridge only

corresponds to a cyclic permutation of the components of the cycle transformation

T . Hence, we only need to consider the cycle associated to one ridge per orbit of

the Υ-action.

2.5 Arithmeticity of lattices

One of the main open problems in complex hyperbolic geometry is the arith-

meticity of lattices. Roughly speaking, a subgroup is arithmetic if it is discrete in

the initial group "in a similar way" to Z being discrete in R.

More precisely, we have the following.

De�nition 2.5.1. Let G ⊂ GL(m,C) be a linear algebraic group (i.e. all the

coe�cients of elements in G satisfy polynomial equations with coe�cients in Q)

and de�ne GZ = G ∩GL(m,Z) and GR = G ∩GL(m,R). For G a semisimple Lie
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group, let φ : GR → G be a continuous, surjective homomorphism with compact

kernel. We say that Γ < G is arithmetic if it is commensurable with φ(GZ).

As mentioned earlier in this chapter, the complex hyperbolic space is a sym-

metric space and more speci�cally it is a rank 1 symmetric space of non-compact

type. The other rank 1 symmetric spaces of non-compact type are the real hy-

perbolic n-space Hn
R, the quaternionic hyperbolic n-space H

n
H and the octonionic

hyperbolic 2-space H2
O. Among these, the complex hyperbolic space is the only

one in which the relation between arithmeticity and lattices has not been set-

tled. In all symmetric spaces of non-compact type, arithmetic groups are lattices,

shown in the work from Borel and Harish-Chandra (see [BHC62]). Moreover,

in higher rank symmetric spaces of non-compact type, (irreducible) lattices are

always arithmetic, thanks to Margulis' superrigidity theorem (see [Mar84]). The

converse though is not always true: the works of Corlette [Cor92] and of Gro-

mov and Schoen [GS92] show that non arithmetic lattices are only admissible in

PO(n, 1) and PU(n, 1), the (holomorphic) isometry groups of real and complex

hyperbolic space. This means that for H2
O and Hn

H when n ≥ 2 all lattices are

arithmetic. In the real hyperbolic space Hn
R there exist non-arithmetic lattices

for all n ≥ 2, thanks to the work [GPS88] of Gromov and Piatetski-Shapiro.

It is then natural to ask the same question for the complex hyperbolic space,

but a general answer is not known. Only some examples of non-arithmetic com-

plex hyperbolic lattices in low dimensions are known. More speci�cally, Mostow

and Deligne-Mostow �rst (see Chapter 3) built some examples of non-arithmetic

complex hyperbolic lattices in H2
C. Deraux, Parker and Paupert recently (see

[DPP16] and [DPP]) found some more examples. Again, Deligne and Mostow

�rst and more recently Deraux (see [Der17]) found the only two known examples

of non-arithmetic lattices in H3
C. For Hn

C, n ≥ 4, it is still an open question

whether non-arithmetic lattices exist.

In this work we will study the Deligne-Mostow lattices in PU(2, 1), including

the non-arithmetic ones.
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Chapter 3

Deligne-Mostow lattices

In this section we will introduce the lattices we will consider all through this

work. First we will summarise the construction by Deligne and Mostow, from

which the lattices take their name. Then we will describe the reinterpretation

due to Thurston, which is more relevant to our case, since it is geometric. Later,

we will explain how these two constructions are equivalent following the work

from Kojima. Finally, we will list all the lattices that Deligne and Mostow found

and we will mention the commensurability theorems that relates some of them.

This chapter is just a brief summary of some the main constructions related to the

lattices we will be treating, as explaining these works more in depth is beyond the

purpose of this work. For more details and for proofs, one can see the works from

Deligne and Mostow [Mos80], [DM86], [Mos86], [Mos88], the work from Thurston

[Thu98] and the work from Kojima [Koj01].

The starting point of both constructions is the con�guration spaces of points

in CP1. Let us considerN disjoint marked points on CP1, as in Figure 3.1. We will

denote the points as z1, · · · zN . This means that we are considering the product

of N copies of CP1, each copy determining the position of one of the N points.

Since we want the marked points to be disjoint, we exclude the diagonal set, in

the sense that we exclude elements in the product where any two components

coincide. These points will be included again later when considering the metric

completion.
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Figure 3.1: The marked points on CP1 and how to describe a canonical

representative in Q.

In other words, we de�ne the con�guration space M as

M = CP1 × · · · × CP1︸ ︷︷ ︸
N times

\∆,

where ∆ is the diagonal of the product. Now PSL(2,C) acts by Möbius trans-

formations onM as g · (z1, · · · , zN ) = (g · z1, · · · , g · zN ), for g ∈ PGL(2,C) and

so we can identify elements inM up to this action. Hence we de�ne

Q =M�PGL(2,C).

We will denote [z1, · · · zN ] ∈ Q to be the equivalence class of (z1, · · · zN ) ∈M.

We will choose a canonical representative in Q by sending the �rst three points

z1, z2 and z3 to 0, 1 and ∞ respectively. The triple transitivity of the action

of PGL(2,C) on CP1 means that we can identify the con�guration space M

with the product Q× PGL(2,C) by associating to a con�guration the canonical

representative in Q as explained and the map in PGL(2,C) sending the initial

con�guration to the representative.

Example 3.0.1. Let us consider the case where N = 5 and try to understand

the space Q. Since we say that we consider the elements of Q as representatives

having the �rst three marked points in 0, 1 and∞, Q is a subset of CP1×CP1, as

we only need to determine the positions of m4 and m5. Now, since we excluded
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Figure 3.2: Tha space Q when n = 5.

the diagonal in the con�guration space, we do not want any of these two to be

equal to 0, 1 or ∞, as the �rst three marked points are already in these positions.

In other words, we are excluding the six lines m4 = 0, 1,∞ and m5 = 0, 1,∞.

Moreover, also the last two points must be disjoint, so we exclude also a seventh

line described by m4 = m5. So Q can be identi�ed with the complement in

CP1 × CP1 of these seven lines (see Figure 3.2). In three of these points, three

lines meet and to symmetrise the construction we can consider the blow up at

these three points and so Q is the complement of ten lines in (CP1×CP1)#3CP2,

as it includes the seven lines we already had plus three more that "cut" the points

with triple intersection.

Starting from this con�guration space, two constructions have been studied.

The �rst one, introduced by Deligne and Mostow in [DM86], starts from a ball N -

tuple, which consists of N real numbers µ = (µ1, · · ·µN ) such that
∑

j µj = 2 and

0 < µj < 1 (see De�nition 3.1.1). Then there is a way of constructing a complex

hyperbolic structure on Q, described in Section 3.1 and denoted DM(µ).

Similarly, one can start from a vector θ = (θ1, · · · θn) such that
∑

j(2π−θj) =

4π and 0 < θj < 2π. Then one can construct a complex hyperbolic structure on Q
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(or sometimes on its quotient, see Remark 3.1.4) denoted here as T (θ). This is the

one explained in Section 3.2. The following theorem from Kojima (see [Koj01])

says that there two structures are equivalent.

Theorem 3.0.2. We have DM(µ) = T (θ), when θj = 2π(1− µj).

The following sections 3.1, 3.2 and 3.3 will present the two constructions and

prove this theorem, respectively.

3.1 Monodromy of hypergeometric functions

We will now summarise the construction from Deligne and Mostow that leads

to the lattices that we will study in this work, in the form presented in [Koj01].

The lattices arise as monodromy groups of hypergeometric functions. First we

will explain how Deligne and Mostow in [DM86] constructed a complex hyperbolic

structure on Q. They started with the following.

De�nition 3.1.1. A ball N -tuple µ = (µ1, · · · , µN ) is a set of N real numbers

such that
N∑
i=1

µi = 2, 0 < µi < 1, i = 1, · · · , N (3.1.1)

Now choose a con�guration m = (m1, · · ·mN ) ∈ M. We will denote Pm =

CP1 \{m1, . . . ,mN}. The elements of the ball N -tuple are the weights associated

to the points in m. Then one can consider the 1-form de�ned by

ωm =
∏
j

(z −mj)
−µjdz. (3.1.2)

For two indexes a, b ∈ {1, · · · , N} we can de�ne the hypergeometric function

Fab(m) =

∫ zb

za

ωm. (3.1.3)

This is a multivalued function, since the value of the integral depends on the path

chosen in Pm, but it can be lifted to a single valued function on Q̃, the universal

cover of Q, which we will do later.

We now want to explain how to construct a family of complex hyperbolic

structures on Q, indexed by the ball N -tuple µ. Then we will explain how to

associate a subgroup Γµ of PU(N − 3, 1) to each µ.
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Let us consider a �at complex line bundle Lm on Pm. We choose the one

determined by asking that the holonomy along a loop around each of the mj is

the complex multiplication by e2πiµj . Moreover, we �x a Hermitian structure on

Lm. The idea is that the form ωm is hard to study in Pm, but easier on Lm.

The next step of Deligne and Mostow work is to prove that the compact

cohomology is all we need to study the 1-forms on Pm. In other words,

Proposition 3.1.2. H1
c (Pm, Lm) ∼= H1(Pm, Lm).

Moreover, we claim that the dimension of this complex vector space is N −

2. In fact, to calculate the dimension, one needs to remember that the Euler

characteristic is the alternating sum of the Betti numbers, i.e. of the dimension of

the cohomology groups. But since Lm is non trivial, the 0-cohomology vanishes

and so does the 2-cohomology by Poincaré duality. The Euler characteristic of

Pm is

χ(Pm) = χ(CP1)− χ({m1, · · ·mN}) = 2−N.

Now in the sum of the Betti numbers only the dimension of H1(Pm, Lm), with

negative sign, remains, so the dimension is −(2 − N) = N − 2. Moreover, the

Hermitian structure on Lm de�nes a Hermitian structure on H1(Pm, Lm).

Now we have that the Poincaré duality pairing induces the map

ψ0 : H1
c (Pm, Lm)×H1

c (Pm, Lm) → H2
c (Pm,C)

∼−→ C

(ω1, ω2) 7→ ω1 ∧ ω2 7→
∫
Pm

ω1 ∧ ω2

and we can consider the form on H1
c (Pm, Lm) de�ned as

ψ : H1
c (Pm, Lm)×H1

c (Pm, Lm) → C

(ω, η) 7→ − 1

2πi
ψ0(ω, η) = − 1

2πi

∫
Pm

ω ∧ η.

So

ψ0(ω1, ω2) =

∫
Pm

ω1 ∧ ω2 and ψ(ω, η) = − 1

2πi
ψ0(ω, η). (3.1.4)

Using Hodge theory, they proved that ψ is a Hermitian form of signature (1, N−3)

and that ωm de�ned in (3.1.2) is in the positive component of the space with

respect to ψ.
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Let us now consider U a contractible neighbourhood of m in M. In other

words, we are considering small perturbations of the positions of the points in the

con�guration. The line bundle Lm can be extended uniquely to a �at complex line

bundle LU on
⋃
m∈U Pm. Moreover, taking a coveringM =

⋃
j Uj , one can use the

LUj 's to de�ne �at vector bundles which can be projecti�ed and glued together

into a �at projective space bundle on M = Q × PGL(2,C). We call this �at

projective space bundle B(µ). Its �bres are the spaces PH1
c (Pm, Lm) ∼= CPN−3,

since it is the projectivisation of the �bre of a vector bundle of rank N − 2 as we

mentioned.

Now one can show that the map which associates to each point m ∈ M the

projective class [ωm] of the form ωm de�ned in (3.1.2) is a holomorphic section

ωµ of B(µ)

ωµ : M→ B(µ)

m 7→ [ωm] ∈ PH1
c (Pm, Lm) ∼= CPN−3

This section is equivariant with respect to the action of PGL(2,C), so it passes

to the quotient Q and we have a section on Q, seen as Q × {Id} ⊂ M = Q ×

PGL(2,C)

ωµ|Q : Q = Q× {Id} → B(µ)|Q.

Now consider the universal cover p : Q̃ → Q. Then we can pull back the pro-

jective bundle B(µ)|Q by p and get a projective bundle B̃(µ)|Q on Q̃. Moreover,

B̃(µ)|Q admits the product structure B̃(µ)|Q = Q̃ × B(µ)|0, where 0 ∈ Q is a

�xed base point con�guration in Q, so we can denote the projection of the bundle

as p1, being the projection on the �rst term of the product space. The map p2

will be the projection on the second term of the product. We can pull back ωµ|Q

by p and get a section of this new bundle. Now consider the projection on the

second factor p2 : Q̃×B(µ)|0 → B(µ)|0 and take the composition of the pull back

p∗ωµ|Q and the projection p2. We will denote it ω̃µ.

B(µ)|Q Q̃ ×B(µ)|0

Q Q̃ B(µ)|0 = CPN−3

p1

p2
ωµ|Q

p

p∗ωµ|Q

ω̃µ
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To determine the form ωµ it is enough to give the value of its integral along

paths connecting two points in m. This means that is is enough to determine

the values of the functions Fab in (3.1.3). In other words, we are lifting the multi

valued function Fab on Q to a single valued function on Q̃.

Deligne and Mostow then prove the following.

Proposition 3.1.3. • Im ω̃µ ⊂ B, the unit ball with respect to ψ in CPN−3;

• ω̃µ is locally biholomorphic;

• ω̃µ is invariant under the action of π1(Q) and preserves the Bergmann met-

ric on B.

Now we can pull back by ω̃µ the metric on B to Q̃ and by the last point of

the proposition this descends to a complex hyperbolic structure on Q, which we

denote DM(µ).

Since ω̃µ is equivariant with respect to π1(Q), it induces a representation

ρµ : π1(Q)→ PGL(N − 2,C).

We will call this the monodromy action and Γµ = Im ρµ is the monodromy group.

One can prove that the elements of Γµ preserve the Hermitian form given by the

complex hyperbolic structure on Q and hence lie in PU(N − 3, 1).

Remark 3.1.4. We will mostly consider the groups ΓµΣ, related to the Γµ in the

following way. Let SN be the group of permutations on N letters and let Σ be

the subgroup of SN permuting some of the marked points having same weight,

i.e. for all σ ∈ Σ, we have σ(zi) = zj only if µi = µj . Then we can consider Q′ the

subset of Q on which Σ acts without �xed points and extend the monodromy map

to Q
′
�Σ. Then ΓµΣ is the image of the monodromy representation of π1

(
Q′�Σ

)
.

Remark that Σ doesn't have to be the full group of symmetries of the ball N -tuple.

In [Mos86] Mostow gave a criterion for a ball N -tuple to give a lattice in

PU(N, 1), which is the following.

De�nition 3.1.5. A ball N -tuple µ satis�es the condition ΣINT if for a pair of

indices i, j ∈ {1, · · · , N} satisfying µi+µj < 1, then we have one of the following:
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• either 1− µi − µj = 1/nij for some nij ∈ Z,

• or µi = µj and 1/2− µi = 1/mij for some mij ∈ Z.

Then,

Theorem 3.1.6. If a ball N -tuple µ satis�es the condition ΣINT, then the asso-

ciated group Γµ is a lattice in PU(N − 3, 1).

Remark that in general this is not an if and only if. In [Mos88], Mostow showed

that for N − 3 ≥ 4, the condition ΣINT characterises discreteness. On the other

hand, for N − 3 = 3 there is exactly one discrete group non satisfying ΣINT.

For N − 3 = 2, which is the case we will consider in this work, Mostow could

show that all groups except 9 were either non-discrete or satis�ed ΣINT. Later,

Sauter (see [Sau90]) proved that the remaining 9 groups are also discrete and

that they are commensurable to the lattices found by Deligne and Mostow, but

obtained considering di�erent generators. These are the Deligne-Mostow lattices

in PU(2, 1) that are not treated in this work.

3.2 Cone metrics on the sphere

In [Thu98], Thurston gave a di�erent interpretation of the same lattices in

terms of cone metrics on a sphere.

Let us start with the following.

De�nition 3.2.1. Let M be a surface. Then a point p ∈M is a cone singularity

if the total angle θ0 around p is di�erent from 2π. The corresponding angle θ0 is

called a cone angle. The angle α0 = 2π − θ0 is called the curvature at the point

p. In other words, p is a cone point of cone angle θ0 if a neighbourhood of p in

M is modelled on the cone

Cθ0 = {z = reiθ, 0 < θ < θ0}�∼,

where ∼ denotes the identi�cation r ∼ reiθ0 . We will call a �at cone metric on

the surface M a metric that is locally modelled on R2 except for a �nite number

of points which are cone singularities.

29



Even though in general cone singularities can have cone angles bigger than

2π, in this work we will always consider cone points with cone angles (and hence

curvatures) in (0, 2π).

Example 3.2.2. • If we consider a cube and smooth the edges, then we remain

with a sphere with eight cone singularities. Around each singularity three

squares meet, so the total angle around in 3π
2 .

• In general, a Euclidean polyhedron is a cone metric on a sphere given by

smoothing the sides and with cone singularities at the vertices.

• A di�erent example of a cone metric on a sphere is a pillowcase, i.e. two

squares glued along the boundary. This is a cone metric with four cone

points of cone angles π.

Take now a cone metric on a surface M with N cone singularities of angles

(θ1, · · · , θN ). Then it must satisfy the discrete version of the Gauss-Bonnet the-

orem, i.e. ∑
(2π − θi) = 2π(2− 2g), (3.2.1)

where g is the genus of M (see, for example [McM17]).

Remembering that the curvatures are αi = 2π − θi, we will consider cone

metrics on a sphere with curvatures satisfying

N∑
i=1

αj = 4π, 0 < αi < 2π, for i = 1, . . . , N. (3.2.2)

Moreover, we will consider some special cone metrics.

De�nition 3.2.3. We say that a cone metric with curvatures as in (3.2.2) satis�es

the orbifold condition if for any pair αi, αj such that αi + αj < 2π then

• either 2π − αi − αj divides 2π,

• or αi = αj and π − αi divides 2π.

Thurston's main result is to consider the moduli space of cone metrics on a

sphere and to prove that they form a complex hyperbolic cone manifold. Intu-

itively, cone manifolds have singularities like the ones obtained from n-dimensional
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polyhedra by glueing together pairs of (n−1)-dimensional facets. More precisely,

they can be de�ned by induction as follows.

De�nition 3.2.4. Let X be a complete connected Riemannian n-manifold and

G a group of isometries of X. The space X will be our model space. Remark that

G does not need to be the full isometries of X and that it does not necessarily

act transitively (hence this is not necessarily a symmetric space).

An (X,G)-manifold is a space equipped with a covering by open sets homeo-

morphic to (a subset of) X, such that the transition maps on the intersections of

the open sets are in G.

Now we will de�ne a cone manifold by induction on the dimension.

• If X has dimension 1, then a (X,G)-cone manifold is just an (X,G)-

manifold.

• If X has dimension k, then for each p ∈ X consider Gp the stabiliser of p in

G and Xp ⊂ TpX the unit tangent sphere in the tangent space at p. Then

(Xp, Gp) has dimension k−1 and so we know how to de�ne a (Xp, Gp)-cone

manifold Y . Now to Y one can associate the cone over Y , denoted as C(Y ),

in the following way. To a subset of Xp one can associate the cone at p in

the tangent space over Xp and project it onto X via the exponential map

(up to rescaling the radius to make the exponential map be an embedding).

Now Y is modelled on Xp so we can use the transition maps in Gp to glue

these cones together and get the cone C(Y ).

Now an (X,G)-cone manifold is a space M such that for each x ∈ M , a

neighbourhood of x inM is isometric to C(Y ) for some compact, connected

(Xp, Gp)-cone manifold Y .

Thurston proved the following.

Theorem 3.2.5. Let α1, · · · , αN be N real numbers in (0, 2π) whose sum is 4π.

Then the set of Euclidean cone metrics on the sphere with cone points of curvatures

αi and area 1 form a complex hyperbolic manifold of dimension N − 3, whose

metric completion is a complex hyperbolic cone-manifold of �nite volume. This

cone manifold is an orbifold if and only if the αi's satisfy the orbifold condition.
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p0
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mj

Figure 3.3: Two paths going around a marked point in di�erent ways.

Remark 3.2.6. The lack of completeness comes from the fact that one can build

Cauchy sequences of cone metrics where two cone points get closer and closer. The

limit cone metric is where the two cone points coalesce and it does not belong

to the manifold because the number of cone points is now decreased. To build

the metric completion one needs to add con�gurations obtained by pairs of cone

points coalescing.

Remark that Thurston's construction is done on the quotient of Q by rela-

belling the cone points with same cone angle (see Remark 3.1.4).

The set of cone metrics is related to the space Q introduced at the beginning

of the chapter. As we said, the common root of both constructions is the 1-form

in (3.1.2). Now, if we choose a base point p0 and a path outside of the marked

points, we can integrate the form along the path and get

h(z) =

∫ z

p0

ωm =

∫ z

p0

∏
j

(t−mj)
−µjdt. (3.2.3)

This is not a well de�ned function, but it is multi-valued, since paths going around

the marked points in di�erent ways (see Figure 3.3) give di�erent values of the

integral. At the same time, one can see it as a map h : P̃m → C, from the universal

cover of Pm = CP1 \ {m1, . . . ,mn}.
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One can calculate the pre-schwarzian of h, which is h′′/h′,

h′′

h′
=

∑
k(−µk)(z −mk)

−µk−1
∏
j 6=k(z −mj)

−µj∏
j(z −mj)−µj

=

∑
k(−µk)(z −mk)

−µk−1

(z −mk)−µk
=
∑
k

−µk
z −mk

and see that it is a single-valued function. This implies that one can pass between

two images of h obtained using two di�erent paths (i.e. change of analytic con-

tinuation around a singular point) using an a�ne map z 7→ az+ b. Moreover, one

can see that such map is Euclidean (i.e. it preserves a Euclidean structure on C),

so |a| = 1. This allows the map on the universal cover to pass to the quotient.

In other words, let us take the Euclidean structure on C preserved by the a�ne

map. We then pull it back using h : P̃m → C and get a Euclidean structure on the

universal cover. But for what we said, the projection of the universal cover on Pm

gives us a Euclidean structure on Pm itself, since the Euclidean structure on C is

preserved by the changes of image. Its completion gives cone points singularities

at the marked points mj , of angles 2π(1− µj). We denote such sphere with cone

points by ∆m.

In this way we created a map M 3 m 7→ ∆m. This correspondence is not

quite 1:1, but it becomes a bijection if we consider it as a map

Q 1:1−−→ {∆m}m∈Q�C∗,

which means that we are consideringM up to projective equivalence, as explained

at the beginning of this chapter and the cone spheres up to similarity. In other

words, we are relating the ball N -tuple as in (3.1.1) and the curvature as in (3.2.2)

and saying that for a ball N -tuple (µ1, . . . , µN ) we can construct a cone metric

on the sphere with curvatures αi and vice versa by imposing

αi = 2π − θi = 2πµi. (3.2.4)

Moreover, we have the following.

Lemma 3.2.7. Mostow's condition ΣINT for ball N -tuples (see 3.1.5) is equiva-

lent to Thurston's orbifold condition for curvatures at cone points of a sphere (see

3.2.3).
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We will now give local coordinates around ∆m0 ∈ {∆m}m∈Q�C∗, which we will

use to show the equivalence in Section 3.3. Thurtson's �rst step is to prove that

triangulations on ∆m with vertices at the cone points exist. Then we can �x a tri-

angulation T and de�ne E the set of all oriented edges of T in ∆m\{cone points},

choosing an orientation. For e ∈ E, up to passing to the universal cover, one can

consider i(e) and t(e) the initial and terminal points of e respectively and then

calculate h on the two extremes and consider h(i(e)), h(t(e)) ∈ C. Then for each

e ∈ E we can de�ne zm(e) as the di�erence of the two endpoints. This gives the

map

zm : E → C

e 7→ zm(e) = h(t(e))− h(i(e)).

Now the map zm satis�es the following properties:

1. If e1, e2 and e3 surround a triangle, then zm(e1) + zm(e2) + zm(e3) = 0;

2. zm(γe) = H(γ)zm(e), where γ is an element of π1(Pm), acting on E and

H(γ) is the rotational part of the holonomy of γ. In other words, when in

the universal cover we change the homotopy class, we still get cocycles, but

with twisted coe�cients.

Conversely, a neighbourhood of ∆m0 can be described as

Z = {z : E → C satisfying properties 1. and 2., ∀ γ ∈ π1(Pm)},

since any cocycle determines triangles that glue up forming the sphere with cone

singularities. This is a vector space of dimension N − 2.

Now one can also consider the map

Area: Z → C (3.2.5)

zm 7→ Area ∆m

and prove that this is a Hermitian form of signature (1, N − 3). The area form

induces a complex hyperbolic structure on the ball B ⊂ PZ, and so by using

the local coordinates on the cone spheres up to similarity, it induces a complex

hyperbolic structure on Q. We denote its completion by T (µ).
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3.3 Equivalent constructions

We now want to give an idea of how to prove Theorem 3.0.2. This will proceed

in two steps. First we will show that the two local charts we constructed are the

same (Lemma 3.3.1). Then we will show that the metrics are the same, hence so

are their completions (Lemma 3.3.2).

Lemma 3.3.1. There is a bijection

CPN−3 = B(µ)|0
1:1−−→ PZ

ωm 7→ zm.

Proof. Since Z is a vector space of dimension N−2, zm is determined by its value

on N − 2 edges e1, · · · eN−2. Then the correspondence is given by

zm(ej) =

∫
h(ej)

dz =

∫
ej

h∗dz =

∫
ej

h′dz =

∫
ej

ωm,

since these values are enough to determine ωm. �

Lemma 3.3.2. The correspondence in Lemma 3.3.1 also gives that the area Her-

mitian form in (3.2.5) is equal to πψ.

Proof. Since the area of the whole cone sphere is made up of the sum of the areas

of the triangles in the triangulation T , it is enough to verify the equation on a

triangle. Now, by de�nition, the area of a triangle ∆ is

Area ∆ = − 1

2i

∫
h(∆)

dz ∧ dz = − 1

2i

∫
∆
h∗(dz ∧ dz) = − 1

2i

∫
∆
|h′(z)|2dz ∧ dz

= − 1

2i

∫
∆
h′(z)dz ∧ h′(z)dz = − 1

2i

∫
∆
ωm ∧ ωm

= − 1

2i
ψ0|∆(ωm, ωm) = πψ|∆(ωm, ωm),

where the second row follows from the fact that we can write |h′(z)|2 = h′(z)h′(z)

and the third row follows from the de�nitions of ψ0 and ψ in (3.1.4) �

3.4 The list of lattices

Putting together Deligne, Mostow and Thurston's work, one gets to a complete

list of lattices that can arise using this construction. They can be found, for
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example, in the table in the Appendix of Thurston's paper [Thu98]. In this work

we will consider all the 2-dimensional ones that appear in the list by Deligne and

Mostow. This excludes some of the ball 5-tuples that still give lattices, namely

the ones that do not satisfy the condition ΣINT and the cases when p = ∞. It

was shown later by Sauter in [Sau90] that these also give lattices and they are all

commensurable to some of the ones that we treat in this work. These are the ones

that arise when considering ball 5-tuples or equivalently a sphere with �ve cone

singularities. All of them have some special symmetry, namely they have either

3- or 2-fold symmetry. This means that either two or three of the elements in the

ball 5-tuple are the same, or, equivalently, that the cone angles of either two or

three of the cone points have same value. In the rest of this section we will list

the ball 5-tuples that give lattices and introduce the parameters that we will use

to study them.

3.4.1 Lattices with 3-fold symmetry

In this section we will list the Deligne-Mostow lattices with 3-fold symmetry.

More speci�cally, we will describe, following [Par09], how to parametrise them

and which special quantities are associated to them. We will always assume that

the 3-fold symmetry is given by µ2 = µ3 = µ4.

Since there are �ve cone points, three of them have same cone angle. Now the

discrete Gauss-Bonnet formula (see (3.2.1)) guarantees that two parameters are

enough to uniquely identify a ball 5-tuple. To each ball 5-tuple, we associate the

curvature and the cone angles of the singularities on the sphere, from which we

can obtain a lattice in the way we will see in the following chapters. Here we will

use two parameters p and k to identify the lattices associated to a certain ball

5-tuple and we will denote the lattice as (p, k). These parameters are related to

the ball 5-tuple in the following way.

µ1 =
1

2
+

1

p
− 1

k
, µ2 = µ3 = µ4 =

1

2
− 1

p
, µ5 =

2

p
+

1

k
. (3.4.1)

In some of the literature on the subject, the lattices are identi�ed by the two

parameters p and t instead. The parameter t is a real number used by Mostow to

36



describe the lattices, together with p = 3, 4, 5 in [Mos80] and is de�ned as

t =
1

p
+

2

k
− 1

2
.

It is called the phase shift, because Mostow's phase parameter is ϕ, de�ned by

ϕ3 = eπit. One particular critical value of this parameter is 1
2 −

1
p . We will

say, following Mostow, that it is a lattice with large phase shift if the condition

|t| > 1
2 −

1
p holds. The opposite condition is a small phase shift. This value is

important because it corresponds to a change of sign in the parameter l de�ned

below. In Section 5.4 we will see why this is relevant for our analysis.

To each lattice we also associate some other quantities that depend on p and

k. All these values are important because they will be the order of some special

elements of the lattice associated to the ball 5-tuple. These parameters are de�ned

from the two �rst ones in the following way:

1

l
=

1

2
− 1

p
− 1

k
,

1

d
=

1

2
− 3

p
. (3.4.2)

Table 3.1 summarizes all Deligne-Mostow lattices with three fold symmetry.

The lattices are divided according to the values of the four parameters in the �rst

four columns, p, k, l and d. The last column is the value of the Euler characteristic

for the lattice, calculated in Chapter 7.

Lattice p k l d t µ1 µ2,3,4 µ5 χ

(3,4) 3 4 -12 -2 1/3 7/12 1/6 11/12 1/288

(3,5) 3 5 -30 -2 7/30 19/30 1/6 13/15 2/225

(3,6) 3 6 ∞ -2 1/6 2/3 1/6 5/6 1/72

(4,3) 4 3 -12 -4 5/12 5/12 1/4 5/6 1/72

(4,4) 4 4 ∞ -4 1/4 1/2 1/4 3/4 1/8

(5,2) 5 2 -5 -10 7/10 1/5 3/10 9/10 1/200

(5,5/2) 5 5/2 -10 -10 1/2 3/10 3/10 4/5 1/200

(5,3) 5 3 -30 -10 11/30 11/30 3/10 11/15 8/225

(6,2) 6 2 -6 ∞ 2/3 1/6 1/3 5/6 1/72

(6,3) 6 3 ∞ ∞ 1/3 1/3 1/3 2/3 1/18
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(3,7) 3 7 42 -2 5/42 29/42 1/6 17/21 61/3528

(3,8) 3 8 24 -2 1/12 17/24 1/6 19/24 11/576

(3,9) 3 9 18 -2 1/18 13/18 1/6 7/9 13/648

(3,10) 3 10 15 -2 1/30 11/15 1/6 23/30 37/1800

(3,12) 3 12 12 -2 0 3/4 1/6 3/4 1/48

(4,5) 4 5 20 -4 3/20 11/20 1/4 7/10 33/800

(4,6) 4 6 12 -4 1/12 7/12 1/4 2/3 13/288

(4,8) 4 8 8 -4 0 5/8 1/4 5/8 3/64

(5,4) 5 4 20 -10 1/5 9/20 3/10 13/20 23/400

(5,5) 5 5 10 -10 1/10 1/2 3/10 3/5 13/200

(6,4) 6 4 12 ∞ 1/6 5/12 1/3 7/12 11/144

(6,6) 6 6 6 ∞ 0 1/2 1/3 1/2 1/12

(7,2) 7 2 -7 14 9/14 1/7 5/14 11/14 1/49

(8,2) 8 2 -8 8 5/8 1/8 3/8 3/4 3/128

(9,2) 9 2 -9 6 11/18 1/9 7/18 13/18 2/81

(10,2) 10 2 -10 5 3/5 1/10 2/5 7/10 1/40

(12,2) 12 2 -12 4 7/12 1/12 5/12 2/3 7/288

(18,2) 18 2 -18 3 5/9 1/18 4/9 11/18 13/648

(7,3) 7 3 42 14 13/42 13/42 5/14 13/21 61/882

(8,3) 8 3 24 8 7/24 7/24 3/8 7/12 11/144

(9,3) 9 3 18 6 5/18 5/18 7/18 5/9 13/162

(10,3) 10 3 15 5 4/15 4/15 2/5 8/15 37/450

(12,3) 12 3 12 4 1/4 1/4 5/12 1/2 1/12

(18,3) 18 3 9 3 2/9 2/9 4/9 4/9 13/162

(7,7/2) 7 7/2 14 14 3/14 5/14 5/14 4/7 1/49

(8,4) 8 4 8 8 1/8 3/8 3/8 1/2 3/128

(9,9/2) 9 9/2 6 6 1/18 7/18 7/18 4/9 2/81

(10,5) 10 5 5 5 0 2/5 2/5 2/5 1/40

(12,6) 12 6 4 4 1/12 5/12 5/12 1/3 7/288

Table 3.1: Deligne-Mostow lattices with three fold symmetry.
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The �rst four groups are based on the possible combinations of the signs of

the parameters l and d. Sometimes we will refer to these groups as lattices of

type one, two, three and four. The �fth group is where k = p
2 . Together with the

lattice where p = 5 and k = 5
2 , these are the 4-fold symmetry lattices.

3.4.2 Lattices with 2-fold symmetry

In this section we will consider the lattices with 2-fold symmetry and list them

with some important parameters associated to the lattices. We will assume that

the 2-fold symmetry is given by µ2 = µ3. Sometimes the lattices will have an

extra symmetry and we will also have µ1 = µ4.

We will identify the lattices using three parameters p, k and p′. We will denote

the lattice as (p, k, p′). They are related to the ball 5-tuple in the following way:

µ1 =
1

2
+

1

p′
− 1

k
, µ2 = µ3 =

1

2
− 1

p′
, µ4 =

1

2
+

1

p′
− 1

p
, µ5 =

1

p
+

1

k
.

By similarity with the 3-fold symmetry case, to each lattice we will also asso-

ciate numbers k′, l, l′, d, which (together with p, k and p′) are the orders of some

maps in the group and are de�ned as follows.

1

l
=

1

2
+

1

p′
− 1

p
− 1

k
,

1

k′
=

1

p
+

1

k
− 1

p′
,

1

l′
=

1

2
− 1

p′
− 1

k
,

1

d
=

1

2
− 1

p′
− 1

p
.

In the following table we give the values of the ball 5-tuple associated to the

lattice (p, k, p′).

Lattice µ1 µ2 µ3 µ4 µ5

(6,6,3) 2/3 1/6 1/6 2/3 1/3

(10,10,5) 3/5 3/10 3/10 3/5 1/5

(12,12,6) 7/12 1/3 1/3 7/12 1/6

(18,18,9) 5/9 7/18 7/18 5/9 1/9
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(4,4,3) 7/12 1/6 1/6 7/12 1/2

(4,4,5) 9/20 3/10 3/10 9/20 1/2

(4,4,6) 5/12 1/3 1/3 5/12 1/2

(3,3,4) 5/12 1/4 1/4 5/12 2/3

(3,3,3) 1/2 1/6 1/6 1/2 2/3

(2,6,6) 1/2 1/3 1/3 1/6 2/3

(2,4,3) 7/12 1/6 1/6 1/3 3/4

(2,3,3) 1/2 1/6 1/6 1/3 5/6

(3,4,4) 1/2 1/4 1/4 5/12 7/12

Table 3.2: The Deligne-Mostow lattices with 2-fold symmetry.

Below are the values of the important parameters we will need, together with

the value of the orbifold Euler characteristic χ as calculated in Chapter 7.

Lattice p k p′ k′ l l′ d χ

(6,6,3) 6 6 3 -3 2 ∞ ∞ 1/24

(10,10,5) 10 10 5 -5 2 5 5 3/40

(12,12,6) 12 12 6 -6 2 4 4 7/96

(18,18,9) 18 18 9 -9 2 3 3 13/648

(4,4,3) 4 4 3 -6 3 -12 -12 1/24

(4,4,5) 4 4 5 10 5 20 20 99/800

(4,4,6) 4 4 6 6 6 12 12 13/96

(3,3,4) 3 3 4 6 12 -12 -12 7/48

(3,3,3) 3 3 3 ∞ 6 -6 -6 1/12

(2,6,6) 2 6 6 3 ∞ 6 -6 1/8

(2,4,3) 2 4 3 12 12 -12 -3 7/96

(2,3,3) 2 3 3 6 ∞ -6 -3 1/24

(3,4,4) 3 4 4 12 6 ∞ -12 17/96

Table 3.3: The values of the parameters for the 2-fold sym-

metry lattices.
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Remark that the �rst class contains the lattices with 2-2-fold symmetry, while

the second one the lattices with only 2-fold symmetry. As mentioned, the lattices

with 2-2-fold symmetry also have µ1 = µ4, which implies that p = k and hence

we have a lattice of the form (p, p, p′). Moreover, this also implies l′ = d.

3.5 Commensurability theorems

Since commensurable lattices share many of the properties we are interested

in (including arithmeticity), it is important to study the lattices up to commen-

surability.

Sauter in [Sau90] and Deligne and Mostow in [DM93] studied which lattices

belong to the same commensurability class. This work originated by the fact

that Mostow found some ball 5-tuple that did not satisfy the condition ΣINT

(see 3.1.5), but he could not prove that the associated groups were not discrete.

Sauter proved that each of these produced a group commensurable to one for

which Mostow had proved discreteness. Later, Deligne and Mostow extended

Sauter's work. An account of most of the commensurability theorems that we

will use can also be found in [Par09].

The �rst one we will need is Theorem 10.6 of [DM93], in the form found in

Theorem 3.8 of [Par09].

Theorem 3.5.1. Let a and b be rational numbers in (0, 1) with 1
2 < a + b < 1

and consider the ball 5-tuples

µ(1) = (a, a, b, b, 2− 2a− 2b),

µ(2) =

(
1− b, 1− a, a+ b− 1

2
, a+ b− 1

2
, 1− a− b

)
.

Consider the groups of symmetries of µ(1) and µ(2) (i.e. the subgroup of S5 permut-

ing elements of the ball 5-tuple with same value), which are Σ1 = 〈(1, 2), (3, 4)〉 ∼=

Z2 × Z2 and Σ2 = 〈(3, 4)〉 ∼= Z2 respectively. Then the associated groups Γµ(1)Σ1

and Γµ(2)Σ2
are isomorphic.

From this theorem one can deduce the following corollaries. The �rst one

corresponds to Corollary 3.9 in [Par09], which is a reformulation of Corollary 10.18
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of [DM93] and generalises Theorem 6.2 of [Sau90]. The second one corresponds

to Corollary 3.10 of [Par09].

Corollary 3.5.2. Let

µ(1) =

(
1

2
+

1

p
,
1

2
+

1

p
,
1

2
− 2

p
,
1

2
− 2

p
,

2

p

)
,

µ(2) =

(
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,

1

p
,
1

2
+

2

p

)
,

µ(3) =

(
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,

4

p

)
.

Then the groups Γµ(i) associated to these ball 5-tuples are commensurable.

Corollary 3.5.3. Let

µ(1) =

(
1

2
− 1

k
,
1

2
− 1

k
,
1

4
+

1

k
,
1

4
+

1

k
,
1

2

)
,

µ(2) =

(
1

4
,
1

4
,
1

4
,
3

4
− 1

k
,
1

2
+

1

k

)
.

Then the groups Γµ(i) associated to these ball 5-tuples are commensurable.

Moreover, we will use Theorem 6.1 from Sauter [Sau90] (see also Theorem

11.22 in [DM93]), in the formulation of Theorem 3.11 of [Par09].

Theorem 3.5.4. Let

µ(1) =

(
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,
1

6
+

1

p
,
1

3
+

2

p
,

)
,

µ(2) =

(
1

6
,
1

6
,
1

6
,
5

6
− 1

p
,
2

3
+

1

p

)
.

Then the groups Γµ(i) associated to these ball 5-tuples are commensurable.

Remark that now we are referring to the groups associated without considering

the symmetries (which we did in the previous theorem). In fact the new ball 5-

tuples, obtained by choosing some values of a and b, have di�erent symmetries

from the previous theorem (see also Proposition 4.10 of [Par09]). It is possible to

deduce the index of commensurability by considering the old and new symmetry

groups. For further details of the indices of commensurability in these theorems,

one can see the discussion in Section 7.3, where for each pair of commensurable
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lattices we calculate the index and verify it on the calculation of the orbifold Euler

characteristic.

Finally, Proposition 7.10 of [DPP] (see also Section A.6 in their appendix)

shows that

Proposition 3.5.5. The Thompson group T (p,E2), for p = 4 is (conjugate

to) a subgroup of index 3 in the Deligne-Mostow group ΓµΣ associated to µ =

(3, 3, 5, 6, 7)/12, where Σ = 〈(1, 2)〉 ∼= Z2.
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Chapter 4

The cone manifold

In this chapter we will forget about the symmetry in the ball 5-tuples. From

Thurtson's work (see Section 3.2), let us consider a cone metric on the sphere

with prescribed cone angles and area 1. Then we can change the position of the

cone points on the sphere (i.e. consider all the possible con�gurations of these

cone points) and get a complex hyperbolic structure on the moduli space. The

Hermitian form is given by the area form. This structure makes the moduli space

a complex hyperbolic manifold, which is not complete. If we consider its metric

completion, we get a complex hyperbolic cone manifold, which is an orbifold

only when choosing the cone angles accurately. We now want to study this cone

manifold.

In the �rst part of this chapter we will see in details how to parametrise cone

metrics on the sphere of area 1 and �ve cone singularities. We will explicitly

calculate the area form that gives the complex hyperbolic structure. This is a

generic construction and does not depend on whether the cone angles we choose

give a lattice or not, nor on whether the cone points have same angles or not.

The only restriction on the cone angles in this case is for the Hermitian form we

obtain to have the required signature. We will also consider some maps acting on

our space of con�gurations and explain how they change the con�guration.

In the second part of this chapter we will show how to build a polyhedron

in the moduli space starting from the cone metrics and using the coordinates

we introduced. These polyhedra are the building blocks for the cone manifold
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describing the moduli space. In some cases (like the 3-fold symmetry case), the

polyhedron will exactly describe the cone manifold (or a fundamental domain for

the lattice when the cone manifold is an orbifold); in some others we will need

multiple copies (with di�erent parameters) and in some others the polyhedron will

contain multiple copies of the cone manifold (when one has extra symmetries).

4.1 The space of con�gurations

Following Thurston, consider a cone metric on the sphere of area 1 with cone

points of �xed cone angles θ0, θ1, θ2, θ3 and θ4 with 0 < θi < 2π. By the discrete

version of Gauss-Bonnet formula (see (3.2.1)), they satisfy
∑

(2π − θi) = 4π.

Since we have 5 cone singularities, a priori the con�gurations are described by

5 parameters. The discrete Gauss-Bonnet formula guarantees that the value of

the �fth angle is determined by the previous four. To prescribe the cone angles

we will use the parameters

α =
θ1

2
, β =

θ2

2
, θ =

θ2

2
+
θ3

2
− π, φ =

θ0

2
+
θ1

2
− π. (4.1.1)

They have a geometric meaning which is made clear in Figure 4.1. Then we will

denote a cone metric with these cone angles as (α, β, θ, φ). By de�nition of the

parameters, we are considering a �at sphere with 5 cone singularities of angles

(2(π + φ− α), 2α, 2β, 2(π + θ − β), 2(π − θ − φ)). (4.1.2)

As one can see in the upper-left-hand side of Figure 4.1, the order of the angles

is given by starting in the lower left corner and continuing counter-clockwise. So

the angle θi is the cone angle of the cone point vi for i = 0, 1, 2, 3 and θ4 is the

cone angle of the cone point v∗. Remember that in the case of con�gurations that

give lattices described in Section 3.4, the angles are related to the ball 5-tuples

by (3.2.4) (note that the indices are shifted to be coherent with the name of the

vertices vi).

We now �x the cone angles (so �x a con�guration (α, β, θ, φ)). Our goal is to

parametrise all possible positions of the cone points on the sphere and to show

how one can pass from the cone metric to its coordinates and viceversa.
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T-3

T-1

T-2

Figure 4.1: The con�guration (α, β, θ, φ).

Let us �rst consider the easier case of when the �ve cone singularities are

all along the equator of the sphere, forming a pentagonal pillowcase (i.e. two

congruent pentagons glued along their boundary).

Take a path in the sphere that starts from v0 and passes in order through

v1, v2, v3, ending in v∗. We now cut through this path and open up the surface,

obtaining an octagon like the one in the upper-right-hand side of Figure 4.1, which

we call Π. The condition of all points being on the equator means that we can

cut along a geodesic which divides the cone angle in half.

To be able to express the vertices of Π in coordinates, we decide that the

vertex v∗ coincides with the origin of the complex plane and we place Π such that

the coordinate of v0 is a multiple of i by a negative real number. The vertices with

positive real coordinates will be called v1, v2, v3, while the corresponding vertices

with negative real coordinates will be v−1, v−2, v−3.

The sides of Π are pairwise identi�ed through a re�ection with respect to the

imaginary axis and this identi�cation allows us to recover the cone metric on the

sphere. More precisely, the vertices vi are identi�ed to v−i and the side vivi+1

is identi�ed to the side v−iv−(i+1), for i = 0, 1, 2, 3, ∗. Since only the boundary
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points and not the interior are identi�ed, this gives us back the shape of the

cone metric as two pentagons glued along the boundary, forming the pentagonal

pillowcase we started from.

We can also describe Π in terms of the three real parameters t1, t2 and t3

shown in the picture. Let us take three triangles T1, T2 and T3 in the following

way. The triangle T1 is built on the side v0v1 and has angles π−α at v1, α−φ at

v0 and φ. Then t1 is the side opposite α−φ, pointing towards v1. We denote the

third vertex of T1 as A. The triangle T2 is built on the side v2v3 and has angles

π − β at v2, β − θ at v3 and θ. Then t2 is the side opposite β − θ. The triangle

T3 is built on the side v∗A and has angles φ at A, π− θ− φ at v∗ and θ. Then t3

is the side opposite π − θ − φ.

Since in this case all the possible variations in the cone metric are the possible

distances of the various points, one just needs a parameter describing the length

of the sides of each of the three triangles, in order to have the whole con�gu-

ration (hence the cone metric) completely determined. Since all the angles are

determined by the cone angles, it is enough to parametrise one side of each of the

triangles and to do this we will use the parameters t1, t2 and t3.

We just explained how to associate a set of three parameters to each con�gu-

ration of points on the equator.

Conversely, start from the three real parameters t1, t2 and t3 and take three

triangles Ti, with angles as above and one side ti as above, for i = 1, 2, 3. We now

construct an octagon Π by �rst taking a copy of the triangle T3, with the vertex

with angle π − θ− φ at 0 and the one with angle φ along the imaginary axis and

below it. Then remove from T3 a copy of T2 by making the two vertices of angle

θ coincide and by making t2 and t3 be collinear, both vectors pointing towards

the common corner of the two triangles T3 and T2. Similarly, remove from the

�gure obtained a copy of T1 such that the vertex of angle φ of T1 coincides with

the one of T3 with the same angle and such that t1, t3 are collinear and pointing

in the same direction. At this point we re�ect the whole construction along the

imaginary axis, obtaining three more triangles T−3, T−2 and T−1. We consider

the quadrilateral made of the two triangles T3 and T−3, from which we delete

triangles Ti, for i ∈ {±1,±2}. The �gure obtained is an octagon Π as in Figure
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4.1. This is clearly the same �gure as we described previously once we label the

vertices as before. Glueing the sides of Π as explained above, one can recover the

cone metric associated to the parameters.

We now consider a generic metric on the sphere and the same procedure

applies, but we need now to allow the three real parameters t1, t2 and t3 to be

complex (i.e. not to be aligned), in order to describe all possible mutual positions

of the singularities. This encodes the fact that two pieces of the geodesic might

not divide the cone angle they share in two equal angles.

We construct an octagon by taking the same three triangles and making the

same vertices of the triangles coincide as before, but the three variables will be

two dimensional vectors representing the sides of the triangles and they will no

longer line up. The con�guration will be as the bottom part of Figure 4.1.

As before, we can recover the metric on the sphere by identifying the side

vivi+1 to the side v−iv−(i+1), for i = 0, 1, 2, 3, ∗. We obviously obtain a manifold

with cone singularities which is homeomorphic to the sphere and has �ve cone

point of angles equal to those that we had in the beginning.

The vertices of the con�guration will have coordinates as follows.

A = −i sin θ

sin(θ + φ)
t3;

v0 = −i sin θ

sin(θ + φ)
t3 + i

sinα

sin(α− φ)
t1;

v1 = −i sin θ

sin(θ + φ)
t3 + ie−iφt1;

v−1 = i
sin θ

sin(θ + φ)
t3 − ieiφt1;

v2 = −ie−iφt2 + ie−i(θ+φ) sinφ

sin(θ + φ)
t3;

v−2 = ieiφt2 − iei(θ+φ) sinφ

sin(θ + φ)
t3;

v3 = −ie−i(θ+φ) sinβ

sin(β − θ)
t2 + ie−i(θ+φ) sinφ

sin(θ + φ)
t3;

v−3 = iei(θ+φ) sinβ

sin(β − θ)
t2 − iei(θ+φ) sinφ

sin(θ + φ)
t3.

Since the Hermitian form of the complex hyperbolic structure described later

in this section is given by the area, we will calculate it in terms of our coordinates.
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In the case of real variables, the area of the right half of the octagon can be

obtained taking the area of T3 and subtracting the area of T1 and the area of T2.

We then need to double this quantity to have the total area of Π. When allowing

the variables to be complex, we can see, using a cut and paste map, that the area

is given by the same formula.

Hence the area of the octagon Π is given by

Area Π =
sin θ sinφ

sin(θ + φ)
|t3|2 −

sin θ sinβ

sin(β − θ)
|t2|2 −

sinφ sinα

sin(α− φ)
|t1|2 (4.1.3)

We will see now how the moduli space of cone metrics on the sphere of area

1, seen as the di�erent shapes of polygons Π that we can achieve, has a complex

hyperbolic structure.

As we saw in Section 2, the 2-dimensional complex hyperbolic space is by

de�nition the set of points for which a certain Hermitian form is positive, up

to projectivisation. First of all, up to now, all three parameters t1, t2, t3 were

freely chosen, but for our purpose two con�gurations such that the parameters

are proportionals by the same constant are the same. This is because we are

considering the cone metrics to have �xed area, following Thurston (see [Thu98],

Theorem 0.2). From now on, we will hence �x t3 = 1. Remark that this is one of

the possible normalisations, di�erent from asking from the area to be 1 (like in

[Thu98]). Recall that the area is given by (4.1.3) in terms of t1, t2 and t3. The

coordinates t1 and t2 will hence vary while keeping such quantity positive. On

the moduli space of cone metrics on the sphere this is equivalent to projectivising

the coordinates.

Let us now consider the area as given in equation (4.1.3). If we consider the

Hermitian matrix

H =


− sinφ sinα

sin(α−φ) 0 0

0 − sin θ sinβ
sin(β−θ) 0

0 0 sinφ sin θ
sin(θ+φ)

 ,
such formula is equivalent to saying

Area(Π) = t∗Ht.

In this sense, the area gives an Hermitian form of signature (1,2) on C3.
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Since these parameters only makes sense if the area of Π (and so the area of

the cone metric) is positive, we de�ne our model of complex hyperbolic space as

H2
C = {t : 〈t, t〉 = t∗Ht > 0} =

=



t1

t2

1

 : − sinφ sinα

sin(α− φ)
|t1|2 −

sin θ sinβ

sin(β − θ)
|t2|2 +

sinφ sin θ

sin(θ + φ)
> 0

 .

We will allow the octagon Π to self intersect and consider the signed area.

For the (signed) area to be positive and to have the right signature are the only

condition on a set of three complex numbers to give a cone metric. Meanwhile,

two sets of parameters can sometimes give the same cone metric, as we will see

later on.

4.2 Moves

In this section we will introduce some maps that will play a key role in the

following sections, since they or their compositions will be the generators of the

lattices. We will call these special maps the moves.

In general, the moves will be swapping cone points. When the two cone points

have same cone angle, then the move will be an automorphism of the sphere, hence

preserving the area form, hence an element of PU(2, 1). When they do not have

the same cone angle, we will need to apply it twice in order to land on the same

con�guration of cone points. The moves can be seen as (half) Dehn twists of

the sphere along a curve around the two cone points they swap. In this section

we will not consider any symmetry and just describe how the moves act on the

con�guration by changing the cone angles and hence the parameters (α, β, θ, φ).

The move R1 exchanges the two cone points v2 and v3 with their cone angles,

while R2 exchanges v1 and v2. Since the moves change the values of our pa-

rameters, we will denote the move as Ri(α, β, θ, φ) to say that Ri : (α, β, θ, φ) 7→

(α′, β′, θ′, φ′), unless the angles of the con�guration we start from is obvious. This

means, for example, that when composing two maps T (α, β, θ, φ) and S(α, β, θ, φ),

we need to consider that the second map is applied to the new angles, so we are
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doing the composition

S(α′, β′, θ′, φ′) ◦ T (α, β, θ, φ) (4.2.1)

because (α, β, θ, φ)
T7−→ (α′, β′, θ′, φ′)

S7−→ (α′′, β′′, θ′′, φ′′). Similarly, when calculat-

ing inverses we have

[T (α, β, θ, φ)]−1 = T−1(α′, β′, θ′, φ′), (4.2.2)

since T : (α, β, θ, φ) 7→ (α′, β′, θ′, φ′) and T−1 : (α′, β′, θ′, φ′) 7→ (α, β, θ, φ).

We now want to express the moves in matrix form. The matrix of R1(α, β, θ, φ)

is obtained from the equations v′0 = v0, v′∗ = v∗, v′1 = v1, v′3 = v2 and v′−2 = v3,

where the vi's are the coordinates in the (α, β, θ, φ) con�guration and the v′i's in

the (α′, β′, θ′, φ′) con�guration. If we call t1, t2 the variables in the coordinates

of the vi's and t′1, t
′
2 the variables in the coordinates of the v′i's, this gives the

equations

t′1 = t1, t′2 = eiθ
sin(β′ − θ′)

sinβ′
t2, t′2 = eiθ

sinβ

sin(β − θ)
t2.

These give a unique solution because R1 exchanges the angles around v2 and v3,

so it exchanges β with β − θ and hence β′ − θ′ = β, β′ = β − θ and θ′ = θ (see

Figure 4.2). The matrix of R1 is then

R1(α, β, θ, φ) =


1 0 0

0 eiθ sinβ
sin(β−θ) 0

0 0 1

 . (4.2.3)

Similarly, one can �nd the matrix of R2 by simultaneously solving the equa-

tions v′0 = v0, v′∗ = v∗, v′2 = v1, v′−1 = v−2 and v′3 = v3. The �rst thing to do is to

�nd the values of the angles in the image. The values of α− φ and θ + φ remain

unchanged (i.e. α′ − φ′ = α − φ and θ′ + φ′ = θ + φ), because they are related

to the two cone angles v∗ and v0 which do not change. Moreover, since the move

�xes v3, also the value of π+ θ−β remains unchanged, so π+ θ′−β′ = π+ θ−β.

Furthermore, since the move exchanges v1 and v2, α′ = β and β′ = α. From these

equations one can deduce that φ′ = φ+ β − α and θ′ = θ + α− β. Applying this
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∏'

α
β

∏+θ-β

β

∏+θ-β

Figure 4.2: The move R1.

to the equations we need to solve gives the following matrix.

R2(α, β, θ, φ) =
1

sin(θ + α− β) sin(φ+ β − α)
·

·


sinα sin θ′ei(α−φ) sin(α− φ) sin θ′eiα − sin(α− φ) sin θ′eiα

sin(β − θ) sinφ′eiβ sinφ′ sinβei(β−θ) − sin(β − θ) sinφ′eiβ

sin(θ + φ) sinαeiβ sin(θ + φ) sinβeiα A

 , (4.2.4)

with φ′ = φ+ β − α and θ′ = θ + α− β and

A = sin θ sinφ′ − sin(θ + φ) sinβeiα (4.2.5)

= sinφ sin θ′ − sin(θ + φ) sinαeiβ

= sin θ sinφ cos(α− β)− sin θ cosφ sinαeiβ − cos θ sinφ sinβeiα.

The third move A1 will swap v0 and v1 twice. This is because since these two

cone points will usually have di�erent cone angles, we directly apply a full Dehn

twist. This move is the generalisation of the "butter�y moves" used by Thurston

in [Thu98]. In his case, he was moving one side across a region shaped like a

butter�y such that in the end the signed area is the same. Here, we make the

triangle T1 rotate so that vertices v∗, v2, v3 remain �xed, while v′1 coincides this

time with v−1. We obtain an octagon with a point of self intersection and we will

consider the signed area to have it preserved after applying the move.
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∏

T1 T-1

T3
T-3

T-2 T2

Figure 4.3: The octagon obtained after applying A1.

As we can see in Figure 4.3, the triangles T2 and T3 remain �xed and hence

so are the variables z2 and z3. The third triangle is rotated of an angle of 2φ.

Moreover, this time the move starts and lands in the same con�guration. Its

matrix is

A1(α, β, θ, φ) =


e2iφ 0 0

0 1 0

0 0 1

 . (4.2.6)

In the following, we will also need some composition of the moves. We now

want to calculate P = R1R2 and J = PA1. As we already mentioned, after

applying the �rst transformation the angles have changed. Looking at Figure 4.4,

one can deduce that

P (α, β, θ, φ) = R1(α′, β′, θ′, φ′)R2(α, β, θ, φ)

= R1(β, α, θ + α− β, φ+ β − α)R2(α, β, θ, φ)

=
1

sin(θ + α− β) sin(φ+ β − α)
·

·


sinα sin θ′ei(α−φ) sin(α− φ) sin θ′eiα − sin(α− φ) sin θ′eiα

sinα sinφ′ei(α+θ) sinφ′ sinβ sinα
sin(β−θ) eiα − sinα sinφ′ei(α+θ)

sin(θ + φ) sinαeiβ sin(θ + φ) sinβeiα A

 ,
(4.2.7)

where, as before, φ′ = φ+ β − α, θ′ = θ + α− β and A is as in (4.2.5).
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Figure 4.4: The action of P on the angles.

On the other hand, J = PA1 is easier to calculate, since A1 does not change

the type of the con�guration. So

J(α, β, θ, φ) = P (α, β, θ, φ)A1(α, β, θ, φ)

=
1

sin(θ + α− β) sin(φ+ β − α)
·

·


sinα sin θ′ei(α+φ) sin(α− φ) sin θ′eiα − sin(α− φ) sin θ′eiα

sinα sinφ′ei(α+θ+2φ) sinφ′ sinβ sinα
sin(β−θ) eiα − sinα sinφ′ei(α+θ)

sin(θ + φ) sinαei(β+2φ) sin(θ + φ) sinβeiα A

 , (4.2.8)
where again φ′ = φ+ β − α, θ′ = θ + α− β and A is as in (4.2.5).

We remark that if we de�ne a second set of coordinates as s = P−1t (as we

will do later), the action of R2 is equivalent to applying R1 on the s-coordinates.

In other words, R2 = PR1P
−1 = R1R2R1R

−1
2 R−1

1 , which is equivalent to the

braid relation

R1R2R1 = R2R1R2.

Again, to calculate this composition, we need to record how the con�guration
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changes when applying the matrices so we need to prove that the following dia-

gram commutes

(α, β, θ, φ) (α, π + θ − β, θ, φ)

(β, α, α+ θ − β, β + φ− α) (π + θ − β, α, α+ β − π, π + θ + φ− α− β)

(β, π + θ − β, α+ θ − β, β + φ− α) (π + θ − β, β, α+ β − π, π + θ + φ− α− β)

R−1
1

R2 R−1
2

R1R1

R2

which is easy to verify by simple calculation.

4.3 The polyhedron

4.3.1 Complex lines and vertices

As mentioned, the metric completion of the moduli space is the cone manifold

that we want to study. Following the discussion in Remark 3.2.6 this means that

we want to see what happens when two cone points get closer and closer until

they coalesce. We de�ne Lij to be the complex line obtained when vi and vj

coalesce, for i, j ∈ {0, 1, 2, 3, ∗}. Its normal vector will be denoted as nij . They

have equations as follow:

Lij Equations in terms of the t-coordinates

L∗0 t1 = sin(α−φ) sin θ
sinα sin(θ+φ)

L∗1 t1 = e−iφ sin θ
sin(θ+φ)

L∗2 t2 = eiθ sinφ
sin(θ+φ)

L∗3 t2 = sin(β−θ) sinφ
sinβ sin(θ+φ)

L01 t1 = 0

L02
sinα

sin(α−φ)e
iφt1 + t2 = 1

L03
sinα

sin(α−φ)e
iφt1 + e−iθ sinβ

sin(β−θ) t2 = 1

L12 t1 + t2 = 1

L13 t1 + e−iθ sinβ
sin(β−θ) t2 = 1

L23 t2 = 0
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Table 4.1: The equations de�ning the complex lines of two

cone points collapsing.

Moreover, one can study the points in H2
C given by two pairs of points coa-

lescing, i.e. obtained by intersecting pairs of these complex lines They will be the

vertices of the polyhedron and they have coordinates as follows.

Lines tk t1 t2

L01 ∩ L23 t1 0 0

L03 ∩ L12 t2
sin(α−φ)(sin(β−θ)−e−iθ sinβ)

eiφ sinα sin(β−θ)−e−iθ sinβ sin(α−φ)
eiα sin(β−θ) sinφ

eiφ sinα sin(β−θ)−e−iθ sinβ sin(α−φ)

L∗0 ∩ L23 t3
sin(α−φ) sin θ
sinα sin(θ+φ) 0

L∗0 ∩ L12 t4
sin(α−φ) sin θ
sinα sin(θ+φ)

sin(α+θ) sinφ
sinα sin(θ+φ)

L∗0 ∩ L13 t5
sin(α−φ) sin θ
sinα sin(θ+φ) eiθ sin(α+θ) sin(β−θ) sinφ

sinα sinβ sin(θ+φ)

L∗1 ∩ L23 t6 e−iφ sin θ
sin(θ+φ) 0

L∗1 ∩ L02 t7 e−iφ sin θ
sin(θ+φ)

sin(α−θ−φ) sinφ
sin(α−φ) sin(θ+φ)

L∗1 ∩ L03 t8 e−iφ sin θ
sin(θ+φ) eiθ sin(α−θ−φ) sin(β−θ) sinφ

sin(α−φ) sinβ sin(θ+φ)

L∗3 ∩ L01 t9 0 sin(β−θ) sinφ
sinβ sin(θ+φ)

L∗3 ∩ L12 t10
sin(β+φ) sin θ
sinβ sin(θ+φ)

sin(β−θ) sinφ
sinβ sin(θ+φ)

L∗3 ∩ L02 t11 e−iφ sin(α−φ) sin(β+φ) sin θ
sinα sinβ sin(θ+φ)

sin(β−θ) sinφ
sinβ sin(θ+φ)

L∗2 ∩ L01 t12 0 eiθ sinφ
sin(θ+φ)

L∗2 ∩ L13 t13
sin(β−θ−φ) sin θ

sin(β−θ) sin(θ+φ) eiθ sinφ
sin(θ+φ)

L∗2 ∩ L03 t14 e−iφ sin(α−φ) sin(β−θ−φ) sin θ
sinα sin(β−θ) sin(θ+φ) eiθ sinφ

sin(θ+φ)

Table 4.2: The coordinates of the vertices.

4.3.2 Second set of coordinates

It will be useful to de�ne another set of coordinates in order to de�ne the

polyhedron explicitly. This is given by

s =


s1

s2

1

 = P−1


t1

t2

1

 . (4.3.1)

56



θ

α

β

π+θ-β

π+φ-α φ

π-θ-φ

θ

α

β

π+θ-β

π+φ-α φ

π-θ-φ

α+β-π

α

β

π+θ-β
π+φ-α

π+θ+φ-α-β

π-θ-φ

R1
-1

R2
-1

Figure 4.5: The action of P−1 on the angles.

To calculate the s-coordinates, the �rst thing to do is to calculate the matrix

of P−1(α, β, θ, φ), with a similar argument as in Section 4.2. We recall that this

means that P−1 is applied to the con�guration (α, β, θ, φ). As shown in Figure

4.5, P−1 acts as follows:

(α, β, θ, φ)
R−1

17−−→ (α′, β′, θ′, φ′) = (α, π + θ − β, θ, φ)
R−1

27−−→ (4.3.2)

R−1
27−−→ (α′′, β′′, θ′′, φ′′) = (π + θ − β, α, α+ β − π, π + θ + φ− α− β),

so

P−1(α, β, θ, φ) = R−1
2 (α, π + θ − β, θ, φ) ◦R−1

1 (α, β, θ, φ).
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Explicitly, we have

P−1(α, β, θ, φ) =

=


− sinα sin θ′e−i(α−φ) − sin(α−φ) sin θ′ sinβ

sin(β−θ) e−i(α+θ) sin(α− φ) sin θ′e−iα

sinβ sinφ′ei(β−θ) sinβ sinφ′ei(β−θ) − sinβ sinφ′ei(β−θ)

sin(θ + φ) sinαei(β−θ) − sin(θ + φ) sinβe−i(α+θ) B

 ,
(4.3.3)

where φ′ = π + θ + φ− α− β, θ′ = α+ β − π and B is

B = − sin θ′ sinφ− sin(θ + φ) sinαei(β−θ) (4.3.4)

= − sinφ′ sin θ + sin(θ + φ) sin(β − θ)e−iα.

One can easily verify that the matrices of P (α, β, θ, φ) and P−1(α, β, θ, φ) in

Equations (4.2.7) and (4.3.3) respectively satisfy Equation (4.2.2).

We now apply P−1 to the lines and vertices described in Tables 4.1 and 4.2

to obtain their s-coordinates.

The complex lines will have s-coordinates as follows.

Lij Equations in terms of the s-coordinates

L∗0 s1 = − sin(α−φ) sin(α+β)
sin(β−θ) sin(θ+φ)

L∗1 s2 = −ei(α+β) sin(α+β−θ−φ)
sin(θ+φ)

L∗2 s2 = sin(α+β−θ−φ) sinβ
sinα sin(θ+φ)

L∗3 s1 = e−i(α+β−θ−φ) sin(α+β)
sin(θ+φ)

L01 − sin(β−θ)
sin(α−φ)e

i(α+β−θ−φ)s1 + s2 = 1

L02 − sin(β−θ)
sin(α−φ)e

i(α+β−θ−φ)s1 − e−i(α+β) sinα
sinβ s2 = 1

L03 s1 = 0

L12 s2 = 0

L13 s1 + s2 = 1

L23 s1 − e−i(α+β) sinα
sinβ s2 = 1

Table 4.3: The equations de�ning the complex lines of two

cone points collapsing in terms of the s-coordinates.
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The vertices have s-coordinates as follows.

tk s1 s2

t1
e−iα sin(α−φ) sin(α+β)

sin(α−φ) sinβ−e−i(θ+φ) sinα sin(β−θ)
ei(β−θ) sinβ sin(α+β−θ−φ)

sin(α−φ) sinβ−e−i(θ+φ) sinα sin(β−θ)

t2 0 0

t3 − sin(α−φ) sin(α+β)
sin(β−θ) sin(θ+φ) −ei(α+β) sin(α+θ) sinβ sin(α+β−θ−φ)

sin(β−θ) sinα sin(θ+φ)

t4 − sin(α−φ) sin(α+β)
sin(β−θ) sin(θ+φ) 0

t5 − sin(α−φ) sin(α+β)
sin(β−θ) sin(θ+φ)

sin(α+θ) sin(α+β−θ−φ)
sin(β−θ) sin(θ+φ)

t6
sin(α+β) sin(θ+φ−α)

sinβ sin(θ+φ) −ei(α+β) sin(α+β−θ−φ)
sin(θ+φ)

t7 −e−i(α+β−θ−φ) sin(α−φ) sin(α+β) sin(θ+φ−α)
sin(β−θ) sinβ sin(θ+φ) −ei(α+β) sin(α+β−θ−φ)

sin(θ+φ)

t8 0 −ei(α+β) sin(α+β−θ−φ)
sin(θ+φ)

t9 e−i(α+β−θ−φ) sin(α+β)
sin(θ+φ)

sin(β+φ) sin(α+β−θ−φ)
sin(α−φ) sin(θ+φ)

t10 e−i(α+β−θ−φ) sin(α+β)
sin(θ+φ) 0

t11 e−i(α+β−θ−φ) sin(α+β)
sin(θ+φ) −ei(α+β) sin(β+φ) sinβ sin(α+β−θ−φ)

sin(α−φ) sinα sin(θ+φ)

t12 −e−i(α+β−θ−φ) sin(α−φ) sin(θ+φ−β) sin(α+β)
sin(β−θ) sinα sin(θ+φ)

sinβ sin(α+β−θ−φ)
sinα sin(θ+φ)

t13
sin(θ+φ−β) sin(α+β)

sinα sin(θ+φ)
sinβ sin(α+β−θ−φ)

sinα sin(θ+φ)

t14 0 sinβ sin(α+β−θ−φ)
sinα sin(θ+φ)

Table 4.4: The s-coordinates of the vertices.

Remark 4.3.1. The equations of the lines are of the same form as the ones for the t-

coordinates, except for the sign of the exponential for the t1-coordinate and up to

substituting (α, β, θ, φ) with the new angles as in Figure 4.5, i.e. up to substituting

(α, β, θ, φ) with (α′, β′, θ′, φ′) = (π+θ−β, α, α+β−π, π+θ+φ−α−β). The same

is true for the coordinates of the vertices. In other words, up to remembering that

α′ = π + θ − β, β′ = α, θ′ = α + β − π and φ′ = π + θ + φ− α − β as in Figure

4.5, the s-coordinates can be equivalently listed as in the following tables.

Lij Equations in terms of the s-coordinates

L∗0 s1 = sin(α′−φ′) sin θ′

sinα′ sin(θ′+φ′)

L∗1 s2 = eiθ
′ sinφ′

sin(θ′+φ′)

L∗2 s2 = sin(β′−θ′) sinφ′

sinβ′ sin(θ′+φ′)

L∗3 s1 = eiφ
′ sin θ′

sin(θ′+φ′)

L01
sinα′

sin(α′−φ′)e
−iφ′s1 + s2 = 1
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L02
sinα′

sin(α′−φ′)e
−iφ′s1 + e−iθ

′ sinβ′

sin(β′−θ′)s2 = 1

L03 s1 = 0

L12 s2 = 0

L13 s1 + s2 = 1

L23 s1 + e−iθ
′ sinβ′

sin(β′−θ′)s2 = 1

Table 4.5: The equations de�ning the complex lines of two

cone points collapsing in terms of the s-coordinates and of

the angles in the target con�guration.

tk s1 s2

t1 − e−iβ
′
sin(α′−φ′) sin θ′

sin(α′−φ′) sin(β′−θ′)−e−i(θ′+φ′) sinα′ sinβ′
− e−iα

′
sinφ′ sin(β′−θ′)

sin(α′−φ′) sin(β′−θ′)−e−i(θ′+φ′) sinα′ sinβ′

t2 0 0

t3
sin(α′−φ′) sin θ′

sinα′ sin(θ′+φ′) eiθ
′ sin(α′+θ′) sin(β′−θ′) sinφ′

sinα′ sinβ′ sin(θ′+φ′)

t4
sin(α′−φ′) sin θ′

sinα′ sin(θ′+φ′) 0

t5
sin(α′−φ′) sin θ′

sinα′ sin(θ′+φ′)
sin(α′+θ′) sinφ′

sinα′ sin(θ′+φ′)

t6
sin θ′ sin(β′−θ′−φ′)

sin(β′−θ′) sin(θ′+φ′) eiθ
′ sinφ′

sin(θ′+φ′)

t7 eiφ
′ sin(α′−φ′) sin θ′ sin(β′−θ′−φ′)

sinα′ sin(β′−θ′) sin(θ′+φ′) eiθ
′ sinφ′

sin(θ′+φ′)

t8 0 eiθ
′ sinφ′

sin(θ′+φ′)

t9 eiφ
′ sin θ′

sin(θ′+φ′)
sin(α′−θ′−φ′) sinφ′

sin(α′−φ′) sin(θ′+φ′)

t10 eiφ
′ sin θ′

sin(θ′+φ′) 0

t11 eiφ
′ sin θ′

sin(θ′+φ′) eiθ
′ sin(α′−θ′−φ′) sin(β′−θ′) sinφ′

sin(α′−φ′) sinβ′ sin(θ′+φ′)

t12 eiφ
′ sin(α′−φ′) sin(β′+φ′) sin θ′

sinα′ sinβ′ sin(θ′+φ′)
sin(β′−θ′) sinφ′

sinβ′ sin(θ′+φ′)

t13
sin(β′+φ′) sin θ′

sinβ′ sin(θ′+φ′)
sin(β′−θ′) sinφ′

sinβ′ sin(θ′+φ′)

t14 0 sin(β′−θ′) sinφ′

sinβ′ sin(θ′+φ′)

Table 4.6: The s-coordinates of the vertices in terms of the

angles in the target con�guration.
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4.3.3 The polyhedron

As we can easily see just by looking at Tables 4.2 and 4.4, if we consider one

column of the �rst or second coordinates table (i.e. �xing one of t1, t2, s1, s2),

most vertices have that particular coordinate either real or a real number mul-

tiplied by a unit complex number of the same argument along the column (re-

spectively e−iφ, eiθ, eiφ
′
, eiθ

′
). The only ones not following this rule are t1 for the

s-coordinates and t2 for the t-coordinates. It is hence natural to de�ne the sub-

spaces where the arguments of the coordinates have one of these special values as

in the table below. It is now natural to consider the portion of complex hyperbolic

space consisting of all points with arguments of the coordinates included in the

ranges bounded by these values, i.e. the region bounded by these subspaces. We

hence de�ne our polyhedron to be such region. At the end of Section 2.3, we

mentioned that the sides of our polyhedron will be contained in bisectors. Now

we will prove that these subspaces are bisector and we will use them to cut out a

polyhedron, which will be called D.

On the boundary of the polyhedron we have cells of di�erent dimensions. The

codimension 1 cells (3-dimensional cells) are called sides. The 2-dimensional cells

are called ridges and the 1-dimensional are the edges. The vertices are the 0-

dimensional cells in the boundary of the polyhedron. The sides of the polyhedron

will be contained in bisectors, described in this section.

Bisector Equation Vertices in the bisector

B(P ) Im(t1) = 0 t1, t3, t4, t5, t9, t10, t12, t13

B(P−1) Im(s1) = 0 t2, t3, t4, t5, t6, t8, t13, t14

B(J) Im(eiφt1) = 0 t1, t6, t7, t8, t9, t11, t12, t14

B(J−1) Im(e−iφs1) = 0 t2, t7, t8, t9, t10, t11, t12, t14

B(R1) Im(t2) = 0 t1, t3, t4, t6, t7, t9, t10, t11

B(R−1
1 ) Im(e−iθt2) = 0 t1, t3, t5, t6, t8, t12, t13, t14

B(R2) Im(s2) = 0 t2, t4, t5, t9, t10, t12, t13, t14

B(R−1
2 ) Im(e−iθs2) = 0 t2, t3, t4, t6, t7, t8, t10, t11

The reason for the bisectors to be denoted as B(T ) is that we want the map

T to send the side contained in B(T ) to the one contained in B(T−1), for T one
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of the maps {P, P−1, J, J−1, R1, R
−1
1 , R2, R

−1
2 }. The following lemma shows that

this is the case.

Lemma 4.3.2. In t- and s-coordinates and writing θ′ = α + β − π and φ′ =

π + θ + φ− α− β, we have

• Im(t1) ≤ 0 if and only if |〈t,n∗1〉| ≤
∣∣〈t, P−1(n∗3)〉

∣∣,
• Im(s1) ≥ 0 if and only if |〈s,n∗3〉| ≤ |〈s, P (n∗1)〉|,

• Im(eiφt1) ≥ 0 if and only if |〈t,n∗0〉| ≤
∣∣〈t, J−1(n∗0)〉

∣∣,
• Im(e−iφ

′
s1) ≤ 0 if and only if |〈s,n∗0〉| ≤ |〈s, J(n∗0)〉|,

• Im(t2) ≥ 0 if and only if |〈t,n∗2〉| ≤
∣∣〈t, R−1

1 (n∗3)〉
∣∣,

• Im(e−iθt2) ≤ 0 if and only if |〈t,n∗3〉| ≤ |〈t, R1(n∗2)〉|,

• Im(s2) ≥ 0 if and only if |〈s,n∗1〉| ≤
∣∣〈s, R−1

2 (n∗2)〉
∣∣,

• Im(e−iθ
′
s2) ≤ 0 if and only if |〈s,n∗2〉| ≤ |〈s, R2(n∗1)〉|.

The proof is along the lines of the one in Lemma 4.6 in [Par06], Lemma 4.2

in [BP15] and in Lemma 7.2 of [Pas16]. We will prove the �rst line of the lemma

and the others can be proved in a similar way.

Proof. The �rst thing we need is to remark that n∗i depends on the con�guration

we are using. So, for example, the �rst line of the lemma is

|〈t,n∗1(α, β, θ, φ)〉| ≤
∣∣〈t, P−1(n∗3(β, π + θ − β, θ + α− β, φ+ β − α))〉

∣∣ ,
since (α, β, θ, φ)

P7−→ (β, π + θ − β, θ + α− β, φ+ β − α).

Omitting the con�gurations above,

n∗1 =


e−iφ sin(α−φ)

sinα

0

1

 , n∗3 =


0

1

1

 , P−1(n∗3) =


sin(α−φ)

sinα eiφ

0

1

 .
Then

|〈t,n∗1〉| =
∣∣∣∣ sin θ sinφ

sin(θ + φ)
− sinφeiφt1

∣∣∣∣ ,∣∣〈t, P−1n∗3〉
∣∣ =

∣∣∣∣ sin θ sinφ

sin(θ + φ)
− sinφe−iφt1

∣∣∣∣ ,
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and the �rst term is smaller than the second one if and only if −Re(eiφt1) <

−Re(e−iφt1) which is equivalent to Im t1 < 0. �

As we mentioned, the lemma explains the name given to the bisectors. In

fact, for example the bisector B(P ) is, by de�nition, given by Im(t1) = 0, which

corresponds, by the lemma, to the points satisfying

|〈t,n∗1〉| =
∣∣〈t, P−1(n∗3)〉

∣∣ .
Applying P to both sides of the equality, we get a point in the bisector de�ned

by

|〈s, P (n∗1)〉| = |〈s,n∗3〉| ,

which happens when Im(s1) = 0, which is indeed B(P−1).

Now the polyhedron D = D(α, β, θ, φ) is de�ned as the intersection of all the

half spaces in the lemma. More precisely, it will be

D(α, β, θ, φ) =

t = P (s) :
arg(t1) ∈ (−φ, 0), arg(t2) ∈ (0, θ),

arg(s1) ∈ (0, φ′), arg(s2) ∈ (0, θ′)

 , (4.3.5)

where, as before, we have θ′ = α+ β − π and φ′ = π + θ + φ− α− β.

The sides (codimension 1 cells) of the polyhedron will be de�ned as S(T ) =

D ∩B(T ). Each of them is contained in one of the bisectors in the table.

4.4 The combinatorial structure of the polyhedron

We now want to study the combinatorics of the polyhedron D(α, β, θ, φ).

First we will see how the combinatorics change with the values of the angles.

A more in depth analysis can be found for the speci�c 3-fold symmetry case in

Section 5.7.1. Later we will study all possible side (3-dimensional facets) inter-

sections in order to be able to list all possible ridges (2-dimensional facets) and

edges (1-dimensional facets).

According to the values of the parameters, we will have occasions where the

the three vertices on L∗i collapse to a single vertex, for i = 0, 1, 2, 3.

Proposition 4.4.1. We have
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Figure 4.6: The collapsing vertices.

• the vertices on L∗0 collapse when α−φ ≥ π−θ−φ, i.e. when π−α−θ ≤ 0;

• the vertices on L∗1 collapse when π − α ≥ π − θ − φ, i.e. α− θ − φ ≤ 0;

• the vertices on L∗2 collapse when sin(β − θ)/ sinβ ≤ sinφ/ sin(θ + φ), i.e.

β − θ − φ ≤ 0;

• the vertices on L∗3 collapse when π − β ≤ φ, i.e. π − β − φ ≤ 0.

Figure 4.6 summarises the possible degenerations: each of the four pairs of

con�gurations corresponds to an instance of the proposition. In each pair, the left

con�guration is a superposition of the three possible vertices when they do not

collapse (in fact, the three vertices only di�ers by one of T1 or T2 having three

di�erent positions) and the con�guration on the right hand side is the single vertex

that appears when the collapsing happens.

Proof. We will prove the �rst instance of the proposition, since the others can be

done in a similar way. Take vertices t3, t4 and t5 on L∗0. These are characterised
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by the fact that when increasing the modulus of z1 (i.e. making T1 as big as

possible), the vertex v0 hits v∗ before v1 hits the vertex of T3 with angle θ (see

Figure 4.1). In other words, the vertices collapse if before we can have v0 ≡ v∗,

we get v1 ≡ v2 ≡ v3. This implies that there is no other choice for z2 but to

be zero, instead of having the three choices that give the three possible vertices

having v0 ≡ v∗. In terms of the parameters, this means that the three vertices

collapse when the angle of T1 opposite z1 is bigger than the angle of T3 opposite

z3, i.e. when α− φ ≥ π − θ − φ. �

We remark that the sides all have the same combinatorial structure. In par-

ticular, they will look like in Figure 4.7. This is the same structure as 2 of the

10 sides in [DFP05], where this combinatorial structure �rst appeared. Later, in

[Pas16], we showed how this is a general structure and all other fundamental do-

mains for Deligne-Mostow lattices can be seen as a deformation of this structure

given by Proposition 4.4.1. Each side will correspond to �xing the argument of

one of the coordinates. Then there will be one triangular ridge (e.g. the bottom

one) where the coordinate is equal to zero and a second triangular ridge (e.g.

the top one) where the coordinate has another �xed value. The complex lines

interpolating between the two will be the slices of the foliation (see Section 2.3).

The edge connecting the two triangles is contained in the spine of the bisector

and always contains one of the vertices t1 or t2. The pentagonal lateral ridges

containing the vertical edge are contained in totally geodesic Lagrangian planes

and are the extremities of the foliation by meridians. We claim that in each side

the modulus of the coordinate we are considering varies between the two values

it assumes on the top and bottom triangular ridges. To check this, for example,

in S(J), we need to check that |t1| in t11 and t14 is smaller than |t1| in t6, t7 and

t8 (|t1| has the same value in these three vertices, since they are contained in the

complex line L∗1) and so on. It is an easy calculation (see proof of Lemma 4.4.2

below) to check that this is true for each side as long as

sin(α+ β − π) ≥ 0 sin(π + α+ β − θ − φ) ≥ 0

sin(α+ θ − β) ≥ 0 sin(β + φ− α) ≥ 0. (4.4.1)

Remembering the action of P and P−1 on the angles, this means that we are just
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asking for the con�guration after applying these two maps to make sense in our

coordinates.

This gives us the following lemma:

Lemma 4.4.2. If the parameters satisfy (4.4.1), then

• In S(P ), we have |t1| ≤ sin(α−φ) sin θ
sinα sin(θ+φ) ,

• In S(J), we have |t1| ≤ sin θ
sin(θ+φ) ,

• In S(R1), we have |t2| ≤ sin(β−θ) sinφ
sinβ sin(θ+φ) ,

• In S(R−1
1 ), we have |t2| ≤ sinφ

sin(θ+φ) ,

• In S(P−1), we have |s1| ≤ − sin(α−φ) sin(α+β)
sin(β−θ) sin(θ+φ) ,

• In S(J−1), we have |s1| ≤ − sin(α+β)
sin(θ+φ) ,

• In S(R2), we have |s2| ≤ sin(α+β−θ−φ) sinβ
sinα sin(θ+φ) ,

• In S(R−1
2 ), we have |s2| ≤ sin(α+β−θ−φ) sinβ

sinα sin(θ+φ) .

We will show the �rst instance of the lemma, as all the others are done in a

very similar way.

Proof. Let us take t ∈ S(P ). This means that Im t1 = 0 and hence t1 = u ∈ R.

Since the bisector is foliated by complex lines corresponding to the value of t1, we

just need to know that for each vertex ti ∈ S(P ) (i.e. i = 1, 3, 4, 5, 9, 10, 12, 13),
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we have |u| ≤ sin(α−φ) sin θ
sinα sin(θ+φ) . Now, for i = 1, 9, 12, then u = 0 and the condition is

always satis�ed. For i = 3, 4, 5, then u = sin(α−φ) sin θ
sinα sin(θ+φ) and the condition is always

satis�ed. For i = 10, we want

u =
sin(β + θ) sin θ

sinβ sin(θ + φ)
≤ sin(α− φ) sin(θ)

sinα sin(θ + φ)
,

which is true as long as

sin(β + φ) sinα− sin(α− φ) sinβ ≤ 0⇐⇒ sinφ sin(α+ β) ≤ 0.

Since sinφ is always positive, then the condition we want only requires sin(α+β) ≤

0, which means that sin(α+ β − π) ≥ 0.

Similarly, for i = 13, u ≤ sin(α−φ) sin θ
sinα sin(θ+φ) is equivalent to asking that

sin(β − θ − φ) sin θ

sin(β − θ) sin(θ + φ)
≤ sin(α− φ) sin(θ)

sinα sin(θ + φ)
,

which is equivalent to

− sinφ sin(α− β + θ) ≤ 0,

which is true since sinφ is always positive and the angles satisfy (4.4.1).

The other points of the lemma can be proved with the same calculation. �

We now want to consider all possible side intersections to �nd the combina-

torics of the polyhedron. We will denote by γi,j the geodesic segment between the

vertices ti and tj .

Proposition 4.4.3. The following side intersections consist of the union of two

edges:

S(P ) ∩ S(J−1) = γ10,9 ∪ γ9,12, S(R−1
1 ) ∩ S(J−1) = γ8,14 ∪ γ14,12,

S(P ) ∩ S(R−1
2 ) = γ3,4 ∪ γ4,10, S(J) ∩ S(R2) = γ9,12 ∪ γ12,14,

S(R1) ∩ S(R2) = γ4,10 ∪ γ10,9, S(J) ∩ S(P−1) = γ6,8 ∪ γ8,14,

S(R1) ∩ S(P−1) = γ4,3 ∪ γ3,6, S(R−1
1 ) ∩ S(R−1

2 ) = γ3,6 ∪ γ6,8.

Proof. We will prove the �rst point of the proposition and the rest can be proved

using the same strategy. Let t ∈ D be contained in both B(P ) ∩ B(J−1). By

inspection, one can see that t also belongs toB(R2). Then we can write s1 = ueiφ
′
,
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where φ′ = π+θ−α−β and t1 = x. Since here P−1 : (α, β, θ, φ) 7→ (π+θ−β, α, α+

β−π, π+θ+φ−α−β), we have t = P (π+θ−β, α, α+β−π, π+θ+φ−α−β)(s)

which we can use to calculate x in terms of s2 and s1 = ueiφ
′
. We get(

− sin(θ + φ) sin(β − θ)eiαeiφ′u− sin(θ + φ) sinαe−i(β−θ)s2

− sin(α+ β) sinφ+ sin(θ + φ) sinαe−i(β−θ)
)
x =

= − sin(β − θ) sin θei(α−φ)eiφ
′
u− sin(α− φ) sin θe−i(β−θ)s2

+ sin(α− φ) sin θe−i(β−θ),

so

s2 (sin(α− φ) sin θ − sin(θ + φ) sinαx) =

= − sin(β − θ) sin θu− sin(α− φ) sin θ + sin(θ + φ) sin(β − θ)eiφux

− x
(

sin(α+ β) sinφei(β−θ) + sin(θ + φ) sinα
)
.

Then

0 = Im s2 =
x(sin(θ + φ) sin(β − θ) sinφu− sin(α+ β) sinφ sin(β − θ))

sin(α− φ) sin θ − sin(θ + φ) sinαx

so, either x = 0 or u = sin(α+β)
sin(θ+φ) . If x = 0, then t ∈ B(J) and we are on γ9,12.

Otherwise, t ∈ L∗3, so t2 is real and t ∈ B(R1), which means that we are on γ10,9.

�

Proposition 4.4.4. The bisector intersections satisfy:

• A point t in the side intersection S(P )∩S(P−1), with t1 6= sin θ sin(α−φ)
sinα sin(θ+φ) and

s1 6= − sin(α+β) sin(α−φ)
sin(β−θ) sin(θ+φ) , belongs to the edge γ5,13.

• A point t in the side intersection S(J)∩S(R−1
2 ), with t1 6= e−iφ sin θ

sin(θ+φ) and

s2 6= −ei(α+β) sin(α+β−θ−φ)
sin(θ+φ) , belongs to the edge γ7,11.

• Moreover, a point t in the side intersection S(R2) ∩ S(R−1
1 ), with t2 6=

eiθ sinφ
sin(θ+φ) and s2 6= sin(α+β−θ−φ) sinβ

sinα sin(θ+φ) , belongs to the edge γ5,13.

• Finally, a point t in the side intersection S(R1)∩S(J−1), with t2 6= sin(β−θ) sinφ
sinβ sin(θ+φ)

and s1 6= e−i(α+β−θ−φ) sin(α+β)
sin(θ+φ) , belongs to the edge γ7,11.

We will prove the �rst point and the others are proved in the exact same way.
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Proof. Let us take t ∈ S(P ) ∩ S(P−1). Then

t1 = x, s1 = u

and by hypothesis and using Lemma 4.4.2 we have

x ≤ sin θ sin(α− φ)

sinα sin(θ + φ)
, u ≤ −sin(α+ β) sin(α− φ)

sin(β − θ) sin(θ + φ)
. (4.4.2)

Then using (4.3.1) one can express t2 and s2 in terms of x and u as follows:

(sin(θ + φ) sinαx− sin(α− φ) sin θ)s2 =

− sin(β − θ) sin θei(α+β−θ−φ)u+ sin(θ + φ) sin(β − θ)ei(α+β−θ)ux

+ (sin(α+ β) sinφei(β−θ) + sin(θ + φ) sinα)x− sin(α− φ) sin θ

(− sin(θ + φ) sin(β − θ)u− sin(α− φ) sin(α+ β)) t2 =

sin(β − θ)
sinβ

e−iθ(sin θ sin(α+ β − θ − φ)eiαu− sin(θ + φ) sinαei(α+β−θ)ux

+ (sinα sin(α+ β)e−iφ − sin(α− φ) sin(α+ β))x− sin(θ + φ) sin(β − θ)).

Now, we know by Lemma 4.3.2 that inside D we have

0 ≥ Im e−iθt2 =
sin(β − θ) sinα

sinβ
·

· sin(α+ β) sinφx+ sin(θ + φ) sin(α+ β − θ)ux− sin θ sin(α+ β − θ − φ)u

sin(θ + φ) sin(β − θ)u+ sin(α− φ) sin(α+ β)
,

but by (4.4.2) we know that the denominator is strictly negative and so the

numerator must be positive.

Again by Lemma 4.3.2, t satis�es

0 ≤ Im s2 = sin(β − θ)·

· sin(α+ β) sinφx+ sin(θ + φ) sin(α+ β − θ)ux− sin θ sin(α+ β − θ − φ)u

sin(θ + φ) sinαx− sin(α− φ) sin θ
,

and since by (4.4.2) the denominator must be strictly negative, then the numerator

must be negative.

But since the two numerators coincide, then they must both equal 0. This

means that the point we are considering must be also in S(R−1
1 ) and in S(R2),

which means that we are on edge γ5,13. �
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Remark 4.4.5. The proof relies on Lemma 4.4.2. As we will see in Section 6.3.3,

there are cases in which (4.4.1) is not satis�ed. In term of con�gurations, this

means that one needs to consider a slightly di�erent con�guration of triangles (see

Section 6.3.3). Using the new con�guration one can prove an equivalent statement

using the exact same strategy of proof as in [Par06] and [Pas16].
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Chapter 5

Lattices with 3-fold symmetry.

Let us now consider a cone metric on the sphere with 5 cone singularities

such that 3 of the cone angle are the same. The lattices obtained from these are

the lattices with 3-fold symmetry. The contents of the �rst part of this chapter

consist in showing how all the analysis in the previous chapter applies to the case

of 3-fold symmetry. We will �rst show how to parametrise the con�guration space

and explain what the moves are like in this case. The main di�erence with the

previous chapter is that now the moves will swap cone points with same cone

angle and so the con�gurations will never change. In other words, we will have

α = β = π + θ − β = π−θ
2 . The second part of the chapter will prove that

the polyhedron constructed in Section 4.3 is a fundamental domain for the group

generated by the moves.

5.1 Cone structures

Let us now consider a cone metric on the sphere with cone angles

(π − θ + 2φ, π + θ, π + θ, π + θ, 2π − 2θ − 2φ) . (5.1.1)

This is the same as in (4.1.2) when we consider that α = β = π + θ − β = π−θ
2 .

As before, these will be the angles at the cone points v0, v1, v2, v3, v∗ respectively.

From (3.4.1) one can see that the angles θ and φ correspond respectively to 2π
p

and π
k , with p and k in Table 3.1.

Let us now take a path through v1, v2, v3, v∗ in order, cut through this path
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Figure 5.1: Octagon Π when the parameters are complex.

and open up the surface, obtaining an octagon like the one in Figure 5.1, called

Π. Again, we choose the vertex v∗ to be in the origin of our coordinates and we

place Π such that v0 is on the negative imaginary axis when the cone points are

all along the equator of the sphere. We take the parameters z1, z2 and z3 like in

Chapter 4.

Then the vertices have the following coordinates.

v0 = −i sin θ

sin (θ + φ)
z3 + i

sin θ

sinφ+ sin (θ − φ)
z1

v1 = ie−iφz1 − i
sin θ

sin(θ + φ)
z3

v2 = −ie−iφz2 + i
e−iθ−iφ sinφ

sin(θ + φ)
z3

v3 = −ie−iθ−iφz2 + i
e−iθ−iφ sinφ

sin(θ + φ)
z3

A = −i sin θ

sin(θ + φ)
z3.

The area of the right half of the octagon can be obtained taking the area of

T3 and subtracting the area of T1 and the area of T2. The total area of Π will

hence be twice such quantity. A simple calculation shows that

Area(T1) =
sin θ sinφ

2(sinφ+ sin(θ − φ))
|z1|2,

Area(T2) =
sin θ

2
|z2|2,

Area(T3) =
sin θ sinφ

2 sin(θ + φ)
|z3|2
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and so

Area Π = 2 (AreaT3 −AreaT1 −AreaT2)

=
sin θ sinφ

sin(θ + φ)
|z3|2 − sin θ|z2|2 −

sin θ sinφ

(sinφ+ sin(θ − φ))
|z1|2. (5.1.2)

Following Section 4.1, one can put a complex hyperbolic structure on the

moduli space we just parametrised.

Consider the Hermitian matrix

H = sin θ


− sinφ

sinφ+sin(θ−φ) 0 0

0 −1 0

0 0 sinφ
sin(θ+φ)

 . (5.1.3)

Since the area is given by Equation (5.1.2), this is equivalent to saying

Area(Π) = z∗Hz.

In this sense, the area gives an Hermitian form of signature (1,2) on C3.

We de�ne hence our model of complex hyperbolic space as

H2
C = {z : 〈z, z〉 = z∗Hz > 0}.

Then, asking for the area to be positive means that our complex hyperbolic

structure is given by

H2
C =



z1

z2

z3

 : − sin θ sinφ

sinφ+ sin(θ − φ)
|z1|2 − sin θ|z2|2 +

sin θ sinφ

sin(θ + φ)
> 0

 .

(5.1.4)

5.2 Moves on the cone structures

We know that the second, third and fourth vertices have the same angle. This

means that there is no canonical way of ordering them while choosing a path

through the �ve points. So the moves in Section 4.2 are now automorphisms of

the sphere swapping cone points.

The �rst move R1 �xes the vertices v∗, v0 and v1, and exchanges v2 and v3.

This is equivalent to saying that the path on the sphere along which we will open
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Figure 5.2: The cut for R1 and the octagon we obtain. Vertices v′i's

are the images under R1 of vi's.

up the surface to give the polygon Π will be done starting in v0, continuing in

v1 as before, but then passing, in order, through v3 and v2 and ending in v∗. In

Figure 5.2 we show the new cut in the glued pentagons case and the octagon that

we obtain.

The new octagon can be obtained from the previous one by a cut and paste.

In fact, the new cut from v∗ goes directly where v2 was previously, as this is the

image of v3. So the triangle v∗, v3, v2 has to be glued on the segment between v∗

and v−3 according to the identi�cation of the sides. Similarly, the triangle v−1,

v−2, v−3 has to be glued on the edge v1, v2, as in Figure 5.2. This means that

the move R1 does not change the area of the octagon.

One way to �nd the matrix of R1 is by describing geometrically the position

of the new variables, image of the zi's. In fact, if we leave z3 and z1 as before and

we multiply z2 by eiθ, it geometrically means that we are rotating T2 and T−2 by

θ, �xing the vertex corresponding to angle θ, by de�nition of the variables. It is

easy to see that this gives the con�guration on the right hand side of Figure 5.2.
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Figure 5.3: The cut for R2. Again, v′i is the image under R2 of vi.

The matrix of R1 will hence be:

R1 =


1 0 0

0 eiθ 0

0 0 1

 .
There is yet another way of calculating the matrix. As we can see in the �gure,

some of the images will be in the position where the vertices originally were. This

means that, when considering their dependence on the new variables, it is enough

to ask that the coordinates of these images (in term of the image of the variables

zi's) coincide with the coordinates of the original vertices, which depended on

the z′is themselves. More speci�cally, to �nd the matrix of R1, we need to solve

equations v′0 = v0, v′1 = v1, v′3 = v2 and v′−2 = v−3.

Let us now de�ne the second move R2. This new move �xes v∗, v0 and v3,

while it interchanges v1 and v2. As before, this means that the cut that we do

goes �rst through v0, then to v2 and v1 and �nally it ends as before by cutting

through v3 and v∗. The cut and the octagon are shown is Figure 5.3.

As before, in the �gure we also showed the cut and paste map that we need

to recover the initial shape. In particular, the triangle between v3, v2 and v1 has

to be glued on the edge v−2, v−3, as this time the cut goes from v3 directly to the

image of v2, that coincides now with the position of v1. Similarly, the triangle

v0, v−1, v−2 has to be glued on edge v0, v1. Both gluings are done according to
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v'-1
v'0

v'3=v3

v'2=v2
v'1=v-1

v'-3=v-3

v'-2=v-2

0=v*=v'*

Figure 5.4: The octagon obtained after applying A1.

the side identi�cations we described when recovering the come metric from the

octagon. We remark again that the existence of such a cut and paste implies that

the area is preserved after applying the move R2.

To �nd the matrix of the transformation one needs to see its action on the

variables that determine the coordinates of the vertices. According to Figure 5.3,

we therefore ask that v′0 = v0, v′2 = v1, v′−1 = v−2 and v′3 = v3.

The matrix for R2 is:

R2 =
1

(1− e−iθ) sinφ


− sin θe−iφ − sinφ− sin(θ − φ) sinφ+ sin(θ − φ)

− sinφ − sinφe−iθ sinφ

− sin(θ + φ) − sin(θ + φ) sinφ+ sin θeiφ

 .

The two moves R1 and R2 correspond, as automorphisms of the sphere with

5 cone singularities, to a Dehn twist along a curve through the two points we are

swapping, not separating the other singularities.

The third move, A1, will be exactly like in Section 4.2, making the triangle

T1 rotate so that vertices v∗, v2, v3 remain �xed, while v′1 coincides this time with

v−1.

Once again, the triangles T2 and T3 remain �xed and hence so are the variables

z2 and z3. The third triangle is rotated of an angle of 2φ. This gives us the matrix
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of the move, which will be

A1 =


e2iφ 0 0

0 1 0

0 0 1

 .
As before, we can also see how it acts on the vertices and deduce from there the

same matrix.

At this point, we want to consider the group Γ = 〈R1, R2, A1〉. Since the

moves preserve the area, they are unitary with respect to the Hermitian form,

i.e. R∗1HR1 = H and same for R2 and A1. This can also easily checked by

calculation. Hence they are elements of PU(2, 1) for the Hermitian form given in

(5.1.3). For the values of φ and θ that we are considering, Γ is discrete and is in

the list of Deligne-Mostow lattices described in Section 3.4.1. In fact, here we are

implementing Thurston's procedure described in [Thu98], which, as he explains, is

related with the groups previously constructed by Deligne and Mostow in [DM86]

and [Mos80].

In the group Γ = 〈R1, R2, A1〉, we will often use some special elements, as

already explained in Section 4.2. Here it will be easier to calculate them, since

the moves do not change the con�guration.

The �rst one is J , de�ned as J = R1R2A1. Its matrix is

J =
1

sinφ(1− e−iθ)


− sin θeiφ − sinφ− sin(θ − φ) sinφ+ sin(θ − φ)

− sinφei(2φ+θ) − sinφ sinφeiθ

− sin(θ + φ)e2iφ − sin(θ + φ) sinφ+ sin θeiφ

 .
We remark that J has zero trace and hence it has order 3. Most of the time we will

consider projective equalities and drop the initial factor 1
sinφ(1−e−iθ)

. Projective

equivalence will be denoted by the symbol ∼.

The second one is P , de�ned by P = R1R2. Its matrix is:

P =
1

sinφ(1− e−iθ)


− sin θe−iφ − sinφ− sin(θ − φ) sinφ+ sin(θ − φ)

− sinφeiθ − sinφ sinφeiθ

− sin(θ + φ) − sin(θ + φ) sinφ+ sin θeiφ

 .
Note that J previously de�ned can also be written as J = PA1. The transfor-

mation P will be used here to give a new set of coordinates di�erent from the
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z-coordinates used until now. These are the same as the s-coordinates introduced

in Section 4.3.2.

The new coordinates are de�ned by

w =
[
P−1(z)

]
.

This gives us the formulae

w1 =
− sin θeiφz1 − (sinφ+ sin(θ − φ))e−iθz2 + sinφ+ sin(θ − φ)

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sinφ+ sin θe−iφ
, (5.2.1)

w2 =
− sinφz1 − sinφz2 + sinφ

− sin(θ + φ)z1 − sin(θ + φ)e−iθz2 + sinφ+ sin θe−iφ
, (5.2.2)

with inverses

z1 =
− sin θe−iφw1 − (sinφ+ sin(θ − φ))w2 + sinφ+ sin(θ − φ)

− sin(θ + φ)w1 − sin(θ + φ)w2 + sinφ+ sin θeiφ
, (5.2.3)

z2 =
− sinφeiθw1 − sinφw2 + sinφeiθ

− sin(θ + φ)w1 − sin(θ + φ)w2 + sinφ+ sin θeiφ
. (5.2.4)

The new set of coordinates makes it easier to describe the polyhedron, that

will be de�ned by imposing that the arguments of the coordinates z1, z2, w1, w2

vary in a certain range.

We will denote A′1 = J−1R−1
1 R−1

2 , coherently with the notations in [Par09].

We will often consider another transformation, which is the antiholomorphic isom-

etry ι de�ned by ι(z) = R1R2R1(z). Equivalently, ι(z) = PR1(z). By de�nition,

ι


z1

z2

1

 ∼

w1

w2e
iθ

1

 . (5.2.5)

This transformation will give us a symmetry of the polyhedron that we will con-

struct (see Lemma 5.3.1).

Remark 5.2.1. A simple computation shows that ι is consistent with the maps

de�ned previously. In other words, we have

Jι = ιJ−1, P ι = ιP−1 R1ι = ιR−1
2 R2ι = ιR−1

1 .
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5.3 The polyhedron

In this section we will show how the polyhedron D constructed in Chapter 4

adapts to the lattices of 3-fold symmetry. We will also prove that it is a funda-

mental domain for the action of Γ on H2
C. This is a general construction which

contains all cases of lattices with three fold symmetry on Deligne and Mostow's

list. The polyhedron as we will describe it here will be a fundamental domain in

some of the cases described in Section 3.4.1. In the other cases, the fundamental

polyhedron will be obtained from this one by collapsing some triplets of vertices.

Section 5.7.1 will be dedicated to the analysis of these cases, adapting Proposition

4.4.1 to the 3-fold symmetry case.

5.3.1 The vertices

Following Section 4.3, we will explain which points ofH2
C are the special points

which will represent the vertices of the polyhedron. For each of them we will give

both z-coordinates and w-coordinates. As before, w = P−1(z).

As before, these points will be obtained by making some cone points approach,

until, in the limit, they coalesce. In this case, each vertex will be obtained by

separately coalescing two distinct pairs of cone points. On the octagon Π, this

corresponds to �xing the triangle T3 and considering the cone metrics on the

sphere corresponding to con�gurations when T1 and T2 are as small and as big

as possible, in di�erent directions, until pairs of vertices coincide. This is shown

in Figure 5.5. Every time that we make two points coalesce, we turn two cone

points into a new one.

In the following tables we describe the vertices of the polyhedron. The �rst

one tells us, for each vertex, which cone points coalesced.
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z1 z2

z3 z4 z5

z6 z7 z8

z9 z10 z11

z12 z13 z14

Figure 5.5: The degenerate con�gurations giving the vertices of the

polyhedron.
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Vert. Cone points Vert. Cone points Vert. Cone points

z1 v0, v±1 v±2, v±3 z6 v∗, v±1 v±2, v±3 z11 v∗, v±3 v0, v±2

z2 v0, v±3 v±1, v±2 z7 v∗, v±1 v0, v±2 z12 v∗, v±2 v0, v±1

z3 v∗, v0 v±2, v±3 z8 v∗, v±1 v0, v±3 z13 v∗, v±2 v±1, v±3

z4 v∗, v0 v±1, v±2 z9 v∗, v±3 v0, v±1 z14 v∗, v±2 v0, v±3

z5 v∗, v0 v±1, v±3 z10 v∗, v±3 v±1, v±2

As mentioned, when two cone points collapse, we get a complex line in H2
C.

These complex lines are described by the following equations.

Lij z-coordinates equation w-coordinates equation

L∗0 z1 = sinφ+sin(θ−φ)
sin(θ+φ) w1 = sinφ+sin(θ−φ)

sin(θ+φ)

L∗1 z1 = e−iφ sin θ
sin(θ+φ) w2 = eiθ sinφ

sin(θ+φ)

L∗2 z2 = eiθ sinφ
sin(θ+φ) w2 = sinφ

sin(θ+φ)

L∗3 z2 = sinφ
sin(θ+φ) w1 = eiφ sin θ

sin(θ+φ)

L01 z1 = 0 sin θ
sinφ+sin(θ−φ)e

−iφw1 + w2 = 1

L02
sin θ

sinφ+sin(θ−φ)e
iφz1 + z2 = 1 sin θ

sinφ+sin(θ−φ)e
−iφw1 + e−iθw2 = 1

L03
sin θ

sinφ+sin(θ−φ)e
iφz1 + e−iθz2 = 1 w1 = 0

L12 z1 + z2 = 1 w2 = 0

L23 z2 = 0 w1 + e−iθw2 = 1

L13 z1 + e−iθz2 = 1 w1 + w2 = 1

With these equations, we can calculate the coordinates of the vertices by

making the complex lines intersect or, equivalently, two pairs of points coalesce

at the same time (see, again, the tables in Section 4.3). The �rst table will give

us the z coordinates of all the vertices, while the second one will give us their w

coordinates.

Vertex coordinate z1 coordinate z2

z1 0 0

z2
sinφ+sin(θ−φ)
sinφ+eiφ sin θ

eiθ sinφ
sinφ+eiφ sin θ

z3
sinφ+sin(θ−φ)

sin(θ+φ) 0

z4
sinφ+sin(θ−φ)

sin(θ+φ)
sinφ(2 cos θ−1)

sin(θ+φ)

z5
sinφ+sin(θ−φ)

sin(θ+φ) eiθ sinφ(2 cos θ−1)
sin(θ+φ)
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z6 e−iφ sin θ
sin(θ+φ) 0

z7 e−iφ sin θ
sin(θ+φ) 1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))

z8 e−iφ sin θ
sin(θ+φ) eiθ

(
1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))

)
z9 0 sinφ

sin(θ+φ)

z10
sin(θ+φ)−sinφ

sin(θ+φ)
sinφ

sin(θ+φ)

z11 e−iφ sinφ+sin(θ−φ)
sin θ

(
1− sinφ

sin(θ+φ)

)
sinφ

sin(θ+φ)

z12 0 eiθ sinφ
sin(θ+φ)

z13
sin(θ+φ)−sinφ

sin(θ+φ) eiθ sinφ
sin(θ+φ)

z14 e−iφ sinφ+sin(θ−φ)
sin θ

(
1− sinφ

sin(θ+φ)

)
eiθ sinφ

sin(θ+φ)

Vertex coordinate w1 coordinate w2

z1
sinφ+sin(θ−φ)
sinφ+e−iφ sin θ

sinφ
sinφ+e−iφ sin θ

z2 0 0

z3
sinφ+sin(θ−φ)

sin(θ+φ) eiθ sinφ(2 cos θ−1)
sin(θ+φ)

z4
sinφ+sin(θ−φ)

sin(θ+φ) 0

z5
sinφ+sin(θ−φ)

sin(θ+φ)
sinφ(2 cos θ−1)

sin(θ+φ)

z6
sin(θ+φ)−sinφ

sin(θ+φ) eiθ sinφ
sin(θ+φ)

z7 eiφ sinφ+sin(θ−φ)
sin θ

(
1− sinφ

sin(θ+φ)

)
eiθ sinφ

sin(θ+φ)

z8 0 eiθ sinφ
sin(θ+φ)

z9 eiφ sin θ
sin(θ+φ) 1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))

z10 eiφ sin θ
sin(θ+φ) 0

z11 eiφ sin θ
sin(θ+φ) eiθ

(
1− sin2 θ

sin(θ+φ)(sinφ+sin(θ−φ))

)
z12 eiφ sinφ+sin(θ−φ)

sin θ

(
1− sinφ

sin(θ+φ)

)
sinφ

sin(θ+φ)

z13
sin(θ+φ)−sinφ

sin(θ+φ)
sinφ

sin(θ+φ)

z14 0 sinφ
sin(θ+φ)

These vertices present a symmetry given by the transformation ι. In fact, as

we can immediately verify on the coordinates in the table, the following lemma

holds:

Lemma 5.3.1. The isometry ι de�ned by (5.2.5) has order 2 and acts on the
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vertices in the following way:

ι(z1) = z2, ι(z3) = z4, ι(z5) = z5, ι(z6) = z10,

ι(z7) = z11, ι(z8) = z9, ι(z12) = z14, ι(z13) = z13.

Following Section 4.3.3 (see (4.3.5)), we de�ne our polyhedron to be:

D =

z = P (w) :
arg(z1) ∈ (−φ, 0), arg(z2) ∈ (0, θ),

arg(w1) ∈ (0, φ), arg(w2) ∈ (0, θ)

 . (5.3.1)

In other words, D is de�ned to be the intersection of the two wedges

W1 = {z : arg(z1) ∈ (−φ, 0) and arg(z2) ∈ (0, θ)}

and

W2 = {w : arg(w1) ∈ (0, φ) and arg(w2) ∈ (0, θ)}.

5.3.2 The sides

Following 4.3.3, the sides of the polyhedron will then be contained in bisectors,

which are de�ned as in the following table.

Bisector Equation Points in the bisector

B(P ) Im(z1) = 0 z1, z3, z4, z5, z9, z10, z12, z13

B(P−1) Im(w1) = 0 z2, z3, z4, z5, z6, z8, z13, z14

B(J) Im(eiφz1) = 0 z1, z6, z7, z8, z9, z11, z12, z14

B(J−1) Im(e−iφw1) = 0 z2, z7, z8, z9, z10, z11, z12, z14

B(R1) Im(z2) = 0 z1, z3, z4, z6, z7, z9, z10, z11

B(R−1
1 ) Im(e−iθz2) = 0 z1, z3, z5, z6, z8, z12, z13, z14

B(R2) Im(w2) = 0 z2, z4, z5, z9, z10, z12, z13, z14

B(R−1
2 ) Im(e−iθw2) = 0 z2, z3, z4, z6, z7, z8, z10, z11

Finally, the following lemma proves that the subspaces de�ned are bisectors

and that we named them following the convention just described and is the same

as Lemma 4.3.2.

Lemma 5.3.2. In z and w coordinates, we have

• Im(z1) < 0 if and only if |〈z,n∗1〉| < |〈z, P−1(n∗3)〉|,
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• Im(w1) > 0 if and only if |〈w,n∗3〉| < |〈w, P (n∗1)〉|,

• Im(eiφz1) > 0 if and only if |〈z,n∗0〉| < |〈z, J−1(n∗0)〉|,

• Im(e−iφw1) < 0 if and only if |〈w,n∗0〉| < |〈w, J(n∗0)〉|,

• Im(z2) > 0 if and only if |〈z,n∗2〉| < |〈z, R−1
1 (n∗3)〉|,

• Im(e−iθz2) < 0 if and only if |〈z,n∗3〉| < |〈z, R1(n∗2)〉|,

• Im(w2) > 0 if and only if |〈w,n∗1〉| < |〈w, R−1
2 (n∗2)〉|,

• Im(e−iθw2) < 0 if and only if |〈w,n∗2〉| < |〈w, R2(n∗1)〉|.

Remark 5.3.3. By de�nition, a point is in the polyhedron D if and only if it

satis�es all the conditions on the left hand side in the lemma.

5.3.3 The ridges and edges

5.3.3.1 Useful inequalities

In this section we will present some trigonometric inequalities that will be

used all through the following sections.

Lemma 5.3.4. Let z ∈ H2
C. Then

|z1|2, |w1|2 ≤
sinφ+ sin(θ − φ)

sin(θ + φ)
, and |z2|2, |w2|2 ≤

sinφ

sin(θ + φ)
.

Proof. Let us assume that this is not the case, hence |z1|2 > sinφ+sin(θ−φ)
sin(θ+φ) . Now,

by the area formula (5.1.4), we have

0 < − sin θ sinφ

sinφ+ sin(θ − φ)
|z1|2 − sin θ|z2|2 +

sin θ sinφ

sin(θ + φ)

< −sinφ+ sin(θ − φ)

sin(θ + φ)
· sin θ sinφ

sinφ+ sin(θ − φ)
− sin θ|z2|2 +

sin θ sinφ

sin(θ + φ)

= − sin θ|z2|2 ≤ 0,

which is a contradiction. So we must have |z1|2 ≤ sinφ+sin(θ−φ)
sin(θ+φ) .
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Similarly, let us assume that |z2|2 > sinφ
sin(θ+φ) . Then

0 < − sin θ sinφ

sinφ+ sin(θ − φ)
|z1|2 − sin θ|z2|2 +

sin θ sinφ

sin(θ + φ)

< − sin θ sinφ

sinφ+ sin(θ − φ)
|z1|2 − sin θ · sinφ

sin(θ + φ)
+

sin θ sinφ

sin(θ + φ)

= − sin θ sinφ

sinφ+ sin(θ − φ)
|z1|2 ≤ 0.

Hence we must have |z2|2 ≤ sinφ
sin(θ+φ) .

The proofs for w1 and w2 go in the same way. �

The second useful lemma is the following, divided in two cases according to

the values of p and l, the latter as de�ned in Section 3.4.1 (see (3.4.2)) in terms

of p and k.

Lemma 5.3.5. Let z ∈ H2
C. Then we have

1. If p > 6, then

|z1|, |w1| < 1,

2. If l ≥ 0, then

|z2|, |w2| ≤ 1.

Proof. Obviously if the square of the modulus of a coordinate is smaller than 1,

so is the modulus of the coordinate itself. We then just need to prove that the

square of such moduli are smaller than 1. By the previous Lemma 5.3.4, we have

|z1|2, |w1|2 ≤
sinφ+ sin(θ − φ)

sin(θ + φ)
.

For the �rst part, we then just need to show that

sinφ+ sin(θ − φ)

sin(θ + φ)
< 1.

But we have

sinφ+ sin(θ − φ)

sin(θ + φ)
=

sinφ− 2 sinφ cos θ

sin(θ + φ)
+ 1 = 1− sinφ

sin(θ + φ)
(2 cos θ − 1) < 1,

where the last inequality comes from the fact that sinφ
sin(θ+φ)(2 cos θ− 1) is positive

when 0 < θ < π
3 . Since θ = 2π

p , this is the case when p > 6, as required.
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For the second inequality, by the same Lemma 5.3.4, we just need to prove

that
sinφ

sin(θ + φ)
≤ 1.

But this is true as long as sinφ ≤ sin(θ+φ). Moreover, this condition is equivalent

to the statement

θ + φ ≤ π − φ⇐⇒ 0 ≤ π − 2φ− θ ⇐⇒ 0 ≤ 2π

2
− 2π

k
− 2π

p
⇐⇒, 0 ≤ l

where the second equivalence comes from the fact that θ = 2π
p , φ = π

k and

1
l = 1

2−
1
p−

1
k . This implies that the condition in the second inequality corresponds

to l ≥ 0 and hence we are done. �

5.3.3.2 Ridges

In this section we will present the dimension 2 facets of our polyhedron, i.e.

the ridges. We will divide the ridges in two types. The �rst type of ridge is

obtained by intersecting two bisectors containing either the vertex z1 or z2 in

their intersection. We will get from these intersections some pentagonal ridges

and some triangular ones. The former will be contained in Lagrangian planes,

while the latter are contained in complex lines.

The second type of ridge comes from the intersections of bisectors de�ned by

one condition on the z-coordinates and one on the w-coordinates. We will again

get some triangular ridges, contained in complex lines, but this time we will also

get hexagonal ridges, contained in Giraud discs.

We will name the ridges according to the following convention. The ridge

named F (T, S), for T, S ∈ {P, P−1, J, J−1, R1, R
−1
1 , R2, R

−1
2 }, will be the ridge

contained in the intersection of the bisector B(T ) and B(S).

The following table summarizes the ridges of the �rst type. In the �rst group

there are ridges in the intersection of two bisectors, both containing the vertex

z1 (in other words, bisectors de�ned by conditions on the z-coordinates). In the

second group are ridges contained in two bisectors de�ned by conditions on the

w-coordinates. The last column says if the ridge is contained in a complex line,

marked with S as it is a common slice of the two bisector, or in a Lagrangian

plane, marked with M because it is a common meridian of the two bisectors.
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Ridge Vertices in the ridge Coordinates

F (P, J) z1, z9, z12 z1 = 0 S

F (R1, R
−1
1 ) z1, z3, z6 z2 = 0 S

F (P,R1) z1, z3, z4, z9, z10 Im(z1) = Im(z2) = 0 M

F (P,R−1
1 ) z1, z3, z5, z12, z13 Im(z1) = Im(e−iθz2) = 0 M

F (J,R1) z1, z6, z7, z9, z11 Im(eiφz1) = Im(z2) = 0 M

F (J,R−1
1 ) z1, z6, z8, z12, z14 Im(eiφz1) = Im(e−iθz2) = 0 M

F (P−1, J−1) z2, z8, z14 w1 = 0 S

F (R2, R
−1
2 ) z2, z4, z10 w2 = 0 S

F (P−1, R2) z2, z4, z5, z13, z14 Im(w1) = Im(w2) = 0 M

F (P−1, R−1
2 ) z2, z3, z4, z6, z8 Im(w1) = Im(e−iθw2) = 0 M

F (J−1, R2) z2, z9, z10, z12, z14 Im(e−iφw1) = Im(w2) = 0 M

F (J−1, R−1
2 ) z2, z7, z8, z10, z11 Im(e−iφw1) = Im(e−iθz2) = 0 M

The second type of ridges are the ones not containing the vertices z1 or z2

and they are listed in the following table. In this case the ridges are contained

either in a Giraud disc or in a complex line. The last column of the table will

hence have a G in the �rst case and, as before, an S in the latter.

Ridge Vertices in the ridge Coordinates

F (P,R2) z4, z5, z9, z10, z12, z13 Im(z1) = Im(w2) = 0 G

F (J, J−1) z7, z8, z9, z11, z12, z14 Im(eiφz1) = Im(e−iφw1) = 0 G

F (R1, R
−1
2 ) z3, z4, z6, z7, z10, z11 Im(z2) = Im(e−iθw2) = 0 G

F (R−1
1 , P−1) z3, z5, z6, z8, z13, z14 Im(e−iθz2) = Im(w1) = 0 G

F (P, P−1) z3, z4, z5 Im(z1) = Im(w1) = 0 S

F (J,R−1
2 ) z6, z7, z8 Im(eiφz1) = Im(e−iθw2) = 0 S

F (R1, J
−1) z9, z10, z11 Im(z2) = Im(e−iφw1) = 0 S

F (R−1
1 , R2) z12, z13, z14 Im(e−iθz2) = Im(w2) = 0 S

From now on the ridges contained in a common slice will be called S-ridges,

the ones contained in a meridian will be the M-ridges and the ones contained in

a Giraud disc will be the G-ridges.
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5.3.3.3 Edges

So far we discussed most facets of the polyhedron: the vertices, the ridges,

the sides. In this section we will present the last missing ones, the 1-dimensional

facets of D, called edges. Remember that the edge between two vertices zi and

zj will be denoted by γi,j = γj,i. The edges of the polyhedron D arise as 1-

dimensional intersection of three or more sides. In the following table we will list

them, pointing out in which ridges they are contained.

Edge S-ridge M-ridge M-ridge G-ridge G-ridge

γ1,3 F (R1, R
−1
1 ) F (P,R1) F (P,R−1

1 )

γ1,6 F (R1, R
−1
1 ) F (J,R1) F (J,R−1

1 )

γ1,9 F (P, J) F (P,R1) F (J,R1)

γ1,12 F (P, J) F (P,R−1
1 ) F (J,R−1

1 )

γ2,4 F (R2, R
−1
2 ) F (P−1, R−1

2 ) F (P−1, R2)

γ2,8 F (P−1, J−1) F (P−1, R−1
2 ) F (J−1, R−1

2 )

γ2,10 F (R2, R
−1
2 ) F (J−1, R2) F (J−1, R−1

2 )

γ2,14 F (P−1, J−1) F (P−1, R2) F (J−1, R2)

γ5,13 F (P,R−1
1 ) F (P−1, R2) F (P,R2) F (R−1

1 , P−1)

γ7,11 F (J,R1) F (J−1, R−1
2 ) F (J, J−1) F (R1, R

−1
2 )

γ9,10 F (R1, J
−1) F (P,R1) F (J−1, R2) F (P,R2)

γ3,4 F (P, P−1) F (P,R1) F (P−1, R−1
2 ) F (R1, R

−1
2 )

γ6,8 F (J,R−1
2 ) F (J,R−1

1 F (P−1, R2) F (R−1
1 , P−1)

γ12,14 F (R−1
1 , R2) F (J,R−1

1 ) F (J−1, R2) F (J, J−1)

γ4,10 F (R2, R
−1
2 ) F (P,R1) F (P,R2) F (R1, R

−1
2 )

γ8,14 F (P−1, J−1) F (J,R−1
1 ) F (J, J−1) F (R−1

1 , P−1)

γ9,12 F (P, J) F (J−1, R2) F (P,R2) F (J, J−1)

γ3,6 F (R1, R
−1
1 ) F (P−1, R−1

2 ) F (R1, R
−1
2 ) F (R−1

1 , P−1)

γ13,14 F (R−1
1 , R2) F (P−1, R2) F (R−1

1 , P−1)

γ12,13 F (R−1
1 , R2) F (P,R−1

1 ) F (P,R2)

γ10,11 F (R1, J
−1) F (J−1, R−1

2 ) F (R1, R
−1
2 )

γ9,11 F (R1, J
−1) F (J,R1) F (J, J−1)

γ7,8 F (J,R−1
2 ) F (J−1, R−1

2 ) F (J, J−1)
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γ6,7 F (J,R−1
2 ) F (J,R1) F (R1, R

−1
2 )

γ4,5 F (P, P−1) F (P−1, R2) F (P,R2)

γ3,5 F (P, P−1) F (P,R−1
1 ) F (R−1

1 , P−1)

The edges satisfy the following proposition:

Proposition 5.3.6. Each edge γi,j of the polyhedron is a geodesic segment joining

the two vertices zi and zj.

Proof. We claim that each edge is contained in the common intersection of at least

two totally geodesic subspaces of two bisectors. This implies that such edge is a

geodesic arc. Remember, from Section 2.3, that slices and meridians are totally

geodesic subspaces of bisectors.

To prove the claim, let us consider for each edge the ridges it is contained

in, as in the previous table. Just looking at the list we can easily remark the

following information:

• Each edge containing either z1 or z2 is contained in two M-ridges and one

S-ridge;

• Two edges, namely γ7,11 and γ5,13, are contained in two M-ridges and two

G-ridges;

• All other edges are contained in an S-ridge, an M-ridge and a G-ridge; some

of them are contained also in one more ridge, that is either an M-ridge or a

G-ridge.

�

Remark 5.3.7. For the edges containing either z1 or z2 we have additional infor-

mation. Each of these edges is contained in two M-ridges of the same bisector.

This implies that such edges are in the spine of the bisectors.
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5.3.3.4 Other bisector intersections

We will now analyse all the other intersections between pairs of bisectors,

following Section 4.4. We will �rst analyse certain bisector intersections which

are made of the union of two edges of the polyhedron.

In all of the cases there will be three vertices inside the intersection and we

will prove that the intersection actually consist in each case of the union of the

only two edges connecting two of these points to a central one. We remark that

we are always considering the parts of the intersection that are inside or on the

boundary of our polyhedron.

Proposition 5.3.8. The following bisector intersections consist of the union of

two edges:

B(P ) ∩B(J−1) = γ10,9 ∪ γ9,12, B(J−1) ∩B(R−1
1 ) = γ8,14 ∪ γ14,12,

B(P ) ∩B(R−1
2 ) = γ3,4 ∪ γ4,10, B(J) ∩B(R2) = γ9,12 ∪ γ12,14,

B(R1) ∩B(R2) = γ4,10 ∪ γ10,9, B(J) ∩B(P−1) = γ6,8 ∪ γ8,14,

B(R1) ∩B(P−1) = γ4,3 ∪ γ3,6, B(R−1
1 ) ∩B(R−1

2 ) = γ3,6 ∪ γ6,8.

In some of the ridges contained in a complex line the intersection actually

consists of the union of a triangle, which is the ridge itself, and an extra edge

connected to one of the vertices of the ridge and not belonging to it. We will

now see this for the remaining intersections. The proposition will state that if we

have a point in the bisector intersection, but not belonging to the complex line

containing the ridge, then it is on an edge with one vertex on the ridge and one

outside.

Proposition 5.3.9. The bisectors satisfy:

• A point z in the bisectors intersection B(P ) ∩ B(P−1), with coordinates

satisfying z1 6= sinφ+sin(θ−φ)
sin(θ+φ) and w1 6= sinφ+sin(θ−φ)

sin(θ+φ) , belongs to the edge

γ5,13.

• A point z in the bisectors intersection B(J) ∩ B(R−1
2 ), with coordinates

satisfying z1 6= e−iφ sin θ
sin(θ+φ) and w2 6= eiθ sinφ

sin(θ+φ) , belongs to the edge γ7,11.
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• A point z in the bisectors intersection B(R2) ∩ B(R−1
1 ), with coordinates

satisfying z2 6= eiθ sinφ
sin(θ+φ) and w2 6= sinφ

sin(θ+φ) , belongs to the edge γ5,13.

• A point z in the bisectors intersection B(R1) ∩ B(J−1), with coordinates

satisfying z2 6= sinφ
sin(θ+φ) and w1 6= eiφ sin θ

sin(θ+φ) , belongs to the edge γ7,11.

In the proof of this proposition, we use Lemma 5.3.5. In Section 5.7.1 it will

be clear why only for the values in the lemma that precise analysis of bisectors

intersection makes sense, due to the collapsing of some ridges.

5.4 Main theorem

We are now ready to show that the polyhedron D constructed is a fundamen-

tal domain for Γ. We will use the Poincaré polyhedron theorem to prove that

Γ = 〈R1, R2, A1〉 is discrete, give a presentation for it and prove that D is a

fundamental domain. More precisely, we will prove the following:

Theorem 5.4.1. Let Γ be the subgroup of PU(H) characterised by p and k as

explained in Section 3.4.1 and such that the two parameters have any of the values

in Table 3.1. Then the polyhedron D of the previous section is a fundamental

domain for Γ, up to making some vertices collapse according to the following rule:

Value of p Value of k Fundamental polyhedron

0 < p ≤ 6

(d < 0)

k ≤ 2p
p−2

(l < 0)

(large phase

shift)

The polyhedron D constructed in Sec-

tion 5.3 with triples of vertices z3, z4, z5;

z6, z7, z8; z9, z10, z11 and z12, z13, z14 each

collapsed to a single vertex is a funda-

mental domain. This is the same as the

polyhedron constructed in [BP15].
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0 < p ≤ 6

(d < 0)

k > 2p
p−2

(l > 0)

(small phase

shift)

The polyhedron D constructed in Section

5.3 with triples of vertices z3, z4, z5 each

collapsed to a single vertex is a funda-

mental domain. This is the same poly-

hedron obtained in [DFP05], as we will

explain in Section 5.7.2

p > 6

(d > 0)

k ≤ 2p
p−2

(l < 0)

(large phase

shift)

The polyhedron D constructed in Sec-

tion 5.3 with triples of vertices z6, z7, z8;

z9, z10, z11 and z12, z13, z14 each collapsed

to a single vertex is a fundamental do-

main. This is the same as the polyhedron

constructed in [Par06].

p > 6

(d > 0)

k > 2p
p−2

(l > 0)

(small phase

shift)

The polyhedron D constructed in Section

5.3 is a fundamental domain.

The table in the theorem is strictly related to Table 3.1. The �rst three groups,

in fact, correspond exactly to the values of the Deligne-Mostow lattices of �rst,

second and third (Livné lattices) type presented in the table. Lattices of the

fourth and �fth type are in the fourth line of the table in the theorem.

Remark 5.4.2. The condition k Q 2p
p−2 is equivalent to saying that the phase shift

parameter, as described in Section 3.4.1, is smaller or greater than 1
2 −

1
p .

We also remark that the equality cases have to be treated a bit more carefully.

For p = 6 the vertex obtained collapsing z3, z4, z5 is on the boundary of the com-

plex hyperbolic space. These values are discussed in [BP15] and can be included

in the case of the lower values. The same discussion is true for the critical value

of k and the �rst group is the only case where such an equality actually holds.

To prove Theorem 5.4.1 we will use the Poincaré polyhedron theorem. Its

power lies not only in the fact that it allows to prove that D is a fundamental
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domain for Γ, but because it also gives a presentation for the group.

Theorem 5.4.3. Suppose (p, k) is one of the pairs in Table 3.1. Then the group

Γ generated by the side pairing maps of D, i.e. P , J , R1, R2 as described, has

presentation

Γ =

〈
J, P,R1, R2 :

J3 = P 3d = Rp1 = Rp2 = (P−1J)k = (R2R1J)l = I,

R2 = PR1P
−1 = JR1J

−1, P = R1R2

〉
,

with each relation in the �rst line holding only when the order of the map is positive

and �nite.

A proof of this theorem comes out automatically while using the Poincaré

polyhedron theorem to prove Theorem 5.4.1 and is given in Section 5.5.2.

5.5 Proof of Theorem 5.4.1

In this section we will prove that all the hypothesis of the Poincaré polyhedron

theorem hold and explain how to use it to prove Theorem 5.4.1.

5.5.1 Side pairing maps

Let us consider the maps J, P,R1 and R2. These maps pair the eight sides

of the polyhedron, as shown in Figure 5.6. In this section we want to show that

these side pairing maps satisfy the conditions (S.1)�(S.6).

Conditions (S.1), (S.2), (S.5) follow clearly from our construction of the sides.

Also, (S.6) is an empty condition, because each pair of sides of our polyhedron

intersects. The following proposition shows that conditions (S.3) and (S.4) are

veri�ed by the sides of D.

Proposition 5.5.1. Let T be one of J±1, P±1, R±1
1 and R±1

2 . Then T−1(D)∩D =

∅. Moreover, T−1(D) ∩D = S(T ).

Proof. Let us take a side S(T ). By de�nition it is contained in a bisector B(T ).

By Lemma 5.3.2, there exist two vertices zi and zj such that B(T ) is the set of

points equidistant from zi and T−1(zj). By applying T we get that T (B(T )) is

B(T−1), which is the bisector equidistant from T (zi) and zj . By Remark 5.3.3,
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Figure 5.6: The sides of the polyhedron with the corresponding side

pairing maps.

the points of the polyhedron are closer to zi than to T−1(zj), while the ones of

T (D) are closer to T (zi) than to zj . This implies that T−1(D) ∩D = ∅.

If we now also consider the boundary of the polyhedron and we pass to
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T−1(D) ∩ D = S(T ), we are considering the equality cases in Lemma 5.3.2.

But the lemma itself guarantees that the intersections, which corresponds to the

equality cases of the lemma, are always contained in B(T ). Since by de�nition

S(T ) = D ∩B(T ), we are done. �

5.5.2 Cycle relations

It remains now to show that the ridges of the polyhedron D satisfy conditions

(F.1)�(F.3). This will be done in this and next section. The �rst condition is

straightforward in this case. In fact it is easy to see that the edges in a ridge

intersect so that they bound a polygon, giving hence a ridge homeomorphic to

a ball. In the following table we summarise the cycle relations coming from

Properties (F.2) and (F.3). Proving them is a simple calculation of the action of

the transformations on the bisectors.

Ridges in the cycle Transform. ` m

F (P, J), F (P−1, J−1) P−1J 1 k

F (R1, R
−1
1 ) R1 1 p

F (R2, R
−1
2 ) R2 1 p

F (P,R1), F (P,R−1
1 ), F (P−1, R2), F (P−1, R−1

2 ) R−1
1 P−1R2P 1 1

F (J,R1), F (J,R−1
1 ), F (J−1, R2), F (J−1, R−1

2 ) R−1
1 J−1R2J 1 1

F (P,R2), F (R1, R
−1
2 ), F (R−1

1 , P−1) R2P
−1R1 1 1

F (J,R−1
2 ), F (R1, J

−1), F (R−1
1 , R2) R2R1J 1 l

F (J, J−1) J 3 1

F (P, P−1) P 3 d

This table gives immediately a proof the presentation as given in Theorem 5.4.3,

as they correspond to the cycle relations in the Poincaré polyhedron theorem

and the re�ection relations are empty. The second part of property (F.3) will be

proved in the next section.
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5.5.3 Tessellation around the ridges

We now want to prove that the images of the polyhedron under the side paring

maps tessellate around neighbourhoods of the interior of the ridges. This is proved

in di�erent ways, depending on whether the ridges described in Section 5.3.3.2

are contained in a Giraud disc, in a Lagrangian plane or in a complex line.

Tessellation around ridges contained in a Giraud disc.

The easiest case to treat is the tessellation around the ridges contained in

Giraud discs, which are F (J, J−1), F (R1, R
−1
2 ), F (P,R2) and F (P−1, R−1

1 ). The

main tool for this is Lemma 5.3.2.

Proposition 5.5.2. We have the following:

• The polyhedron D and its images under the maps J and J−1 tessellate

around the ridge F (J, J−1).

• The polyhedron D and its images under the maps R−1
1 and R2 tessellate

around the ridge F (R1, R
−1
2 ).

• Moreover, the polyhedron D and its images under the maps R−1
2 and P−1

tessellate around the ridge F (P,R2).

• Finally, the polyhedron D and its images under the maps R1 and P tessellate

around the ridge F (P−1, R−1
1 ).

Proof. The proof consists in dividing the space into points that are closer to one of

L∗0, J(L∗0) or J−1(L∗0) and showing that D and its images under J are contained

each in a di�erent one of these domains and coincide with them around the ridge

F (J, J−1).

More formally, by Lemma 5.3.2 we know that D is contained in the part of

space closer to L∗0 than to its images under J and J−1. We can hence write

D ⊂ {z ∈ H2
C : |〈z,n∗0〉| < |〈z, J(n∗0)〉|, |〈z,n∗0〉| < |〈z, J−1(n∗0)〉|}. (5.5.1)

For a point z ∈ J±1(D), we also have J∓1(z) ∈ D. Applying the conditions in

(5.5.1) to J∓(z), we get

|〈J∓1(z),n∗0〉| < |〈J∓1(z), J(n∗0)〉|, |〈J∓1(z),n∗0〉| < |〈J∓1(z), J−1(n∗0)〉|.
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By applying J±1 to all terms of (5.5.1), we obtain

J±1(D) ⊂ {z ∈ H2
C : |〈z, J±1(n∗0)〉| < |〈z,n∗0〉|, |〈z, J±1(n∗0)〉| < |〈z, J∓1n∗0〉|}.

Clearly, we used the fact that J has order 3, so J2 = J−1. It is obvious that

D,J(D) and J−1(D) are disjoint.

The ridge we are considering is characterized by Im(eiφz1) = Im(e−iφw1) = 0.

We take a neighbourhood of the interior small enough, so that it does not meet

the other sides of D. Then a point of U is in D if and only if it is closer to L∗0

than to its images. This is because if we consider the z1 and w1 coordinates small

enough, D actually coincides with the set described in (5.5.1) and same for the

images. From this, it is easy to see that D, J(D) and J−1(D) tessellate around

U .

The cycle transformation is

F (J, J−1)
J−→ F (J, J−1).

The other points of the proof are done in the same way, by taking the di�erent

images mentioned in the statement and using the same proof strategy. �

Tessellation around ridges contained in Lagrangian planes.

The second type are the ridges F (P,R1), F (P,R−1
1 ), F (J,R1) and F (J,R−1

1 ),

contained in Lagrangian planes.

They contain either vertex z1 or z2 and they are de�ned by conditions only

on the z-coordinates or on the w-coordinates. It is enough to show that the

polyhedron and its images under the side pairing maps tessellate around the

ridges containing the vertex z1. By applying ι we will have the same for ridges

containing z2.

Proposition 5.5.3. The polyhedron D and its images under R−1
1 , P−1 and R−1

1 P−1

tessellate around the ridge F (P,R1).

Proof. Considering that w = P−1(z) and that applying R1 means to add θ to the

argument of z2, we can prove the signs in the following table.
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Image of D Im(z1) Im(eiφz1) Im(z2) Im(e−iθz2)

D - + + -

R−1
1 (D) - + - -

P−1(D) + + + -

R−1
1 P−1(D) + + - -

We can see from the table that each pair of images have some coordinates

whose imaginary part has di�erent sign. This clearly implies that they are disjoint.

Now, the ridge F (P,R1) is characterised by Im(z1) = Im(z2) = 0. Let us now

consider a neighbourhood U of the ridge and a point z ∈ U . If z has argument

of z1 smaller than 0, then D and R−1
1 cover U , in the respective cases when the

argument of z2 and positive or negative. Similarly, when z has �rst coordinate of

argument bigger than 0, then P−1(D) and R−1
1 P−1(D) cover U , when arg(z2) is

positive or negative respectively.

The corresponding cycle transformation is

F (P,R1)
P−→ F (P−1, R2)

R2−−→ F (P−1, R−1
2 )

P−1

−−−→ F (P,R−1
1 )

R−1
1−−→ F (P,R1).

�

By applying R1, PR1 and P = R−1
2 PR1 we get similar results for the other

ridges in the cycle, namely F (P,R−1
1 ), F (P−1, R−1

2 ) and F (P−1, R2) respectively.

In a similar way, we can also prove

Proposition 5.5.4. The polyhedron D and its images under R−1
1 , J−1 = A−1

1 P−1

and R−1
1 A−1

1 P−1 tessellate around the ridge F (J,R1).

Again, by applying the maps in the cycle transformation, which is

F (J,R1)
J−→ F (J−1, R2)

R2−−→ F (J−1, R−1
2 )

J−1

−−→ F (J,R−1
1 )

R−1
1−−→ F (J,R1),

we can get that the tessellation property (F.3) holds also for the ridges F (J−1, R2),

F (J−1, R−1
2 ) and F (J,R−1

1 ).

Tessellation around ridges contained in complex lines.

In this section we will show that the images of D tessellate around the ridges

contained in complex lines. We will divide them in two parts for which we will
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use slightly di�erent methods.

We will start with the ridges contained in complex lines and de�ned by con-

ditions either on the z-coordinates or on the w-coordinates. These are ridges

F (P, J), F (R1, R
−1
1 ), F (P−1, J−1) and F (R2, R

−1
2 ). From the �rst two, the oth-

ers follow by applying ι. The proofs, which we will omit as they are similar to

the ones in [Par06], strongly rely on the fact that p and k are integers. In some of

the cases that we are considering, though, k is of the form p/2, with p odd. The

proof can be adapted, as we will explain in Section 5.6.

Proposition 5.5.5. The polyhedron D and its images under P−1, A1 and A1P
−1

tessellate around the ridge F (P, J). Moreover, the polyhedron D and its images

under R1 tessellate around the ridge F (R1, R
−1
1 ).

By applying ι we have equivalent results around F (P−1, J−1) and F (R2, R
−1
2 ).

Moreover, in exactly the same way as in [Par06] we can prove that D and

appropriate images tessellate around F (P, P−1). The proof is done by showing

that in some coordinates P 3 rotates n∗0 by eiψ, with ψ = 2π
d and d = 2p

p−6 , as

in (3.4.2). At the same time, P 3 �xes the ridge itself. Then the polyhedron

and its images under P and P−1 will be contained in di�erent sectors for the

arguments of at least one of the new coordinates and they will cover a sector of

length ψ. Applying P 3 this sector will cover a whole neighbourhood of the ridge

by rationality of ψ, since d is always an integer.

The corresponding cycle transformation is

F (P, P−1)
P−→ F (P, P−1).

Finally, we have the last set of ridges.

Proposition 5.5.6. The polyhedron D and its images under J , JR2, R1R2J and

their compositions tessellate around the ridge F (R1, J
−1).

Proof. The proof works similarly to those for ridges F (P, J) and F (P, P−1). We

can in fact change coordinates as in the latter case, so to have an analogous

situation to the one in the former. In this case though, we will de�ne ψ = 2π
l , for

l de�ned in (3.4.2).
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First of all, we recall that F (J−1, R1) is contained in L∗3. Furthermore, the

map JR2R1 rotates the normal vector n∗3 by −ψ and it �xes pointwise the ridge.

We then change basis to new coordinates, so that the �rst coordinate is along the

normal vector to the complex line (up to a minus sign, which will be useful in the

calculations) and the other two are along two vectors spanning the complex line

once we pass to projective coordinates.

The vector in the new basis will hence be
z1

z2

1

 =
sinφ− sin(θ + φ)z2

sin(θ + φ)− sinφ


0

−1

−1

+z1


1

0

0

+
1− z2

sin(θ + φ)− sinφ


0

sinφ

sin(θ + φ)

 .

We de�ne then the ξ-coordinates to be

ξ1 =
sinφ− sin(θ + φ)z2

1− z2
,

ξ2 =
z1(sin(θ + φ)− sinφ)

1− z2
. (5.5.2)

F(R1
-1,R2)

B(R
2)

B(R
1 -1)

D

R2

R
2(B(R

1 -1))
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R
2(D)

D

F(J,R2
-1)

J

J(R
2(B(R

1 -1)))

J(R
2(D))

D

J(B(R
2 -1))

J(D)
B(J)

B(J -1)

F(R1,J
-1)

B(R
1)

Figure 5.7: The tessellation around F (R1, J
−1).

Let us now look at Figure 5.7. By de�nition the ridge F (R1, J
−1) is contained

in the intersection of B(R1) and B(J−1). It is clear that on B(R1), since z2 is

real, also ξ1 will be real.

If we take the ridge F (R−1
1 , R2), we know that the polyhedron D is as in the

�rst image of Figure 5.7. By de�nition of the bisectors, R2(B(R2)) = B(R−1
2 ).

Also, R2 sends F (R−1
1 , R2) to F (J,R−1

2 ) (see cycle relation below). Then we can

apply the map to the �rst image and get the second con�guration, since F (J,R−1
2 )
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is in B(J) and B(R−1
2 ) by de�nition but also in R2(B(R−1

1 )) by construction. We

can do the same thing applying J and we get the third con�guration in the �gure.

We now want to prove that in the argument of the coordinate ξ1, D, J(D)

and JR2(D) make a sector of length ψ. Once we prove this, we can apply an

argument as in 5.5.5 and apply R1. But this gives us the map R1R2J which acts

on the ξ coordinates (ξ1, ξ2) by sending to (e−iψξ1, ξ2), and hence it carries the

con�guration all around the ridge and tessellates the space because of rationality

of ψ, which comes from the fact that l is always an integer.

To prove that the length of the sector is ψ, we will prove that the argument

of the ξ1 coordinate of a point on JR2(B(R−1
1 )) is −ψ. This is just a calculation,

as it turns out that

JR2z = JR2


z1

z2

1

 = J


− sin θe−iφz1 + (sinφ+ sin(θ − φ))(1− z2)

sinφ(1− z1 − e−iθz2)

− sin(θ + φ)(z1 + z2) + sinφ+ sin θeiφ



=


2z1 sin2 φ(1− cos θ)

2z2 sin2 φeiφ(cos(θ + φ)− cosφ) + sin2 φ(1− eiθ)(e2iφ − 1)

z2(1− e−iθ) sinφ sin(θ + φ)(e2iφ − 1) + sin2 φ(1− e−iθ)(1− ei(2φ+θ))

 .

Then we can calculate its ξ1 coordinate and we have

ξ1 =
−ei(θ+2φ) sin2 φ(2(1− cos θ)(sinφ− e−iθz2 sin(θ + φ)))

−2 sin2 φ(1− cos θ)e−iθz2 + 2 sin2 φ(1− cos θ)
=

= e−iψ
sinφ− sin(θ + φ)e−iθz2

1− e−iθz2
(5.5.3)

If a point z is in B(R−1
1 ), then its z2 coordinate is z2 = eiθu and hence the

previous expression is

ξ1 = e−iψ
sinφ− sin(θ + φ)u

1− u
.

Clearly, the argument of the new coordinate is −ψ.

The last thing we need to show is that the three images are disjoint. We

already saw that D is disjoint from J(D) and R2(D) in 5.5.2 and in the equivalent

statement of 5.5.5 for R2, respectively. But then also J(D) and JR2(D) are

disjoint because J is an isometry. To prove the disjointness of D and JR2(D), we

101



look at the expression for the ξ1 coordinate of a point in D, as in (5.5.2), and of

a point in JR2(D), as in (5.5.3).

To show disjointness, we will show that D and JR2(D) are contained in the

sector where the argument of ξ1 is respectively bigger and smaller than −ψ
2 . To

do that we just need to show that B(J−1) and J(B(R−1
2 )) = JR2(B(R2)) are as

said.

Since both these bisectors are de�ned by equations on the w-coordinates, it is

useful to rewrite the two equations in terms of these, using Formulae (5.2.3) and

(5.2.4). They will be as following. If z ∈ D, then

ξ1 = 2 sin
θ

2
sinφe−i

ψ
2

sin θ − sin(θ + φ)e−iφw1

− sin θe−iφw1 + (sinφ− sin(θ + φ))w2 + sinφ+ sin(θ − φ)
,

with w1 and w2 coordinates of z. We will consider points in B(J−1), so w1 = eiφu,

with u real and we want to show that Im(e−i
ψ
2 ξ1) > 0.

Taking the imaginary part of the expression above, this means requiring that

(sin θ − sin(θ + φ)u)(sin(θ + φ)− sinφ) Im(w2) > 0.

The third term is positive for points in D, while the second one is positive as long

as l is positive, which is the case where the ridge we are tessellating around does

not collapse. The last thing we need is then to prove that in B(J−1) the modulus

of w2 remains smaller than sin θ
sin(θ+φ) . But looking at the structure of the side, as

in Figure 5.6, we can see that the side is bounded by the complex lines L03 and

L∗3, so the modulus of w2 is between 0 and sin θ
sin(θ+φ) (see Lemma 4.4.2).

On the other hand, if z is in JR2(B(R2)), its coordinate will be

ξ1 = 2 sin
θ

2
sinφe−i

ψ
2

sinφ− sin(θ + φ)w2

(sinφ− sin(θ + φ))e−iφw1 − sin θw2 + sin θ
,

with w1 and w2 coordinates of a point in D. As they vary through the possible

values, z varies in JR2(B(D)). Here we consider points in JR2(B(R2)), so where

w2 = x, with x real and we want to show this time that Im(e−i
ψ
2 ξ1) < 0.

We now take the imaginary part of the expression for ξ1 and we obtain that

such a condition is equivalent to requiring that

(sinφ− sin(θ + φ)x)(sin(θ + φ)− sinφ) Im(e−iφw1) < 0.
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As before, this reduces to show that the �rst term is positive and this is true

because of the structure of B(R2), which is contained between L12 and L∗2. This

concludes the proof.

The corresponding cycle transformation is

F (R1, J
−1)

R1−−→ F (R−1
1 , R2)

R2−−→ F (J,R−1
2 )

J−→ F (R1, J
−1).

�

By applying the isometries that compose the cycle transformation, we obtain

the tessellation around the last ridges, F (R−1
1 , R2), F (J,R−1

2 ) and F (R1, J
−1).

5.6 Polyhedra with extra symmetry

In this section we will describe the particular case when either l or k is equal

p
2 . Considering k or l is equivalent, since swapping them corresponds to swapping

µ1 and µ5 in the ball quintuple, which geometrically corresponds to choosing

whether to have v∗ or v0 in the origin of the coordinates and will hence give

us the same construction. In this case the polyhedron has an extra symmetry,

because by de�nition the condition implies that φ = θ. The pairs (p, k) in our list

and satisfying this condition, are (5, 5/2), (6, 3), (7, 7/2), (8, 4), (9, 9/2), (10, 5),

(12, 4) and (18, 3). By Theorem 6.2 in [Sau90] (see Corollary 3.5.2), the lattice

(p, p2) is isomorphic to the one of the form (p, 2) (see Chapter 7 for more details

on the commensurability classes).

This includes the cases when k is not an integer, which have not been treated

previously because previous proofs for tessellation rely on the fact that k was

always an integer. When tessellating a neighbourhood of F (P, J), in fact, D and

P−1(D) are contained in sectors where the argument of z1 is between 0 and φ

and between φ and 2φ respectively. Then, one can apply A1 to the polyhedra and

translate of 2φ the sector. In order to cover exactly all the possible values of the

argument of z1 one then needs k to be an integer.

To avoid this problem, one can use a slightly di�erent version of the same

theorem, namely the Poincaré polyhedron theorem for coset decompositions. The

statement is given in the second half of Section 2.4 and can be found in [Mos80]
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and in [DPP16]. The basic di�erence is the presence of a �nite group Υ < IsH2
C

preserving the polyhedron and compatible with the side pairing maps.

Then one just needs tessellation around one facet in each orbit of the action

of Υ and the cosets of the polyhedron will tessellate the space. This also gives

a di�erent presentation for the group generated by Υ and the side pairings, with

the additional relations given by a presentation of Υ and by the compatibility

relations. Here the group Υ will be a �nite cyclic group of order 4 and the

polyhedron will hence contain 4 copies of the fundamental domain.

The main di�erence is that we do not need then a butter�y move A1, because

we can introduce a move that swaps points v0 and v1 (which now have same cone

angle). The new move, squared, is the same as A1 we used so far. This solves the

problem because the new move acts on the z1 coordinate by rotating by φ instead

of 2φ as before, so we just need 2k to be an integer.

From now on, we will assume we are in the case where k = p
2 , hence φ = θ =

2π
p . Clearly, the calculations to �nd vertices, area and moves could be simpli�ed

by adding the relation φ = θ in the equations, but for simplicity we will leave

them as they are. We will have the moves R1 and R2 de�ned as before, but we

will also have an extra move corresponding to swapping the vertices v0 and v1,

as we already mentioned. This new move, that we will call S1, can be found by

requiring that the images under S1 of the vi's, which we denote by v′i, satisfy the

equations v′3 = v3, v
′
2 = v2, v

′
1 = v0 and v′0 = v−1. The move is illustrated in

Figure 5.8.

Solving the equations or looking at the geometric meaning of the move, one

can deduce the matrix of S1. The three moves will hence be

R1 =


1 0 0

0 eiθ 0

0 0 1

 , R2 =
1

1− e−iθ


−e−iθ −1 1

−1 −e−iθ 1

−2 cos θ −2 cos θ 1 + eiθ


and

S1 =


eiθ 0 0

0 1 0

0 0 1

 .
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0=v*=v'*
v'3=v3

v'2=v2

v'1=v0

v'0=v-1

v'-2=v-2

v'-3=v-3

v'-1

Figure 5.8: The move S1.

Remark 5.6.1. We remark that S1 commutes with R1 and satis�es the braid

relation with R2.

By looking at the coordinates of the vertices of the polyhedron and keeping

in mind that φ = θ, it is easy to see that the action of S1 on the vertices is the

following:

S1 : z1 → z1, S1 : z6 → z3, S1 : z7 → z4, S1 : z8 → z5,

S1 : z9 → z9, S1 : z11 → z10, S1 : z12 → z12, S1 : z14 → z13.

In other words, this means that S1 : B(J)→ B(P ).

It is then natural to use S1 as a side pairing map and to �nd another map

which will map B(J−1) and B(P−1) to each other. With P = R1R2 as before, we

can de�ne S2 = PS1P
−1, which will act on the w-coordinates in the same way

as S1 does on the z-coordinates. In this sense they have an analogous relation

to the one between R1 and R2. By inspection on the table of coordinates of the

vertices, one can see that the action of S2 is

S2 : z2 → z2, S2 : z3 → z11, S2 : z4 → z10, S2 : z5 → z9,

S2 : z6 → z7, S2 : z8 → z8, S2 : z13 → z12, S2 : z14 → z14.

This means that S2 sends B(P−1) to B(J−1) as required.
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The new side pairing maps will then be

R1 : B(R1)→ B(R−1
1 ), R2 : B(R2)→ B(R−1

2 ),

S1 : B(J)→ B(P ), S2 : B(P−1)→ B(J−1).

In order to apply the Poincaré polyhedron theorem for cosets, we now need a

group Υ that leaves the polyhedron invariant and is compatible with the action

of the side pairing maps. Let us then de�ne K = R1R2S1. This is similar to the

de�nition of J , but using S1 instead of A1. Multiplying the matrices gives

K =
1

1− e−iθ


−1 −1 1

−e2iθ −1 eiθ

−2 cos θeiθ −2 cos θ 1 + eiθ

 .
Remark 5.6.2. One can see that projectivelyK has order 4. In fact, eiθK has both

determinant and trace equal 1. The one can write the characteristic polynomial

of A ∈ PU(2, 1) as χA(x) = x3 − TrA + TrA − detA and for eiθK is becomes

x3 − x2 + x− 1 and so the eigenvalues are 1, i and −i. So eiθK has order 4 and

hence so does K projectively.

One can apply K to the vertices of the polyhedron and verify that its action

is the following:

K : z1 → z2, K : z2 → z1, K : z3 → z10, K : z4 → z9,

K : z5 → z11, K : z6 → z4, K : z7 → z5, K : z8 → z3

K : z9 → z14, K : z10 → z12, K : z11 → z13, K : z12 → z8,

K : z13 → z7, K : z14 → z6.

This means that K preserves the polyhedron and acts on the sides as

B(R1)
K−→ B(R2)

K−→ B(J)
K−→ B(P−1)

K−→ B(R1),

B(R−1
1 )

K−→ B(R−1
2 )

K−→ B(P )
K−→ B(J−1)

K−→ B(R−1
1 ),

namely it cyclically permutes them, preserving the two columns in Figure 5.6.

Using Remark 5.6.1, and the braid relation between R1 and R2, it is easy to see

that

R2 = KR1K
−1, S1 = K2R1K

−2, S2 = K3R1K
−3, R1 = K4R1K

−4
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which proves that the action of K is compatible with the side pairing maps.

We now de�ne Υ = 〈K〉 and we are in the framework of the Poincaré poly-

hedron theorem for coset decompositions. The theorem ensures that we need to

check the tessellation only for one ridge per cycle (which we already knew) and

for one ridge per orbit under the action of K. This means that we need to analyse

only the ridges contained in B(R1), which are F (R1, R
−1
1 ), F (R1, P ), F (R1, J),

F (R1, R
−1
2 ) and F (R1, J

−1), for which we already proved the tessellation prop-

erty.

We just need to check how the ridge cycles change with the new side pairing

maps, so to give a presentation for these groups according to the theorem. The

cycles for the ridges we mentioned are the following:

F (R1, R
−1
1 )

R1−−→ F (R1, R
−1
1 ),

F (R1, P )
R1−−→ F (P,R−1

1 )
S−1
1−−→ F (R−1

1 , J)
R−1

1−−→ F (J,R1)
S1−→ F (R1, P ),

F (R1, R
−1
2 )

R1−−→ F (P−1, R−1
1 )

K−→ F (R1, R
−1
2 )

F (R1, J
−1)

R1−−→ F (R2, R
−1
1 )

K−1

−−−→ F (R1, J
−1).

Remark that we stop when we come back in the same cycle or when we arrive in

the same ridge orbit under the action of K.

The presentation obtained from the Poincaré polyhedron theorem for coset

decompositions is then

Γ =

〈
K,R1 :

Rp1 = K4 = (K−1R1)3d = (KR1)3 = K2S−1
1 R1 = I,

(K2R1)2 = (R1K
2)2

〉
.

We want to remark that since k = p
2 , by rewriting (3.4.2) or simply by inspec-

tion in Table 3.1, we have that l = d. It is then not surprising that the relation

in the presentation where l appeared, here it becomes (K−1)3d = I.

5.7 Previously known cases

Following 4.4.1, we have cases when three of the vertices collapse to a single

one. This is determined by the values of the cone angles and hence by the valued of

p and k. Of the four cases in the proposition, three coincide in the 3-fold symmetry
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case. Hence we will have 2 possible degeneration and four possible combination

of whether each degeneration happens or not. These four cases correspond to the

four types described in Section 3.4.1 and to the four cases of Theorem 5.4.1. In

this section we will explain in details these four cases.

For three of the four cases a fundamental polyhedron had already been con-

structed. For lattices of �rst and third type it is immediate to see how the suitable

degeneration of our polyhedron D give exactly the one constructed in [BP15] and

[Par06], since the same procedure has been used to construct the fundamental

polyhedron. For lattices of second type a little more explanations are needed.

The second part of this section is devoted to show how the suitable deformation

of our fundamental polyhedron relates to the construction from [DFP05], in the

description given in [Par09].

5.7.1 Degenerate cases

The �rst thing to remark is that the parametrisation we chose in (4.1.2) is

completely general and can be used to parametrise all possible lattices in our list

when we de�ne θ = 2π
p and φ = π

k as before.

In [Par06], the same angle parametrisation holds after imposing φ = π
2 , since

for all lattices of that group k = 2. In [BP15], this parametrisation has explicitly

been used. Other cases on the list could be treated with an extra condition. The

lattices of fourth type, for example, always have φ = π
3 . All of the ones of type

5, instead, satisfy θ = φ since k = p
2 , as mentioned after interchanging k and l if

necessary. This construction though includes all the other cases up to imposing

the values of p and k that we want to consider.

The di�erence comes out when we start making the singularities collapse in

order to �nd the vertices of the polyhedron. This is because when we make T1

and T2 shrink or enlarge, the vertices of D change according to the size of the

angles. Let us consider a generic con�guration as in Figure 5.1.

The angles that we will have to consider are marked in Figure 5.9. In partic-

ular, the vertices of the polyhedron will depend on the values of

• The angle in T1 at the vertex v0, which we will call α;
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Figure 5.9: The angles whose values determines which polyhedron we

shall consider.

• The angle in T3 at v∗, which we will call β;

• The two equal angles in T2, which we will call γ;

• The angle in T1 at v1, which by construction is equal to the angle γ de�ned

previously;

• The third angle in T1, which we will call δ.

In this section, following Proposition 4.4.1 we will explain the conditions on

this angles to determine which are the vertices of our polyhedron. Then we will

substitute their values, that can be easily calculated in terms of p and k.

What we need to show is that, for the particular values we are considering, the

vertices that we can obtain by making cone points collapse are the ones described

in the theorem.

Let us then consider the con�guration in Figure 5.1 and start studying the

cone points that can collapse. We have the following situation:

1. Vertices z1 and z2 are always possible and they do not depend on the angles

at all. They will hence always be in the polyhedron.

2. If we let z1 be as big as possible, keeping it real and such that T1 is in the

interior of T3, there are two possibilities, illustrated in Figure 5.10. As the

coordinate grows, either v1 will coincide with the apex vertex of T2, or v0

will coalesce with v∗.
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z3

z4

z5

(a) (b)

z3=z4=z5

Figure 5.10: The two possibilities for the vertices in case 2.

In the �rst case (a) there is no other possibility for T2 but to collapse to a

point, giving a single vertex de�ned by v1 ≡ v2 ≡ v3. This is the case when

β ≤ α.

In the second case (b) we have instead that v0 ≡ v∗. Also, T2 has still some

degrees of freedom, so we can make z2 either to be 0, either to be as large as

possible but still real, or to be as large as possible but after rotating it as in

Figure 5.10. The three options give respectively that also v2 ≡ v3, v1 ≡ v2

or v1 ≡ v3. This is the case when β ≥ α.

z6

z7

z8

(a) (b)

z6=z7=z8

Figure 5.11: The two possibilities for the vertices in case 3.

3. With a similar argument, by imposing z1 = re−iφ with r as big as possible,

but such that T−1 is inside T3, we can get the two possibilities in Figure

5.11.

Case (a) will correspond to when the cone points collapsing are v0 ≡ v2 ≡ v3

and it corresponds to the case when γ ≥ β.
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Case (b) is when we have v∗ ≡ v−1. The three choices will be when also

v2 ≡ v3, v0 ≡ v2 or v0 ≡ v3 and it occurs when γ ≤ β.

z9

z10

z11

(a)

(b)

z9=z10=z11

Figure 5.12: The two possibilities for the vertices in case 4.

4. Similarly, when z2 is real, as big as possible and such that T2 is inside T3,

we can get the con�gurations in Figure 5.12.

Case (a) occurs when γ ≤ δ and the point will be de�ned by v2 ≡ v1 ≡ v0.

In Case (b) we always have the condition v∗ ≡ v3, with the three possibilities

as v0 ≡ v1, v1 ≡ v2 or v0 ≡ v2. This happens when γ ≥ δ.

5. Once more, when z2 = reiθ, for r as big as possible but still maintaining a

positive area, we can have the con�gurations as in Figure 5.13.

We will hence have Case (a), when δ ≥ β and where v0 ≡ v1 ≡ v3.

When δ ≤ β we will have Case (b) instead, with v∗ ≡ v−2 for all the three

vertices and v0 ≡ v1, v1 ≡ v3 or v0 ≡ v3 in the each of them.

It is clear that since in each case we have either one or three vertices, the cases

with fewer vertices will be obtained by the case with more vertices by making

triplets of vertices collapse to just one. On the other hand, the case with many

vertices can be obtained from the other by cutting through a corner so to make
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z12

z13

z14

(a) (b)

z12=z13=z14

Figure 5.13: The two possibilities for the vertices in case 5.

one vertex become three. We will see in Section 5.7.2 that this is exactly the case,

for the values of p and k that have already been treated.

Putting together Figure 5.1 and Figure 5.9, it is easy to see that

α =
π

2
+
θ

2
− φ, β = π − θ − φ, γ =

π

2
− θ

2
, δ = φ.

Substituting the values of the angles in terms of p and k, we can summarise the

cases with the following table.

Case Relation on the angles Relation on p and k

2 (a) β ≤ α p ≤ 6

(b) β ≥ α p ≥ 6

3 (a) β ≤ γ k ≤ 2p
p−2

(b) β ≥ γ k ≥ 2p
p−2

4 (a) γ ≥ δ k ≥ 2p
p−2

(b) γ ≤ δ k ≤ 2p
p−2

5 (a) β ≤ δ k ≤ 2p
p−2

(b) β ≥ δ k ≥ 2p
p−2

As we can see, three of these conditions correspond to the same values for p and k,

so we will either have all cases of the three vertices or all cases of a single vertex.

Consequently, there are four possible cases and they are the four values of p and

k given in the Theorem 5.4.1.
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It is clear that the case of D described in the previous section is the one where

all 14 vertices remain distinct. The other cases of the theorem follow immediately

by our analysis. In fact, we will have one case where only one triplet collapses, one

case where three triplets collapse and one case where all four do. By considering

the theorem and the �gures to see which vertices are collapsing, we just need to

consider that the name of the con�gurations given in Figures 5.10�5.13 are the

same as the ones given for D in the previous sections.

We remark that when the angles we are considering are equal, while making

the points collapse to get a vertex, we obtain some con�gurations with zero area,

so on the boundary of the complex hyperbolic space. A more precise discussion

of what happens in these cases can be found in [Par06] and [BP15]. Moreover, it

is clear that we do not have the choice of the three con�gurations, so it is more

natural to include them in the case of the lower values of the parameters as we

did in Theorem 5.4.1.

Another way to see this is to notice that the cases where three vertices collapse

correspond to when the values of l and d are negative. We saw that these two

values are the order of the cycle maps R2R1J and P 3 respectively. As explained

in [Par09], when l or d is negative, the corresponding map becomes a complex

re�ection in a point instead of a complex re�ection in a line. The ridge on the

mirror indeed becomes a single point. When they are not �nite, the corresponding

map becomes a parabolic element.

Already in [Par09] it has been explained that the fundamental polyhedron for

the lattices of �rst type can be obtained from the one of third type by truncating

a vertex with a triangle contained in a complex line. In that case, one vertex

becomes three and we will see that it corresponds to the case (a) and (b) in point

2 of our analysis of the vertices. Comparing the sides for these cases and the ones

for ours it is easy to see that the same thing can be done from our polyhedron.

5.7.2 Lattices of second type

In this section we will analyse the relation between this method and the pre-

vious fundamental polyhedra found for Deligne-Mostow lattices with three fold

symmetry of second type. As mentioned, a fundamental polyhedron for this case
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Figure 5.14: The sides compared for our polyhedron and the previous

one for type 2 lattices.

was already constructed in [DFP05]. Since the approach there is a bit di�erent

from ours, Parker in [Par09] showed how to see in their procedure an approach

similar to ours. What we do here though, gives a di�erent presentation for the

group and an easier construction of the polyhedron, more coherent with the known

construction for the other cases.

The main di�erence comes from the fact that the sides and the side-pairing

maps considered there are slightly di�erent from ours. We now want to explain

how to reconcile the two presentations. First of all, for the case we are talking

about we need to make the vertices z3, z4 and z5 collapse to a single vertex as
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we saw in Theorem 5.4.1 and we will call this new vertex z345. The sides of the

polyhedron D after collapsing vertices as described for the second case of our

main theorem, will be as in Figure 5.14.

We want now to compare our construction with the sides of the polyhedron

considered in [DFP05] as shown in Figure 11 of [Par09]. To refer to sides in

our construction, we will use B(T ), for T ∈ {J±1, P±1, R±1
1 , R±1

2 }, while for the

sides used before we will be coherent with their notation and call them S(T ), for

T ∈ {J±1, P±1
1 , P±1

2 , R±1
1 , R±1

2 }.

The maps J considered in each case coincide and so do the sides B(J) = S(J)

and the sides B(J−1) = S(J−1). The same thing is true for P = P1 = R1R2 and

the corresponding sides. On the other hand, the four sides B(R±1
1 ) and B(R±1

2 )

and the side pairing R1 and R2 include in their action the six remaining sides

S(R±1
1 ), S(R±1

2 ) and S(P±1
2 ). In fact, the previous procedure splits the sides

B(R1) and B(R−1
1 ) in two blocks each, by cutting along a line through vertices

z9, z11, z345 and a line through z12, z14, z345 respectively. Then, for each of B(R1)

and B(R−1
1 ), of the two pieces of side obtained we consider the one not containing

vertex z10 and vertex z13 respectively. These are exactly the sides S(R1) and

S(R−1
1 ), and R1 sends the �rst to the latter. Similarly, for B(R2) and B(R−1

2 ),

we divide the sides in two blocks by cutting with a line through z12, z14, z345 and

a line through z7, z8, z345 respectively. We then consider the block not containing

vertex z13 and z6 respectively and these are sides S(R2) and S(R−1
2 ) respectively,

the �rst sent to the second by R2.

We have then four more block to consider. The �rst remark is that there are,

in fact, only three blocks, because the parts of B(R−1
1 ) and of B(R2) containing

vertex z13 are the same block. For simplicity, we will call it S(T ). The other two

blocks are exactly sides S(P2) and S(P−1
2 ). We also know by our construction

that R1 sends S(P2) to S(T ), while R2 sends S(T ) to S(P−1
2 ). Since P2 = R2R1

by de�nition, that is the side pairing map that sends the two new blocks S(P2)

to S(P−1
2 ), as described in [Par09]. This is illustrated in Figure 5.15.
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Figure 5.15: The side pairing maps compared for our polyhedron and

the previous one.
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Chapter 6

Lattices with 2-fold symmetry.

We will now consider the lattices with 2-fold symmetry, i.e. the ones obtained

from cone metrics on the sphere where two of the �ve cone points have the same

cone angles. The vales of the angles that give lattices are described in Section

3.4.2. In this section we will show how to use the polyhedron in Section 4.3 to

build a fundamental domain for them.

Remember, from Section 4.1 (see (4.1.2)) that we were considering a sphere

with �ve cone points of cone angles θ0, θ1, θ2, θ3, θ4 with values

(2(π + φ− α), 2α, 2β, 2(π + θ − β), 2(π − θ − φ)).

Now, following Section 3.4.2, we also want two equal angles at the vertices v1

and v2. This means that α = β. We can also reinterpret the parameters

p, p′, k, k′, l, l′, d in terms of the angles α, β, θ, φ as follows.

π

p
= θ,

π

k
= φ,

π

l
= α− θ − φ, π

d
= π − α− θ (6.0.1)

π

p′
= α− π

2
,

π

k′
= π + θ + φ− 2α,

π

l′
= π − α− φ.

These parameters will be the orders of some maps in the group. In particular, this

means that we used (p, k, p′) to denote the con�guration (α, α, θ, φ). Remark that

in the 2-2-fold symmetry case (i.e. when we also have θ0 = θ3), we have θ = φ and

so the lattice is of the form (p, p, p′). Notice also that in the 3-fold symmetry case

one would have k = k′, l = l′ and p = 2p′. In fact k and k′ will be the orders of

A1(α, β, θ, φ) for two of the di�erent con�gurations we will consider (see (4.2.6))
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which coincide in the 3-fold symmetry case. A similar thing happens for l and l′.

The values p′ and p here are the orders of R1(π+ θ−α, α, 2α−π, π+ θ+φ− 2α)

and R1 ◦ R1(α, π + θ − α, θ, φ) respectively (remember that the composition is

done as in (4.2.1)), and notice that they are applied to di�erent con�gurations.

Since in the 3-fold symmetry case the three con�gurations we consider coincide,

p will be the order of the square of R1, which has order p′ and hence p = 2p′.

6.1 Con�guration types

Since the case that we treated before is when the three angles at v1, v2 and

v3 were equal, by analogy we also want to consider the con�gurations where the

two equal angles are at v1 and v2, at v2 and v3 or at v1 and v3. We will call these

con�gurations of type 1©, 2© and 3© respectively. Remark that con�guration of

type i© corresponds to having the cone angles satisfying θi = θi+1, for indices

i = 1, 2, 3 taken mod 3.

We will build a polyhedron for each of these cases and use their union to

build a fundamental domain for the lattices. On the parameters (α, β, θ, φ) (see

Section 4.1), type 1© corresponds to (α, α, θ, φ), type 2© corresponds to (π + θ −

α, α, 2α− π, π + θ + φ− 2α) and type 3© corresponds to (α, π + θ − α, θ, φ). For

each type, we will consider the t-coordinates and s-coordinates. We will have x-,

y- and z-coordinates as t-coordinates of the con�guration of type 1©, 2© and 3©

respectively. We will also have u-, v- and w-coordinates, representing copies of

type 1©, 2© and 3© respectively and being the s-coordinates of one of the previous

ones. More precisely, the relation between x-, y-, z- and u-, v-, w-coordinates

is as follows. Since P−1 acts on the copies as explained in Figure 4.5, then, for

example, a con�guration of type 1© will be sent to one of type 2©. This means

that the coordinates de�ned as P−1(x) will be the v-coordinates. With a similar

argument, one gets

u = P−1(z) v = P−1(x) w = P−1(y) (6.1.1)

In other words, the u-, v- and w-coordinates will be the coordinates for the

con�guration of type 1©, 2© and 3© respectively, obtained after applying P to the

standard con�guration of type 3©, 1© and 2© respectively.
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Figure 6.1: The representative for each con�guration type.

We will start from the con�guration of type 3©, with its z-coordinates as the

t-coordinates of con�guration (α, π + θ − α, θ, φ). The x- and y-coordinates will

be determined by the action of the moves R1 and R−1
2 respectively (see Figure

6.1 for more details). As mentioned, each con�guration will give us a polyhedron

of the same type as D in (4.3.5).

We will �rst explain what the relation between the x-, y- and z-coordinates

is. Since copies of type 1© and 3© are swapped by R1, it is natural to de�ne

x = R1(α, α, θ, φ)z. (6.1.2)

Since the w- and u-coordinates are also of type 3© and 1© respectively, one

would also want

u = R1(α, π + θ − α, θ, φ)w. (6.1.3)

Using the de�nition of u- and w-coordinates, together with the previous formula,

the y-coordinates are de�ned as

z = R2(π + θ − α, α, 2α− π, π + θ + φ− 2α)y. (6.1.4)

Using Equations (6.1.1), (6.1.2) and (6.1.4), one can also see that

v = P−1x = P−1R1z = P−1R1R2y = y. (6.1.5)
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The following digram summarises the relations between the coordinates.

y z x

w u v

=

R2 R1

P

R1

P

P−1R1P

P

6.2 The fundamental polyhedron

For each coordinate type, we can de�ne a polyhedron as in (4.3.5). This will

give us three components of our fundamental polyhedron D and we will write

D = D1 ∪D2 ∪D3, with


D1 = D(α, α, θ, φ) = R−1

1 (D3),

D2 = D(π + θ − α, α, 2α− π, π + θ + φ− 2α) = R2(D3),

D3 = D(α, π + θ − α, θ, φ).

(6.2.1)

In coordinates, the polyhedron D1 is de�ned as

D1 =

x = P (v) :
arg(x1) ∈ (−φ, 0), arg(x2) ∈ (0, θ),

arg(v1) ∈ (0, π + θ + φ− 2α), arg(v2) ∈ (0, 2α− π)

 ,

the polyhedron D2 is

D2 =

y = P (w) :
arg(y1) ∈ (−(π + θ + φ− 2α, 0), arg(y2) ∈ (0, 2α− π),

arg(w1) ∈ (0, φ), arg(w2) ∈ (0, θ)


and the polyhedron D3 is de�ned as

D3 =

z = P (u) :
arg(z1) ∈ (−φ, 0), arg(z2) ∈ (0, θ),

arg(u1) ∈ (0, φ), arg(u2) ∈ (0, θ)

 .

Due to the fact that the matrix for R1 is extremely simple, we will keep track

only of three sets of coordinates, namely z-, w- and y-coordinates and use the

relations in (6.1.2), (6.1.3) and (6.1.5) to give the other coordinates in term of

these.

Then we can describe the polyhedron as follows.

D =

z = R2(y) = R2P (w) :

arg(z1) ∈ (−φ, 0), arg(z2) ∈ (−θ, θ),

arg(w1) ∈ (0, φ), arg(w2) ∈ (−θ, θ),

arg(y1) ∈ (−φ′, φ′), arg(y2) ∈ (0, θ′)

 ,
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Figure 6.2: The interaction of the polyhedra and their coordinates.

with φ′ = π + θ + φ− 2α and θ′ = 2α− π.

In Figure 6.2 one can see how the polyhedra and the coordinates interact. The

three polyhedra intersect pairwise in a side and all three have a common Giraud

disc G. Passing from t- to s-coordinates changes the type of con�guration from

k© to i© within the same polyhedron Dk, where i = k − 2, taken mod 3. Three

special vertices of the polyhedron (see section below) v0, v1 and v2 are the origin

of one of the coordinates.

6.2.1 Vertices of D

The vertices of D will be of three types. Some will come from D1 and they

will be called xi, for i = 1, . . . , 14, some will be the vertices of D2 and we will

denote them yi, for i = 1, . . . , 14 and �nally there will be the vertices zi's for

i = 1, . . . , 14, coming from D3. Since the three polyhedra intersect there will be

some vertices that are repeated. The following table describes all the vertices. In

the �rst column there will be the label we choose for the vertex, in the second,

third and fourth column its name in D3, D1 and D2 respectively (if there is one),

and in the �nal columns we will record which coordinates have a "nice" form.
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D D3 D1 D2 arg z1 arg z2 argw1 argw2 arg y1 arg y2

v0 x2 y1 y1 = 0 y2 = 0

v1 z1 x1 z1 = 0 z2 = 0

v2 z2 y2 w1 = 0 w2 = 0

v3 z3 x3 y5 0 z2 = 0 0 0 0 θ′

v4 z4 x5 y4 0 0 0 w2 = 0 0 0

v5 z5 0 θ 0 −θ

v6 z6 x6 y13 −φ z2 = 0 0 0 0 θ′

v7 z7 x8 y12 −φ 0 φ 0 y1 = 0 θ′

v8 z8 y14 −φ θ w1 = 0 0 −φ′ θ′

v9 z9 x12 z1 = 0 0 φ −θ φ′ 0

v10 z10 x13 y10 0 0 φ w2 = 0 0 0

v11 z11 x14 y9 −φ 0 φ 0 y1 = 0 0

v12 z12 z1 = 0 θ φ −θ

v13 z13 0 θ 0 −θ

v14 z14 −φ θ 0 −θ

v16 x4 y3 0 −θ 0 θ 0 y2 = 0

v17 x7 −φ −θ φ′ θ′

v18 x9 z1 = 0 −θ φ′ 0

v19 x10 0 −θ φ′ y2 = 0

v20 x11 −φ −θ φ′ θ′

v21 y6 0 θ −φ′ y2 = 0

v22 y7 φ θ −φ′ 0

v23 y8 w1 = 0 θ −φ′ θ′

v24 y11 φ θ −φ′ 0

Table 6.1: The vertices of D

This re�ects how the Di's glue together. In particular, the polyhedra D1 and

D3 glue along

{Im z2 = 0} ∩D3 = {Im e−iθx2 = 0} ∩D1, (6.2.2)
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while D2 and D3 are glued along

{Im e−iθu2 = 0} ∩D3 = {Imw2 = 0} ∩D2 (6.2.3)

and D1 and D2 intersect along

{Im v1 = 0} ∩D1 = {Im y1 = 0} ∩D2. (6.2.4)

Moreover, all three will intersect along the Giraud disc G containing the ridge

bounded by vertices v3,v4,v6,v7,v10 and v11 (see Figure 6.2).

Remark 6.2.1. Using Table 4.1, one can obtain the equations of the complex lines

for our three con�gurations and see that the following lines coincide:

1. L∗0(α, π + θ − α, θ, φ) = L∗0(π + θ − α, α, 2α − π, π + θ + φ − 2α) =

L∗0(α, α, θ, φ),

2. L∗3(α, π + θ − α, θ, φ) = L∗3(π + θ − α, α, 2α − π, π + θ + φ − 2α) =

L∗2(α, α, θ, φ),

3. L∗1(α, π + θ − α, θ, φ) = L∗2(π + θ − α, α, 2α − π, π + θ + φ − 2α) =

L∗1(α, α, θ, φ).

6.2.2 Sides and side pairing maps

In view of applying the Poincaré polyhedron theorem in Section 6.3, we need

to analyse the sides of D and explain how we have some maps pairing them.

Clearly, the sides of D will be the union of all sides in Di, with i = 1, 2, 3,

except for the three sides along which two of the copies glue. Some of the sides

combine to create a single larger side. Remembering (6.2.1), the sides (illustrated

in Figure 6.3 with their side pairings) will be as follows.

S(J), S(P ), S(R1), S(R2),

S(J−1), S(P−1), S(R−1
1 ), S(R−1

2 ),

R−1
1 S(J), R−1

1 S(P ), R−1
1 S(R1), R−1

1 S(R2),

R−1
1 S(J−1), R−1

1 S(P−1), R−1
1 S(R−1

1 ), R−1
1 S(R−1

2 ),

R2S(J), R2S(P ), R2S(R1), R2S(R2),

R2S(J−1), R2S(P−1), R2S(R−1
1 ), R2S(R−1

2 ).
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Figure 6.3: The sides of D.
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Now the glueing of the three polyhedra (see Equations (6.2.2), (6.2.3) and

(6.2.4)) tells us that

R−1
1 S(R−1

1 ) = S(R1), R2S(R2) = S(R−1
2 ), R−1

1 S(P−1) = R2S(P ),

so these sides are now internal (see Figure 6.2).

The side pairings will be obtained by adapting to the union of the three

polyhedra the equivalent on each Di of the side pairings in previous works (see

Section 4.3 of [Par06], Section 5.3 of [BP15] and Section 8.3.1 of [Pas16]). In

other words, in each copy we need to consider R1, R2, P and J and adapt them

to act on the sides of D. We will describe all of them, treating the z-coordinates

as the main coordinates. In other words, we will give the matrix as applied to the

z-coordinates of the point.

First consider R1 and R2. Since applying R2(α, α, θ, φ) to a point in its x-

coordinates is equivalent to applying R1(π + θ − α, α, 2α− π, π + θ + φ− 2α) to

its v = y-coordinates, these combine to a single side pairing

R1(π + θ − α, α, 2α− π, π + θ + φ− 2α) =


1 0 0

0 −e2iα 0

0 0 1

 .
This is the side pairing as applied on the y-coordinates. We will hence consider

R0 = R2R1R
−1
2 = R2(π + θ − α, α, 2α− π, π + θ + φ− 2α)◦

◦R1(π + θ − α, α, 2α− π, π + θ + φ− 2α) ◦R−1
2 (α, π + θ − α, θ, φ),

which includes the change of coordinates.

Now consider R1(α, α, θ, φ) and R1(α, π + θ − α, θ, φ). The target side of the

former coincides with the source side of the latter and is the (now internal) side

D1 ∩ D3. This means that we can compose the two maps and have a new side

pairing

B1 = R1(α, π + θ − α, θ, φ)R1(α, α, θ, φ) =


1 0 0

0 e2iθ 0

0 0 1

 .
Remark that even though it looks like this is the matrix we use when applying the

map to a point in its x-coordinates, composing it with the change of coordinates
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from our coordinates (the z-coordinates), one gets that in terms of matrices

B1(α, π + θ − α, θ, φ) = R−1
1 (α, α, θ, φ)B1(α, α, θ, φ)R1(α, π + θ − α, θ, φ)

= B1(α, α, θ, φ).

Similarly, the common side of D2 and D3 is the target side of R2(α, π + θ −

α, θ, φ) and the starting side of R2(π + θ− α, α, 2α− π, π + θ+ φ− 2α). We can

then de�ne

B2 = R2(π + θ − α, α, 2α− π, π + θ + φ− 2α)R2(α, π + θ − α, θ, φ).

The map B2 is already de�ned to act on the z-coordinates. As we said for R2 and

R1, B2 acts as B1, but on the u-coordinates.

The side pairings P and J related the t- and s-coordinates of the polyhe-

dron, but the side pairing property relied on the fact that the source and target

con�gurations were of the same type. Adapting this to our case means that we

want to consider the maps relating z- and w-coordinates, x- and u-coordinates

and y- and v-coordinates. The map relating y- and v-coordinates is the identity

and it indeed maps the common side between D1 and D2 to itself. Since this

side is in the interior of D, we can ignore it. Composing the map obtained with

A1(π+θ−α, α, 2α−π, π+θ+φ−2α) to compute the equivalent of J and applying

the change of coordinates to our main coordinates, we obtain the side pairing

A0 = R2A1R
−1
2 .

Now, we have

w = P−1y = P−1R−1
2 z = Q−1z

and

u = R−1
2 R−1

1 R−1
1 x,

which translates to the z-coordinates as Q−1 again. Then Q = R1R2R1 will be

our new side pairing. Moreover, we will consider K = QA1.

Putting all this information together and remarking that J3 = Id, one gets
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that the side pairings are

K = JR1 = R2J : R−1
1 S(J) ∪ S(J) 7−→ S(J−1) ∪R2S(J−1),

Q = PR1 = R2P : R−1
1 S(P ) ∪ S(P ) 7−→ S(P−1) ∪R2S(P ),

R0 = R−1
1 R2R1 = R2R1R

−1
2 : R−1

1 S(R2) ∪R2S(R1) 7−→ R−1
1 S(R−1

2 ) ∪R2S(R−1
1 ),

B1 = R1R1 : R−1
1 S(R1) 7−→ S(R−1

1 ),

B2 = R2R2 : S(R2) 7−→ R2S(R−1
2 ),

A0 = R−1
1 J−1J−1R−1

2 : R2S(J) 7−→ R−1
1 S(J−1).

As mentioned for the general case, the sides are contained in bisectors. One

can rewrite Lemma 4.3.2 for each copy and eliminate the inequalities related to

the sides along which the polyhedra glue. Translating the inequalities on the right

hand side into z-coordinates and giving all the n∗i in terms of the con�guration

(α, π + θ − α, θ, φ) (using Remark 6.2.1), we get the following lemma.

Lemma 6.2.2. We have

• Im(z1) ≤ 0 if and only if |〈z,n∗1〉| ≤ |〈z, P−1(n∗3)〉|,

• Im(eiφz1) ≥ 0 if and only if |〈z,n∗0〉| ≤ |〈z,K−1(n∗0)〉|,

• Im(e−iθz2) ≤ 0 if and only if |〈z,n∗3〉| ≤ |〈z, B1(n∗3)〉|,

• Im(eiθz2) ≥ 0 if and only if |〈z,n∗3〉| ≤ |〈z, B−1
1 (n∗3)〉|,

• Im(eiφ
′
y1) ≥ 0 if and only if |〈z,n∗0〉| ≤ |〈z,K2(n∗0)〉|,

• Im(y2) ≥ 0 if and only if |〈z,n∗1〉| ≤ |〈z, Q−1B1(n∗3)〉|,

• Im(e−iθ
′
y2) ≤ 0 if and only if |〈z,n∗3〉| ≤ |〈z, B−1

1 Q(n∗1)〉|,

• Im(e−iφ
′
y1) ≤ 0 if and only if |〈z,n∗0〉| ≤ |〈z,K−2(n∗0)〉|,

• Im(w1) ≥ 0 if and only if |〈z,n∗3〉| ≤ |〈z, Q(n∗1)〉|,

• Im(e−iφw1) ≤ 0 if and only if |〈z,n∗0〉| ≤ |〈z,K(n∗0)〉|,

• Im(e−iθw2) ≤ 0 if and only if |〈z,n∗1〉| ≤ |〈z, B2(n∗1)〉|,

• Im(eiθw2) ≥ 0 if and only if |〈z,n∗1〉| ≤ |〈z, B−1
2 (n∗1)〉|.
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6.3 Main theorem

In this section we will state and prove that D (or a suitable modi�cation of

D) is a fundamental domain for Deligne-Mostow lattices with 2-fold symmetry

as parametrised in Section 3.4.2. To do this we will use the Poincaré polyhedron

theorem, in the form given in Section 2.4.

We are now ready to state and show that D or a suitable modi�cation of it is

a fundamental domain for the lattices we are considering.

Theorem 6.3.1. Let Γ be one of the Deligne-Mostow lattices with 2-fold sym-

metry (see Table 3.2). Then a suitable modi�cation of the polyhedron D de�ned

in Section 6.2 is a fundamental domain for Γ. More precisely the fundamental

domain is D up to collapsing some ridges to a point when some parameters are

degenerate (negative of in�nite) according to the following table.

Lattice Deg. par. Ridges collapsing

(4,4,6), (4,4,5)

(3,4,4), (2,4,3), (3,3,4) l′, d
F (A0, B

−1
2 ), F (B2, B

−1
1 ),

F (A−1
0 , B1), F (Q,Q−1)

(2,6,6) l, d
F (Q,Q−1), F (K,R−1

0 ),

F (K−1, R0)

(2,3,3) l, l′, d

F (Q,Q−1), F (K,R−1
0 ),

F (K−1, R0), F (A0, B
−1
2 ),

F (B2, B
−1
1 ), F (A−1

0 , B1)

(3,3,3), (4,4,3), (6,6,3) k′, l′, d
F (A0, A

−1
0 ), F (Q,Q−1),

F (B2, B
−1
1 ), F (A−1

0 , B1)

(2,3,3) k′ F (A0, A
−1
0 )
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Moreover, a presentation for Γ is given by

Γ =

〈
K,Q,B1,

B2, R0, A0

:

Bp
1 = Bp

2 = Rp
′

0 = Ak
′

0 = (Q−1K)k = (R0K)l = I,

(A0B2B1)l
′

= Q2d = I, Q = B1R0 = R0B2 = B−1
2 QB1,

R−1
0 A0R0 = A0 = K−2, B2K = KB1

〉
,

where each of the relations involving k′, l, l′ and d hold as long as the corresponding

parameter is �nite and positive.

The reason for the ridges to collapse to a point (except for k′, which is treated

in Section 6.3.3) relies on Proposition 4.4.1 applied to each of the polyhedra D1,

D2 and D3. In fact:

• First, consider the case when d < 0 or d = ∞. By de�nition (see (6.0.1)),

this is equivalent to say that π−α− θ ≤ 0. Remembering Proposition 4.4.1

and using the notation of Remark 6.2.1, one can see that the vertices on

L∗0 collapse when π − α − θ ≤ 0. Since these three vertices form the ridge

F (Q,Q−1), this ridge collapses when d < 0 or d =∞.

• Similarly, when l < 0 or l =∞, by de�nition, we have α− θ − φ ≤ 0. Now

the vertices on L∗3 collapse when α− θ− φ ≤ 0 and so do the ones on L∗1.

Since F (K−1, R0) is formed of the vertices contained in L∗3 and F (K,R−1
0 )

of the ones contained in L∗1, they degenerate when l < 0 or l =∞.

• Now assume l′ < 0 or l′ =∞, i.e. π − α− φ ≤ 0. By Proposition 4.4.1, the

vertices on L∗2(α, π + θ − α, θ, φ), L∗3(α, α, θ, φ) and L∗1(π + θ − α, 2α −

π, π+ θ+φ− 2α) all degenerate when π−α−φ ≤ 0. Then the claim of the

theorem follows from the fact that F (B1, A
−1
0 ), F (B−1

1 , B2) and F (B−1
2 , A0)

are bounded by the vertices contained in L∗3(α, α, θ, φ), L∗2(α, π+θ−α, θ, φ)

and L∗1(π + θ − α, 2α− π, π + θ + φ− 2α) respectively.

• Finally, the case of k′ negative is treated in Section 6.3.3.

An alternative presentation for the lattices can be obtained by remembering

that K = QA1 and substituting Q = B1R0, K = B1R0A1, B2 = R−1
0 B1R0 and
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A0 = (B1R0A1)−2. Then

Γ =

〈
B1, R0, A1 :

Bp
1 = Rp

′

0 = (B1R0A1)2k′ = Ak1 = (R0B1R0A1)l = I,

(A1R0)2l′ = (B1R0)2d = I, br4(B1, R0),

br2((B1R0A1)−2, R0), br2(A1, B1)

〉
,

where, following [DPP], bri(T, S) is the braid relation of length i on T and S, i.e.

(TS)n/2 = (ST )n/2, where the power n/2 with n odd means that the product has

n factors (e.g. (TS)3/2 = TST ).

6.3.1 Cycles

The cycles given by the Poincaré polyhedron theorem are the following.

F (K,Q)
K−→ F (K−1, Q−1)

Q−1

−−−→ F (K,Q),

F (K−1, R0)
R0−−→ F (K,R−1

0 )
K−→ F (K−1, R0),

F (B1, A
−1
0 )

B1−−→ F (B−1
1 , B2)

B2−−→ F (B−1
2 , A0)

A0−−→ F (B1, A
−1
0 ),

F (R0, R
−1
0 )

R0−−→ F (R0, R
−1
0 ),

F (Q,Q−1)
Q−→ F (Q,Q−1),

F (B1, B
−1
1 )

B1−−→ F (B1, B
−1
1 ),

F (B2, B
−1
2 )

B2−−→ F (B2, B
−1
2 ),

F (A0, A
−1
0 )

A0−−→ F (A0, A
−1
0 ),

F (K,B1)
B1−−→ F (K,B−1

1 )
K−→ F (K−1, B−1

2 )
B−1

2−−−→ F (K−1, B2)
K−1

−−−→ F (K,B1),

F (B1, Q)
Q−→ F (B2, Q

−1)
B2−−→ F (B−1

2 , Q−1)
Q−1

−−−→ F (B−1
1 , Q)

B−1
1−−−→ F (B1, Q),

F (A0, R0)
A0−−→ F (A−1

0 , R0)
R0−−→ F (A−1

0 , R−1
0 )

A−1
0−−→ F (A0, R

−1
0 )

R−1
0−−→ F (A0, R0),

F (K,K−1)
K−→ F (K−1, A0)

A0−−→ F (K,A−1
0 )

K−→ F (K,K−1),

F (B1, R
−1
0 )

B1−−→ F (B−1
1 , Q−1)

Q−1

−−−→ F (Q,R0)
R0−−→ F (B1, R

−1
0 ),

F (R−1
0 , Q−1)

Q−1

−−−→ F (Q,B2)
B2−−→ F (B−1

2 , R0)
R0−−→ F (R−1

0 , Q−1).

These cycles give the following cycle transformations, where ` is the power of

T which �xes the ridge pointwise and `m is the order of T . Note that for all of

the 2-fold symmetry values that we are considering, k, k′, p, p′, l, l′ and d are all

integers (positive or negative) or in�nite.
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Cycle transformation T ` m Cycle transformation T ` m

Q−1K 1 k A0 1 k′

R0 1 p′ B1A0B2 = (B−1
2 K)2 1 l′

B2 1 p B1 1 p

Q 2 d R0K 1 l

R0Q
−1B1 = Id 1 1 B2Q

−1R0 = Id 1 1

B1K
−1B−1

2 K = Id 1 1 B−1
1 Q−1B2Q = Id 1 1

A0R
−1
0 A−1

0 R0 = Id 1 1 KA0K = Id 1 1

Table 6.4: The cycle transformations and their orders.

When the order of a cycle transformation is negative, we know that the cor-

responding ridge collapses to a point and so the transformation is a complex

re�ection to a point. When the order is ∞, then the cycle transformation is

parabolic.

6.3.2 Tessellation

The proof of Theorem 6.3.1 consists of proving that D and our side pairings

satisfy the hypothesis of the Poincaré polyhedron theorem. The proof is similar

to that of Theorem 5.4.1. In particular, we only need to include the proof of the

tessellation condition, since the rest is done in the same way.

We will divide the ridges in three groups. Looking at the structure of sides

in Figure 4.7, one can see that the ridges are contained in either a Giraud disc, a

Lagrangian plane or a complex line. We will include the proof of the tessellation

condition for one ridge from each type. For the others it can be done in exactly

the same way.

Ridges contained in a Giraud disc. The ridges contained in a Giraud disc

are F (K,K−1), F (K,A−1
0 ), F (A0,K

−1), F (B1, R
−1
0 ), F (B−1

1 , Q−1), F (Q,R0),

F (R−1
0 , Q−1), F (Q,B2) and F (B−1

2 , R0). To prove the tessellation condition for

them, we will use Lemma 6.2.2.
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Proposition 6.3.2. The polyhedra D, K(D) and KA0(D) = K−1(D) tessellate

around the ridge F (K,K−1).

Proof. Take z ∈ D. By the second point of Lemma 6.2.2, z is closer to n∗0 than

to K−1(n∗0). By the tenth point of the lemma, it is closer to n∗0 than to K(n∗0).

Similarly, take a point z ∈ K(D). This means that K−1(z) ∈ D. By the second

point of the lemma applied to K−1(z), z is closer to K(n∗0) than to n∗0. By the

eighth point of the lemma, it is closer to K(n∗0) than to K−1(n∗0). Finally, take

a point z ∈ K−1(D). This means that K(z) ∈ D. By the �fth point of the lemma

applied to K(z), z is closer to K−1(n∗0) than to K(n∗0). By the tenth point of

the lemma, it is closer to K−1(n∗0) than to n∗0.

This clearly implies that the three images are disjoint and since F (K,K−1) is

de�ned by Im(eiφz1) = 0 and Im(e−iφw1) = 0, a small enough neighbourhood of

the ridge is covered by the three images. �

Ridges contained in a Lagrangian plane. The ridges contained in a La-

grangian plane are F (K,B1), F (K−1, B−1
2 ), F (K−1, B2), F (K,B−1

1 ), F (B1, Q),

F (B2, Q
−1), F (B−1

2 , Q−1), F (B−1
1 , Q), F (A−1

0 R0), F (A−1
0 , R−1

0 ), F (A0, R
−1
0 ) and

F (A0, R0). The proof of the tessellation property is done by studying the sign of

some of the coordinates. We will prove the property for the �rst ridge mentioned.

The others are done in a similar way.

Proposition 6.3.3. The polyhedra D, B−1
1 (D), K−1(D) and B−1

1 K−1(D) tes-

sellate around the ridge F (K,B1).

Proof. Let us consider points inD, B−1
1 (D), K−1(D) and B−1

1 K−1(D) and record

the sign of the values of Im(z1), Im(eiφz1), Im(eiθz2) and Im(e−iθz2) for them.

They are shown in the following table.

Im(z1) Im(eiφz1) Im(eiθz2) Im(e−iθz2)

D - + + -

B−1
1 (D) - + - -

K−1(D) - - + -

B−1
1 K−1(D) - - - -
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The �rst row can be deduced using the de�nition of D in terms of the argu-

ments of the coordinates. The second row can be deduced by considering that

the action of B1 only consists in multiplying the coordinate z2 by e2iθ. The third

row can be deduced by the fact that applying K corresponds to �rst applying A1,

which multiplies the coordinate z1 by e2iφ and then applying Q, which relates the

z coordinates to the w coordinates.

The ridge F (K,B1) is de�ned by Im(eiφz1) = 0 and Im(eiθz2) = 0 and in a

neighbourhood of the ridge the images considered coincide with the sectors where

the values are either positive or negative. Combining the information of the table

one gets the tessellation as required. �

Ridges contained in complex lines. The ridges contained in complex lines

are F (K,Q), F (K−1, Q−1), F (K,R−1
0 ), F (K−1, R0), F (R0, R0), F (Q,Q−1),

F (B2, A
−1
0 ), F (B−1

1 , B2), F (B−1
1 , A0), F (B1, B

−1
1 ), F (B2, B

−1
2 ) and F (A0, A

−1
0 ).

The strategy for proving the tessellation property consists of showing that the

polyhedron (and suitable images) cover a sector of amplitude ψ and that the

cycle transformation acts on the orthogonal of the complex line as a rotation

through angle ψ. Then each power of the cycle transformation covers a sector

and since ψ is always 2π
a with a integer, we cover the whole space around the

ridge.

The cases of F (B1, A
−1
0 ), F (Q,Q−1) and F (K−1, R0) (and the ones in their

cycles) are an exception because the procedure is the same but after applying a

suitable change of coordinates. For completeness, we will include the proof of one

of these ridges.

Proposition 6.3.4. The polyhedra D, A0(D) and A0B2(D) and their images

under A0B2B1 tessellate around the ridge F (B1, A
−1
0 ).

Proof. The ridge F (B1, A
−1
0 ) is contained in L∗3(α, α, θ, φ). Remark that the

map e−2i(θ−α)A0B2B1 �xes the ridge pointwise and rotates its normal vector

n∗3(α, α, θ, φ) by e2i(α+φ−π).

The proof consists of changing the coordinates to have a similar situation as

for the other ridges contained in a complex line. The new coordinates will be in
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F(B2
-1,B1)

S(B
1)S(B

2
-1 )

D

B1

B1
(S
(B 2
-1 ))

S(B1
-1 )

B1(
D)

D

F(A0,B1
-1)

A 0
(B
1
(S
(B
2
-1 ))
)

A 0
(B
1
(D
))

D

A0(
S(B

1
-1 ))

A0(D
)

S(
A 0
)

S(A0
-1)

F(B2,A0
-1)

S(B2)

A0

Figure 6.4: The polyhedra around F (A−1
0 , B2).

terms of two vectors spanning the complex line and the vector normal to it, since

the complex line is the mirror of the transformation A0B2B1. More precisely,

writing
x1

x2

1

 =
sinφ sin(α− θ)− sinα sin(θ + φ)x2

sin θ sin(α+ φ)


0

−1

−1

+ x1


1

0

0



+
1− x2

sin θ sin(α+ φ)


0

sinφ sin(α− θ)

sin(θ + φ) sinα

 , (6.3.1)

the new coordinates are

ξ1 =
sinφ sin(α− θ)− sinα sin(θ + φ)x2

1− x2
,

ξ2 =
sin θ sin(α+ φ)x1

1− x2
.

(6.3.2)

This means that A0B2B1 acts on the new coordinates by sending (ξ1, ξ2) to

the point (e2i(α+φ−π)ξ1, ξ2). Since the con�gurations are as in Figure 6.4, if we

prove that D, A0(D) and A0B2(D) cover the sector de�ned by the argument of

ξ1 being between 0 and 2(α+φ−π), then the appropriate images under A0B2B1

will cover a neighbourhood of F (A−1
0 , B2).

First notice that if we are in S(B1), then x2 ∈ R and so arg ξ1 = 0. Moreover,

if we take a point z ∈ S(B−1
1 ), then z2 = eiθu with u ∈ R and the coordinate ξ1

of A0B2z is

ξ1 = e2i(α+φ−π) sin(θ + φ)u+ sinφ

sin(α− θ)u− sinα
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and so arg ξ1 = 2(α+ φ− π).

The last thing we need to prove is that such images are disjoint. The pairs

D,A0D and A0D,B2A0D are disjoint because of tessellation property around

F (A0, A
−1
0 ) and F (B2, B

−1
2 ). To prove that D and B2A0D are disjoint, it is

enough to prove that the argument of the coordinate ξ1 of points in D is smaller

than α+ φ− π, while the one of points in B2A0D is bigger than α+ φ− π.

If one writes the coordinate ξ1 in terms of the v-coordinates, then a point in

S(A0) has coordinate v1 = eiφ
′
u, with R 3 u ≤ − sin(2α)

sin(θ+φ) by Lemma 4.4.2 and

ξ1 = ei(α+φ−π) sinφ sin(α− θ)(− sin(2α)− sin(θ + φ)u)

sin(α− θ)u− sin(α+ φ)v2 + sin(α− φ)
.

Then

Im ei(α+φ−π)ξ1 = sinφ sin(α− θ)(− sin(2α)− sin(θ + φ)u) sin(α+ φ) Im v2 ≥ 0.

Similarly, if we take a point z ∈ S(B−1
2 ), then we have w2 = e−iθv, with

R 3 v ≤ sinφ
sin(θ+φ) and the coordinate ξ1 of A0z is

ξ1 = e−i(α+φ−π) sinφ

sinα
· sin(θ + φ)u− sinφ

sin(α+ φ)e−iφw1 + sin(α− θ)u− sinα

and

Im ei(α+φ−π)ξ1 =
sinφ

sinα
(sinφ− sin(θ + φ)u) sin(α+ φ) Im e−iφw2 ≤ 0.

Remark that we are using the fact that sin(α + φ) > 0, which is always the

case when the ridge does not collapse (i.e. l′ > 0 and �nite). �

6.3.3 The case k′ negative

When k′ is negative, after applying P−1 to the con�guration (α, α, θ, φ) we

obtain a con�guration where φ is negative. This means that we cannot describe

the con�guration with the same coordinates and triangles as before. This does not

stop us from doing everything in the same way, up to taking a slightly di�erent

con�guration of triangles. By construction (see Figure 4.1), once we developed

the cone metric on the plane, φ was the angle between the line passing through

v∗ and v0 and the line passing through v1 and v2 on the side of v0 and v1. When
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Figure 6.5: The con�guration of triangles when k′ is negative.

this angle is negative, we will take −φ to be the angle between the same two lines,

but on the side of v2 and v∗ (see Figure 6.5).

The area of the cone metric is the area of the shaded region Π. Using the

coordinates as in the �gure, this is

Area =
− sinφ sinα

sin(α− φ)
|t1|2 −

sin θ sinβ

sin(β − θ)
|t2|2 −

− sinφ sin θ

sin(θ + φ)
|t3|2.

Remembering that − sinφ is positive, this is still a Hermitian form of the same

signature, except that the roles of t1 and t3 are exchanged. This makes sense,

since now the triangles T2 and T3 are "inside" the triangle T1

When looking at the vertices, this tells us that the we cannot have the line

L01, since to make v0 and v1 collapse, one should take t1 = 0 and the whole

�gure would collapse. We will hence have a new vertex v∗23 obtained by taking

t1 = t3 = 0 and so by making v∗ ≡ v2 ≡ v3 instead of the three vertices y1,y9,y12.

In terms of our polyhedron D, this means that v0, v7 and v11 collapse to this

new point v∗23, which is on the boundary (i.e. it makes the area be 0) if k′ is

in�nite. All the other vertices remain the same and everything else in the study
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of the combinatorial structure of the polyhedron can be done in the exact same

way. In particular, as in Proposition 4.4.1, we still have that the vertices on L∗0

collapse to a single vertex if π − α′ − θ′ ≤ 0 (i.e. if d ≤ 0) and the vertices on

L∗1 collapse to a single vertex if α′ − θ′ − φ′ ≤ 0 (i.e. if l′ ≤ 0). Remark that the

vertices on L∗2 and L∗3 never collapse, as l > 0 in all our cases. This analysis

gives the cases in Theorem 6.3.1.
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Chapter 7

Volumes and commensurability

In this chapter we will calculate the volumes of the polyhedra using the orbifold

Euler characteristic. We will do this for the fundamental polyhedra built in the

2- and 3-fold symmetry cases and also in all the possible degenerations that we

mentioned in the main theorems. Finally we will show how the values found are

coherent with the commensurability theorems described in Section 3.5.

The volume of the quotient is a multiple of the orbifold Euler characteristic

χ
(

Γ�
Hn
C
)
. Seeing Section 8 of [McM17] for example, Section 8 of [McM17],

one can see that for a closed complex hyperbolic manifold M = Γ�
Hn
C, one has

Vol(M) = Cnχ(M), where Cn = (−4π)n

(n+1)! , when the metric is normalised as we

chose in Chapter 2. Since n = 2 here, the constant is 8π2

3 . The orbifold Euler

characteristic is calculated by taking the alternating sum of the reciprocal of the

order of the stabiliser of each orbit of cells.

7.1 Volumes of polyhedra arising from lattices with 3-

fold symmetry

In this section we will consider the lattices with 3-fold symmetry. Following

Theorem 5.4.1 we will have four cases according to the sign of l and d. We will

refer to the di�erent cases as lattices of type one, two, three and four as explained

in Section 3.4.1.

The following table refers to the lattices of fourth type and hence to the
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polyhedron D, where no facets collapse.

Orbit of the facet Stabiliser Order

z1, z2 〈A1, R1〉 kp

z3, z4, z5 〈P 3, R1〉 pd

z6, z10, z13 〈A′1, R1〉 pl

z8, z7, z9, z11, z12, z14 〈A1, A
′
1〉 kl

γ1,3, γ2,4 〈R1〉 p

γ1,6, γ2,10 〈R1〉 p

γ3,6, γ5,13, γ4,10 〈R1〉 p

γ2,8, γ1,9, γ1,12, γ2,14 〈A1〉 k

γ7,11, γ9,12, γ8,14 〈JR1〉 2k

γ9,10, γ12,13, γ6,7, γ13,14, γ6,8, γ10,11 〈A′2〉 l

γ7,8, γ12,14, γ9,11 〈JR−1
1 〉 2l

γ4,5, γ3,5, γ3,4 〈R2P 〉 2d

F (P, J), F (P−1, J−1) A1 k

F (R1, R
−1
1 ) R1 p

F (R2, R
−1
2 ) R2 p

F (P,R1), F (P,R−1
1 ), F (P−1, R2), F (P−1, R−1

2 ) 1 1

F (J,R1), F (J,R−1
1 ), F (J−1, R2), F (J−1, R−1

2 ) 1 1

F (P,R2), F (R1, R
−1
2 ), F (R−1

1 , P−1) 1 1

F (J,R−1
2 ), F (R1, J

−1), F (R−1
1 , R2) A′1 l

F (J, J−1) J 3

F (P, P−1) P 3d

S(J), S(J−1) 1 1

S(R1), S(R−1
1 ) 1 1

S(R2), S(R−1
2 ) 1 1

S(P ), S(P−1) 1 1

D 1 1

Table 7.1: The stabilisers for l and d positive and �nite.
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In this case, the vertices are all contained in two orthogonal complex lines.

This implies that the stabiliser is a direct product of two cyclic groups, each

generated by the complex re�ections in these lines. The ridges are stabilised by

the cycle relations, while the sides are �xed only by the identity, as the side pairing

maps send the sides one in the other.

To �nd the stabiliser of the edges requires slightly more work. If the map T

stabilises an edge, then either it will �x the endpoints or it will swap them. If we

can �nd a map that swaps them, then it will generate the maps that �x them. If

the endpoints are not in the same orbit, then there is no map that swaps them

and by analysing the action of the side pairing maps (i.e. the generators of the

group) on the vertices, we can verify that the stabilisers are as in the table. If

the vertices are in the same orbit, the same analysis will tell us if there are maps

swapping the endpoints or just �xing them. In this way it is easy to check that

the stabilisers are the above.

From the table it follows that the Euler orbifold characteristic is

χ

(
Γ�
H2
C
)

=
1

kp
+

1

pd
+

1

pl
+

1

kl
− 1

p
− 1

p
− 1

p
− 1

k
− 1

2k
− 1

l
− 1

2l
− 1

2d

+
1

k
+

1

p
+

1

p
+ 1 + 1 + 1 +

1

l
+

1

3
+

1

3d

=
1

kp
+

1

2p
− 3

p2
+

1

2p
− 1

p2
− 1

pk
+

1

2k
− 1

pk
− 1

k2

− 1

p
− 1

2k
− 1

4
+

1

2p
+

1

2k
− 1

4
+

3

2p
+

1

3
+

1

6
− 1

p

= − 4

p2
− 1

pk
− 1

k2
+

1

2k
+

1

p

=
p2 + 12p− 60

16p2
− t2

4
, (7.1.1)

where for the second equality we used 1
l = 1

2 −
1
p −

1
k and 1

d = 1
2 −

3
p , while in the

last one we used t = −1
2 + 1

p + 2
k .

The following tables correspond to the degenerations of the polyhedron for the

other types and are calculated in [Par09]. We will omit the details of the methods

used to calculate the orders of the stabilisers in the degenerate cases, since they

are similar to the ones that we will use in the next section to calculate orders for

the degenerate 2-fold symmetry case.
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Orbit of the facet Stabiliser Order

z1, z2 〈A1, R1〉 kp

z3 〈R1, R2〉 6d2

z6, z9, z12 〈A1, R1〉 2l2

γ1,3, γ2,3 〈R1〉 p

γ1,6, γ2,9 〈R1〉 p

γ3,6, γ5,12, γ3,9 〈R1〉 p

γ2,6, γ1,9, γ1,12, γ2,12 〈A1〉 k

γ6,9, γ9,12, γ6,12 〈JR1〉 2k

F (P, J), F (P−1, J−1) A1 k

F (R1, R
−1
1 ) R1 p

F (R2, R
−1
2 ) R2 p

F (P,R1), F (P,R−1
1 ), F (P−1, R2), F (P−1, R−1

2 ) 1 1

F (J,R1), F (J,R−1
1 ), F (J−1, R2), F (J−1, R−1

2 ) 1 1

F (P,R2), F (R1, R
−1
2 ), F (R−1

1 , P−1) 1 1

F (J, J−1) J 3

S(J), S(J−1) 1 1

S(R1), S(R−1
1 ) 1 1

S(R2), S(R−1
2 ) 1 1

S(P ), S(P−1) 1 1

D 1 1

Table 7.2: The stabilisers for l and d negative or in�nite.

The orbifold Euler characteristic in this case is

χ

(
Γ�
H2
C
)

=
1

2

(
2

(
1

2
− 1

p

)
− 1

k

)2

. (7.1.2)

Orbit of the facet Stabiliser Order

z1, z2 〈A1, R1〉 kp

z3 〈R1, R2〉 6d2

z6, z10, z13 〈A′1, R1〉 pl
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z8, z7, z9, z11, z12, z14 〈A1, A
′
1〉 kl

γ1,3, γ2,3 〈R1〉 p

γ1,6, γ2,10 〈R1〉 p

γ3,6, γ3,13, γ3,10 〈R1〉 p

γ2,8, γ1,9, γ1,12, γ2,14 〈A1〉 k

γ7,11, γ9,12, γ8,14 〈JR1〉 2k

γ9,10, γ12,13, γ6,7, γ13,14, γ6,8, γ10,11 〈A′2〉 l

γ7,8, γ12,14, γ9,11 〈JR−1
1 〉 2l

F (P, J), F (P−1, J−1) A1 k

F (R1, R
−1
1 ) R1 p

F (R2, R
−1
2 ) R2 p

F (P,R1), F (P,R−1
1 ), F (P−1, R2), F (P−1, R−1

2 ) 1 1

F (J,R1), F (J,R−1
1 ), F (J−1, R2), F (J−1, R−1

2 ) 1 1

F (P,R2), F (R1, R
−1
2 ), F (R−1

1 , P−1) 1 1

F (J,R−1
2 ), F (R1, J

−1), F (R−1
1 , R2) A′1 l

F (J, J−1) J 3

S(J), S(J−1) 1 1

S(R1), S(R−1
1 ) 1 1

S(R2), S(R−1
2 ) 1 1

S(P ), S(P−1) 1 1

D 1 1

Table 7.3: The stabilisers for l positive and �nite and d neg-

ative or in�nite.

The orbifold Euler characteristic in this case is

χ

(
Γ�
H2
C
)

=
1

2

(
1

2
− 1

p

)2

+
1

k

(
1

2
− 1

p
− 1

k

)
. (7.1.3)

Orbit of the facet Stabiliser Order

z1, z2 〈A1, R1〉 kp

z3, z4, z5 〈P 3, R1〉 pd

z6, z9, z12 〈A′1, R1〉 2l2
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γ1,3, γ2,4 〈R1〉 p

γ1,6, γ2,9 〈R1〉 p

γ3,6, γ5,12, γ4,9 〈R1〉 p

γ2,6, γ1,9, γ1,12, γ2,12 〈A1〉 k

γ6,9, γ9,12, γ6,12 〈JR1〉 2k

γ4,5, γ3,5, γ3,4 〈R2P 〉 2d

F (P, J), F (P−1, J−1) A1 k

F (R1, R
−1
1 ) R1 p

F (R2, R
−1
2 ) R2 p

F (P,R1), F (P,R−1
1 ), F (P−1, R2), F (P−1, R−1

2 ) 1 1

F (J,R1), F (J,R−1
1 ), F (J−1, R2), F (J−1, R−1

2 ) 1 1

F (P,R2), F (R1, R
−1
2 ), F (R−1

1 , P−1) 1 1

F (J, J−1) J 3

F (P, P−1) P 3d

S(J), S(J−1) 1 1

S(R1), S(R−1
1 ) 1 1

S(R2), S(R−1
2 ) 1 1

S(P ), S(P−1) 1 1

D 1 1

Table 7.4: The stabilisers for l negative or in�nite and d pos-

itive and �nite.

The orbifold Euler characteristic in this case is

χ

(
Γ�
H2
C
)

=
p− 5

2p2
. (7.1.4)

Finally, one needs to look at the case where k = p
2 as in Section 5.6. In this

case, one has l = d and hence they must either be both positive or both negative.

In fact, from Table 3.1 one can see that these 4-fold symmetry lattices are in the

�fth class of the table, except for one which is in the �rst class.

Remark 7.1.1. From Section 5.6, we recall that the fundamental domain we built

(and of which we calculated the volume here) contains four copies of a fundamental
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domain for the group with extra symmetry. Moreover, in the respective formulae

((7.1.2) for (5, 5/2) and (7.1.1) for the others) we need to substitute k with p
2 and

hence t with 5
p −

1
2 . Then one can see that the orbifold Euler characteristics will

be

χ

(
Γ�
H2
C
)

=
(p− 4)2

8p2
for (5, 5/2) and χ

(
Γ�
H2
C
)

=
p− 5

2p2
for the others.

Remark that all the values calculated here are coherent with the ones from

Sauter (see [Sau90]). To see this, let us start by looking at the lattices of �rst

and second type. In [Sau90], the volume is calculated in Theorems 5.1 and 5.2

respectively. The value found there is 3 times the value presented in this section.

This is because Sauter calculates the volume of Ω, which is a fundamental domain

for Γ modulo the subgroup generated by J , which has order 3. This is explained

later in Theorem 5.1′. For Livné lattices, the volume calculated by Sauter in

Theorem 5.3 is 6 times the one in this section. This is because Sauter calculates

the volume of Γµ�
H2
C, while we are calculating the volume of ΓµΣ

�H
2
C. This is, in

fact, the value in Theorem 5.7. Similarly, for the lattices of fourth type, Sauter

calculates the volume of Γµ�
H2
C in Theorem 5.3 and this is 6 times the volume in

this section, which is the same as the volume of ΓµΣ
�H

2
C calculated in Theorem

5.5 of Sauter. The values for the 4-fold symmetry case can be found in [Sau90]

in Theorem 5.8 for (5, 5/2) and and Theorem 5.6 for the others. Here, his value

coincides with ours, since it is calculated for ΓµΣ
�H

2
C also in [Sau90].

In order to relate Sauter's notations to ours, one needs to consider the following

information. The lattices of fourth type all have k = 3 and hence correspond to

ball 5-tuples (
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,
1

6
+

1

p
,
1

3
+

2

p

)
.

The Livné lattices all have k = 2 and hence correspond to ball 5-tuples(
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,

1

p
,
1

2
+

2

p

)
.

The lattices with 4-fold symmetry correspond to ball 5-tuples(
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,
1

2
− 1

p
,

4

p

)
.
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Remark that Sauter presents the ball 5-tuples as having the �rst 3 elements to

be equal, while here we have µ2 = µ3 = µ4 instead. Moreover, the condition

µi + µj < 1 for all i 6= j corresponds to saying that d and l are positive and

�nite. Moreover, the condition µ4 + µ5 ≥ 1 in Sauter (which, in our ordering of

the ball 5-tuple, translates to saying that µ1 +µ5 ≥ 1) corresponds to saying that

d is negative or in�nite, while the condition µ1 + µ5 ≥ 1 in Sauter (which, in our

ordering of the ball 5-tuple, translates to saying that µ2 + µ5 ≥ 1) corresponds

to saying that l is negative. The other two conditions (µ1 + µ2 < 1 and 2µ2 < 1

in our notation) always happen for the lattices we are considering, since p and k

are positive and �nite.

7.2 Volumes of polyhedra arising from lattices with 2-

fold symmetry

The same tables need to be done to calculate the volume of the 2-fold sym-

metry lattices (see Section 3.4.2) using the polyhedron D constructed in Section

6.2.

As in Theorem 6.3.1, we will have six cases, according to which parameters

are negative or in�nite. Following the order in the theorem, the cases are

1. When all values are positive and �nite;

2. When l′ and d are negative or in�nite;

3. When l and d are negative or in�nite;

4. When l, l′ and d are negative or in�nite;

5. When k′, l′ and d are negative or in�nite;

6. When k′ is negative or in�nite.

In the following tables we list the orbits of facets by dimension, calculate

the stabiliser of the �rst element in the orbit and give its order. The �rst table

represents Case 1. Later, we will explain how the table changes when considering

the degenerations of D and write down the corresponding tables.
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Case 1 contains (4, 4, 6) and (4, 4, 5). Its volume is calculated using the fol-

lowing table.

Orbit of the facet Stabiliser Order

v1,v2 〈A1, B1〉 kp

v3,v4 〈Q2, B1〉 pd

v16,v5 〈Q2, R0〉 p′d

v6,v10 〈R0K,B1〉 pl

v7,v11 〈R0K,A0〉 k′l

v8,v9,v17,v24 〈QK−1, R0K〉 kl

v18,v14,v20,v22,v23,v12 〈A0B2B1, A1〉 l′k

v19,v13, z21 〈A0B2B1, R0〉 p′l′

v0 〈R0, A0〉 k′p′

γ1,3, γ2,4 〈B1〉 p

γ1,6, γ2,10 〈B1〉 p

γ1,12, γ2,23, γ2,14, γ1,18 〈A1〉 k

γ3,5, γ4,16, γ4,5, γ3,16 〈Q2〉 d

γ3,6, γ4,10 〈B1〉 p

γ5,13, γ16,19, γ16,21 〈R0〉 p′

γ6,8, γ10,24, γ9,10, γ6,17 〈R0K〉 l

γ7,8, γ11,24, γ9,11, γ7,17 〈R0K〉 l

γ7,11 〈K〉 2k′

γ7,15, γ11,15 〈A0〉 k′

γ8,14, γ22,24, γ17,20, γ9,18, γ23,8, γ9,12 〈A1〉 k

γ12,13, γ21,22, γ18,19, γ21,23, γ19,20, γ13,14 〈B1A0B2〉 l′

γ12,14, γ22,23, γ18,20 〈B−1
2 K〉 2l′

γ15,19, γ15,21 〈R0〉 p′

F (K,Q), F (K−1, Q−1) 〈A1〉 k

F (K−1, R0), F (K,R−1
0 ) 〈KR0〉 l

F (R0, R
−1
0 ) 〈R0〉 p′

F (Q,Q−1) 〉Q〈 2d

F (B1, A
−1
0 ), F (B−1

1 , B2), F (B−1
2 , A0) 〈A0B2B1〉 l′
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F (B1, B
−1
1 ) 〈B1〉 p

F (B2, B
−1
2 ) 〈B2〉 p

F (A0, A
−1
0 ) 〈A′1〉 k′

F (K,B1), F (K,B−1
1 ), F (K−1, B−1

2 ), F (K−1, B2) 1 1

F (B1, Q), F (B2, Q
−1), F (B−1

2 , Q−1), F (B−1
1 , Q) 1 1

F (A0, R0), F (A−1
0 , R0), F (A−1

0 , R−1
0 ), F (A0, R

−1
0 ) 1 1

F (K,K−1), F (K−1, A0), F (K,A−1
0 ) 1 1

F (B1, R
−1
0 ), F (B−1

1 , Q−1), F (Q,R0) 1 1

F (R−1
0 , Q−1), F (Q,B2), F (B−1

2 , R0) 1 1

S(K), S(K−1) 1 1

S(Q), S(Q−1) 1 1

S(B2), S(B−1
2 ) 1 1

S(B1), S(B−1
1 ) 1 1

S(R0), S(R−1
0 ) 1 1

S(A0), S(A−1
0 ) 1 1

D 1 1

Table 7.5: The stabilisers when all values are positive and

�nite.

Then the orbifold Euler characteristic of D is given by

χ

(
Γ�
H2
C
)

=
1

kp
+

1

pd
+

1

dp′
+

1

pl
+

1

k′l
+

1

kl
+

1

l′k
+

1

p′l′
+

1

k′p′

− 1

2d
− 1

p
− 1

l
− 1

2k′
− 1

k
− 1

2l′
− 1

p′
+ 1 (7.2.1)

and the volume is 8π2

3 χ

(
Γ�
H2
C

)
.

While it is easy to see that the stabiliser of each facet contains the group in the

second column of the table, the converse inclusion requires slightly more work and

follows from the cycles in the Poincaré polyhedron theorem. More speci�cally, to

�nd the stabiliser, one needs to consider all the cycle transformations of the cycles

and keep track of each facet. For example, let us try to �nd the stabiliser of v1.

Examining the action of the side pairings, one can see that the only other vertex
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in the orbit of v1 is v2. The parts of cycles involving this orbit give the following

graph.

v1 v2B1

J ′

P ′
B2

Then one considers all the transformations inside cycles that stabilise the facet. In

the example, one has B1, P ′−1J ′ and P ′−1B2J
′, with their compositions, inverses

and powers. Now one needs to �nd the map or maps that generate all these maps.

Here, since P ′−1J ′ = A1 and P ′−1B2J
′ = B1A1, B1 and A1 generate all the maps.

Since the cycles are composed of side pairings, which are generators for the group,

the Poincaré polyhedron theorem guarantees that all the maps in the stabiliser

belong to this group and so in the example the stabiliser is exactly 〈B1, A1〉. All

the other stabilisers can be found using the same procedure.

Now we need to explain how to modify the table when calculating the orbifold

Euler characteristic for one of the degenerations of D.

• First consider the case when d is negative or in�nite. Then the vertices v3,

v4, v5 and v16 collapse to a single point. This means that the two orbits

containing them will collapse to only one orbit. The new vertex is sta-

bilised by 〈B1, R0〉 and we need to calculate its order. This is similar to the

proof of Proposition 2.3 of [DPP] (adapting the argument to complex re�ec-

tions with di�erent orders) and to the proof of 4.4, 4.5 and 4.6 in [Par09].

Now, R0 has eigenvalues eiθ
′
, 1, 1, while B1 has eigenvalues e2iθ, 1, 1. In

other words, remembering θ′ = 2π
p′ and θ = π

p , R0 and B1 have eigenvalues

e2iπ/p′ , 1, 1 and e2iπ/p, 1, 1 respectively. Now consider B1R0. It has eigen-

values 1, ei(α+θ),−ei(α+θ), which we can write as 1, e
i( π
p′+

π
p

+π
2

)
, e
i( π
p′+

π
p
−π

2
)

because θ′ = 2α − π. In this way the part acting on the sphere orthogonal

to the common eigenspace is in SU(2). This means that 〈R0, B1〉 is a cen-

tral extension of a (2, p, p′)-triangle group. Recalling that a (2, a, b)-triangle

group has order 4ab
2a+2b−ab and that the parameters are de�ned by (6.0.1), the

order of the triangle group is −2d. Since π − α− θ = π
d , the eigenvalues of

(R0A1)2 are e
2π
d , e

2π
d , 1 and hence the order of the centre is −d. So the order

of the stabiliser is 2d2. Moreover, the line of the table corresponding to the

edges between these three points (so the line of the orbit of γ3,5) needs to
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be eliminated and so does the line corresponding to the ridge F (Q,Q−1).

• Now consider the case of l′ negative or in�nite. We have three triples of

vertices collapsing to the three vertices v12, v18 and v21, where vi, vj

and vk are said to collapse to vi. They are in a unique orbit and v18

is stabilised by 〈R0, Q
−1K〉 = 〈R0, A1〉. We need to calculate its order.

Now, R0 has eigenvalues eiθ
′
, 1, 1, while A1 has eigenvalues e2iφ, 1, 1. In

other words, remembering θ′ = 2π
p′ and φ = π

k , R0 and A1 have eigenvalues

e2iπ/p′ , 1, 1 and e2iπ/k, 1, 1 respectively. Now consider R0A1. It has eigen-

values 1, ei(α+φ),−ei(α+φ), which we can write as 1, e
i( π
p′+

π
k

+π
2

)
, e
i( π
p′+

π
k
−π

2
).

This means that 〈R0, A1〉 is a central extension of a (2, p′, k)-triangle group,

which has order 4p′k
2p′+2k−p′k = −2l′. Since α + φ − π = π

l′ , the eigenvalues

of (R0A1)2 are e
2π
l′ , e

2π
l′ , 1 and hence the order of the centre is −l′. This

means that the order of 〈R0, A1〉 is 2l′2. Moreover, the two lines of the table

corresponding to edges between the three collapsing points need to be elim-

inated. In other words, the lines of the orbits of γ12,13 and γ12,14 disappear

from the table, together with the orbit of the three ridges that collapse.

• Now let us consider the parameter l. From Table 3.3 one can see that it

is never negative. Hence the only degeneration comes when it is in�nite.

This means that the two vertices obtained by triples collapsing are on the

boundary and hence their stabiliser will have in�nite order. Therefore the

orbit of these two vertices disappears in the calculation of the orbifold Euler

characteristic. Similarly, the two orbits of edges between collapsing vertices

disappear from the calculation (the orbits of γ6,8 and γ7,8) and so does the

orbit containing the two ridges that collapse to the two new points on the

boundary.

• When k′ is negative, the vertices v0, v7 and v11 collapse to a single point

v0 (see Section 6.3.3). This means that the two orbits of these three points

collapse to a single one. It is easy to see that the new point is stabilised

by K, A0 and R0, so the stabiliser is 〈R0,K〉. We now need to calculate

the order of this group. Since K2 = A−1
0 and A0 commutes with R0, the

centre is generated by K2, which has order −k′. Now, we know that R0K
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has order l, so 〈R0,K〉 modulo the centre is a (2, p′, l)-triangle group, which

has order −2k′. So the order of 〈R0,K〉 is 2k′2. Moreover, the lines of the

table corresponding to the two orbits of edges between these three points

(i.e. the orbit of γ7,11 and γ7,0) disappear in the calculation and so does the

line relative to F (A0, A
−1
0 ).

Below are the tables obtained modifying Table 7.5 in this way.

Case 2 contains (3, 4, 4), (2, 4, 3) and (3, 3, 4) and their volumes are calculated

using the following table.

Orbit of the facet Stabiliser Order

v1,v2 〈A1, B1〉 kp

v3 〈R0, B1〉 2d2

v6,v10 〈R0K,B1〉 pl

v7,v11 〈R0K,A0〉 k′l

v8,v9,v17,v24 〈KA1K
−1, R0K〉 kl

v18,v12, z21 〈A1, R0〉 2l′2

v0 〈R0, A0〉 k′p′

γ1,3, γ2,3 〈B1〉 p

γ1,6, γ2,10 〈B1〉 p

γ1,12, γ2,21, γ2,12, γ1,18 〈A1〉 k

γ3,6, γ3,10 〈B1〉 p

γ3,12, γ3,18, γ3,21 〈R0〉 p′

γ6,8, γ10,24, γ9,10, γ6,17 〈R0K〉 l

γ7,8, γ11,24, γ9,11, γ7,17 〈R0K〉 l

γ7,11 〈K〉 2k′

γ7,15, γ11,15 〈A0〉 k′

γ8,12, γ21,24, γ17,18, γ9,18, γ21,8, γ9,12 〈A1〉 k

γ15,18, γ15,21 〈R0〉 p′

F (K,Q), F (K−1, Q−1) A1 k

F (K−1, R0), F (K,R−1
0 ) KR0 l

F (R0, R
−1
0 ) R0 p′

F (B1, B
−1
1 ) B1 p
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F (B2, B
−1
2 ) B2 p

F (A0, A
−1
0 ) A′1 k′

F (K,B1), F (K,B−1
1 ), F (K−1, B−1

2 ), F (K−1, B2) 1 1

F (B1, Q), F (B2, Q
−1), F (B−1

2 , Q−1), F (B−1
1 , Q) 1 1

F (A0, R0), F (A−1
0 , R0), F (A−1

0 , R−1
0 ), F (A0, R

−1
0 ) 1 1

F (K,K−1), F (K−1, A0), F (K,A−1
0 ) 1 1

F (B1, R
−1
0 ), F (B−1

1 , Q−1), F (Q,R0) 1 1

F (R−1
0 , Q−1), F (Q,B2), F (B−1

2 , R0) 1 1

S(K), S(K−1) 1 1

S(Q), S(Q−1) 1 1

S(B2), S(B−1
2 ) 1 1

S(B1), S(B−1
1 ) 1 1

S(R0), S(R−1
0 ) 1 1

S(A0), S(A−1
0 ) 1 1

D 1 1

Table 7.6: The stabilisers for l′ and d negative or in�nite.

Then the orbifold Euler characteristic of D is given by

χ

(
Γ�
H2
C
)

=
1

kp
+

1

2d2
+

1

pl
+

1

k′l
+

1

kl
+

1

2l′2
+

1

k′p′

− 1

k
− 1

p
− 1

p′
− 1

l
− 1

2k′
+ 1. (7.2.2)

Case 3 contains lattice (2, 6, 6) and its volume is calculated using the following

table.

Orbit of the facet Stabiliser Order

v1,v2 〈A1, B1〉 kp

v3,v4 〈R0, B1〉 2d2

v6,v9 〈A0, A1, B1〉 ∞

v18,v14,v20,v22,v23,v12 〈A0B2B1, A1〉 l′k

v19,v13, z21 〈A0B2B1, R0〉 p′l′

v0 〈R0, A0〉 k′p′
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γ1,3, γ2,3 〈B1〉 p

γ1,6, γ2,9 〈B1〉 p

γ1,12, γ2,23, γ2,14, γ1,18 〈A1〉 k

γ3,6, γ3,9 〈B1〉 p

γ5,13, γ16,19, γ16,21 〈R0〉 p′

γ6,9 〈K〉 2k′

γ6,15, γ9,15 〈A0〉 k′

γ6,14, γ22,9, γ6,20, γ9,18, γ23,8, γ9,12 〈A1〉 k

γ12,13, γ21,22, γ18,19, γ21,23, γ19,20, γ13,14 〈B1A0B2〉 l′

γ12,14, γ22,23, γ18,20 〈B−1
2 K〉 2l′

γ15,19, γ15,21 〈R0〉 p′

F (K,Q), F (K−1, Q−1) A1 k

F (R0, R
−1
0 ) R0 p′

F (B1, A
−1
0 ), F (B−1

1 , B2), F (B−1
2 , A0) A0B2B1 l′

F (B1, B
−1
1 ) B1 p

F (B2, B
−1
2 ) B2 p

F (A0, A
−1
0 ) A′1 k′

F (K,B1), F (K,B−1
1 ), F (K−1, B−1

2 ), F (K−1, B2) 1 1

F (B1, Q), F (B2, Q
−1), F (B−1

2 , Q−1), F (B−1
1 , Q) 1 1

F (A0, R0), F (A−1
0 , R0), F (A−1

0 , R−1
0 ), F (A0, R

−1
0 ) 1 1

F (K,K−1), F (K−1, A0), F (K,A−1
0 ) 1 1

F (B1, R
−1
0 ), F (B−1

1 , Q−1), F (Q,R0) 1 1

F (R−1
0 , Q−1), F (Q,B2), F (B−1

2 , R0) 1 1

S(K), S(K−1) 1 1

S(Q), S(Q−1) 1 1

S(B2), S(B−1
2 ) 1 1

S(B1), S(B−1
1 ) 1 1

S(R0), S(R−1
0 ) 1 1

S(A0), S(A−1
0 ) 1 1

D 1 1
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Table 7.7: The stabilisers when l and d are negative or in�nite.

Then the orbifold Euler characteristic of D is given by

χ

(
Γ�
H2
C
)

=
1

kp
+

1

2d2
+

1

l′k
+

1

p′l′
+

1

k′p′

− 1

k
− 1

p
− 1

p′
− 1

2k′
− 1

2l′
+ 1. (7.2.3)

Case 4 contains (2, 3, 3) and its volume is calculated using the following table.

Orbit of the facet Stabiliser Order

v1,v2 〈A1, B1〉 kp

v3 〈R0, B1〉 2d2

v6,v9 〈A0, A1, B1〉 ∞

v18,v12,v21 〈R0, A1〉 2l′2

v0 〈R0, A0〉 k′p′

γ1,3, γ2,3 〈B1〉 p

γ1,6, γ2,10 〈B1〉 p

γ1,12, γ2,21, γ2,12, γ1,18 〈A1〉 k

γ3,6, γ3,9 〈B1〉 p

γ3,12, γ3,18, γ3,20 〈R0〉 p′

γ6,9 〈K〉 2k′

γ6,15, γ9,15 〈A0〉 k′

γ6,12, γ21,9, γ6,18, γ9,18, γ21,6, γ9,12 〈A1〉 k

γ15,19, γ15,21 〈R0〉 p′

F (K,Q), F (K−1, Q−1) A1 k

F (R0, R
−1
0 ) R0 p′

F (B1, B
−1
1 ) B1 p

F (B2, B
−1
2 ) B2 p

F (A0, A
−1
0 ) A′1 k′

F (K,B1), F (K,B−1
1 ), F (K−1, B−1

2 ), F (K−1, B2) 1 1

F (B1, Q), F (B2, Q
−1), F (B−1

2 , Q−1), F (B−1
1 , Q) 1 1

F (A0, R0), F (A−1
0 , R0), F (A−1

0 , R−1
0 ), F (A0, R

−1
0 ) 1 1
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F (K,K−1), F (K−1, A0), F (K,A−1
0 ) 1 1

F (B1, R
−1
0 ), F (B−1

1 , Q−1), F (Q,R0) 1 1

F (R−1
0 , Q−1), F (Q,B2), F (B−1

2 , R0) 1 1

S(K), S(K−1) 1 1

S(Q), S(Q−1) 1 1

S(B2), S(B−1
2 ) 1 1

S(B1), S(B−1
1 ) 1 1

S(R0), S(R−1
0 ) 1 1

S(A0), S(A−1
0 ) 1 1

D 1 1

Table 7.8: The stabilisers when l, l′ and d are negative or

in�nite.

Then the orbifold Euler characteristic of D is given by

χ

(
Γ�
H2
C
)

=
1

kp
+

1

2d2
+

1

2l′2
+

1

k′p′

− 1

p
− 1

2k′
− 1

k
− 1

p′
+ 1. (7.2.4)

Case 5 contains (3, 3, 3), (4, 4, 3) and (6, 6, 3) and their volumes are calculated

using the following table.

Orbit of the facet Stabiliser Order

v1,v2 〈A1, B1〉 kp

v3 〈R0, B1〉 2d2

v6,v10 〈R0K,B1〉 pl

v8,v9,v17,v24 〈KA1K
−1, R0K〉 kl

v18,v12, z21 〈A1, R0〉 2l′2

v0 〈R0,K〉 2k′2

γ1,3, γ2,3 〈B1〉 p

γ1,6, γ2,10 〈B1〉 p

γ1,12, γ2,21, γ2,12, γ1,18 〈A1〉 k

γ3,6, γ3,10 〈B1〉 p
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γ3,12, γ3,18, γ3,21 〈R0〉 p′

γ6,8, γ10,24, γ9,10, γ6,17 〈R0K〉 l

γ7,8, γ11,24, γ9,11, γ7,17 〈R0K〉 l

γ8,12, γ21,24, γ17,18, γ9,18, γ21,8, γ9,12 〈A1〉 k

γ15,18, γ15,21 〈R0〉 p′

F (K,Q), F (K−1, Q−1) A1 k

F (K−1, R0), F (K,R−1
0 ) KR0 l

F (R0, R
−1
0 ) R0 p′

F (B1, B
−1
1 ) B1 p

F (B2, B
−1
2 ) B2 p

F (K,B1), F (K,B−1
1 ), F (K−1, B−1

2 ), F (K−1, B2) 1 1

F (B1, Q), F (B2, Q
−1), F (B−1

2 , Q−1), F (B−1
1 , Q) 1 1

F (A0, R0), F (A−1
0 , R0), F (A−1

0 , R−1
0 ), F (A0, R

−1
0 ) 1 1

F (K,K−1), F (K−1, A0), F (K,A−1
0 ) 1 1

F (B1, R
−1
0 ), F (B−1

1 , Q−1), F (Q,R0) 1 1

F (R−1
0 , Q−1), F (Q,B2), F (B−1

2 , R0) 1 1

S(K), S(K−1) 1 1

S(Q), S(Q−1) 1 1

S(B2), S(B−1
2 ) 1 1

S(B1), S(B−1
1 ) 1 1

S(R0), S(R−1
0 ) 1 1

S(A0), S(A−1
0 ) 1 1

D 1 1

Table 7.9: The stabilisers for k′, l′ and d negative or in�nite.

Then the orbifold Euler characteristic of D is given by

χ

(
Γ�
H2
C
)

=
1

kp
+

1

2d2
+

1

pl
+

1

kl
+

1

2l′2
+

1

2k′2

− 1

k
− 1

p
− 1

p′
− 1

l
+ 1. (7.2.5)

Similarly, Case 6 contains lattices (18, 18, 9), (12, 12, 6) and (10, 10, 5) and

their volumes are calculated using the following table.
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Orbit of the facet Stabiliser Order

v1,v2 〈A1, B1〉 kp

v3,v4 〈Q2, B1〉 pd

v16,v5 〈Q2, R0〉 p′d

v6,v10 〈R0K,B1〉 pl

v8,v9,v17,v24 〈QK−1, R0K〉 kl

v18,v14,v20,v22,v23,v12 〈A0B2B1, A1〉 l′k

v19,v13, z21 〈A0B2B1, R0〉 p′l′

v0 〈R0,K〉 2k′2

γ1,3, γ2,4 〈B1〉 p

γ1,6, γ2,10 〈B1〉 p

γ1,12, γ2,23, γ2,14, γ1,18 〈A1〉 k

γ3,5, γ4,16, γ4,5, γ3,16 〈Q2〉 d

γ3,6, γ4,10 〈B1〉 p

γ5,13, γ16,19, γ16,21 〈R0〉 p′

γ6,8, γ10,24, γ9,10, γ6,17 〈R0K〉 l

γ7,8, γ11,24, γ9,11, γ7,17 〈R0K〉 l

γ8,14, γ22,24, γ17,20, γ9,18, γ23,8, γ9,12 〈A1〉 k

γ12,13, γ21,22, γ18,19, γ21,23, γ19,20, γ13,14 〈B1A0B2〉 l′

γ12,14, γ22,23, γ18,20 〈B−1
2 K〉 2l′

γ15,19, γ15,21 〈R0〉 p′

F (K,Q), F (K−1, Q−1) A1 k

F (K−1, R0), F (K,R−1
0 ) KR0 l

F (R0, R
−1
0 ) R0 p′

F (Q,Q−1) Q 2d

F (B1, A
−1
0 ), F (B−1

1 , B2), F (B−1
2 , A0) A0B2B1 l′

F (B1, B
−1
1 ) B1 p

F (B2, B
−1
2 ) B2 p

F (K,B1), F (K,B−1
1 ), F (K−1, B−1

2 ), F (K−1, B2) 1 1

F (B1, Q), F (B2, Q
−1), F (B−1

2 , Q−1), F (B−1
1 , Q) 1 1
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F (A0, R0), F (A−1
0 , R0), F (A−1

0 , R−1
0 ), F (A0, R

−1
0 ) 1 1

F (K,K−1), F (K−1, A0), F (K,A−1
0 ) 1 1

F (B1, R
−1
0 ), F (B−1

1 , Q−1), F (Q,R0) 1 1

F (R−1
0 , Q−1), F (Q,B2), F (B−1

2 , R0) 1 1

S(K), S(K−1) 1 1

S(Q), S(Q−1) 1 1

S(B2), S(B−1
2 ) 1 1

S(B1), S(B−1
1 ) 1 1

S(R0), S(R−1
0 ) 1 1

S(A0), S(A−1
0 ) 1 1

D 1 1

Table 7.10: The stabilisers when k′ is negative or in�nite.

Then the orbifold Euler characteristic of D is given by

χ

(
Γ�
H2
C
)

=
1

kp
+

1

pd
+

1

dp′
+

1

pl
+

1

2k′2
+

1

kl
+

1

l′k
+

1

p′l′

− 1

k
− 1

2d
− 1

p
− 1

p′
− 1

l
− 1

2l′
+ 1. (7.2.6)

Remark 7.2.1. Remark that the the calculation of the Euler orbifold characteristic

is done for lattices with 2-fold symmetry but forgetting that some of them have

2-2-fold symmetry. These are the lattices in the �rst class of Table 3.2. In other

words, we are calculating the volume of ΓµΣ1 , with Σ1 = 〈(3, 4)〉 ∼= Z2, rather than

ΓµΣ2 , with Σ2 = 〈(1, 2), (3, 4)〉 ∼= Z2×Z2, which is the full symmetry group of the

ball 5-tuple. When we have the extra symmetry, our polyhedron will contain two

copies of a fundamental domain for the lattices (see Remark 7.1.1 for a similar

discussion). The Euler orbifold characteristic of the fundamental domain for ΓµΣ,

with Σ being the full symmetry group of the ball 5-tuple as usual, will hence be

half the one found with the formulae.
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7.3 Commensurability and volumes

In Section 3.5 we reproduced some commensurability theorems given by Sauter

in [Sau90] and by Deligne and Mostow in [DM93] (that can be also found in

[Par09]), together with a commensurability theorem from [DPP]. Here we will

show how the volumes found in the previous sections of this chapter are coherent

with the theorems. We will only explain the commensurability relations involving

2-fold symmetry lattices in detail, since the others can be found in the �nal pages

of [Sau90]. At the end of this section we will give a full table summarising all

the commensurability theorems known between the lattices that we are treating,

including the 3-fold symmetry ones.

Each of the following tables is obtained using one of the theorems in Section

3.5. On the right hand side and on the left hand side of the vertical line one

can �nd the pair of lattices that are commensurable. We will identify the lattice

by using the parameters (p, k) for 3-fold lattices and the parameters (p, k, p′) for

the 2-fold symmetry ones, as usual. Moreover, in the two central columns, we

will give the value of the orbifold Euler characteristic χ, as calculated with the

formulae in the �rst sections of this chapter. Then it will be clear that the values

exactly di�er only by the index of commensurability.

From Theorem 3.5.1 we get the following isomorphisms

Lattice χ χ Lattice

(2,6,6) 1
23

1
3·22 (6,6)

(2,3,3) 1
3·23

1
3·22 (3,3,3)

(2,4,3) 7
25·3

7
24·3 (3,3,4)

Remark that it looks like the χ's do not coincide. For the 2-2-fold symmetry

case, this is because the isomorphism in the theorem keeps into account the 2-2-

fold symmetry, while, as mentioned in Remark 7.2.1, our formulae only consider

the 2-fold symmetry. This gives the extra factor of 2.

For the case on the �rst line of the table, Theorem 3.5.1 considers (a, a, b, b, 2−

2a− 2b). However, (6, 6) also has a 3-fold symmetry. Meanwhile, our calculation

ignores that the ball 5-tuple also has a 4-fold symmetry. In other words, the
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factor of 3 comes from Theorem 3.5.1 ignoring the 3-fold symmetry that arises

when a = b and the factor of 2 comes from the fact that we ignore the extra

symmetry given by a = b (i.e. by the 4-fold symmetry).

From Corollary 3.5.2 one gets the following commensurability:

Lattice χ χ Lattice

(6,6,3) 1
3·23

1
32·23 (6,2)

(10,10,5) 3
23·5

1
23·5 (10,2)

(12,12,6) 7
25·3

7
25·32 (12,2)

(18,18,9) 13
23·33

13
23·34 (18,2)

These have index 3 because the theorem from which we deduced the corollary

does not take into account the 3-fold symmetry (see above). The value of p to

use in the corollary is indeed the p in (p, k) and in (p, k, p′).

Similarly, from Corollary 3.5.3 one gets the following commensurability:

Lattice χ χ Lattice

(4,4,3) 1
3·23

1
32·23 (4,3)

(4,4,5) 11·32
25·52

11·3
25·52 (4,5)

(4,4,6) 13
25·3

13
25·32 (4,6)

The value of k to use in the corollary is indeed the k in (p, k) (which is equal to

the k′ in (p, k, p′)).

From Proposition 3.5.5 and recalling that the lattice associated to the ball

5-tuple µ = (3, 3, 5, 6, 7)/12 is the one we called (3, 4, 4), one gets the following

commensurability:

Lattice χ χ Lattice

(3,4,4) 17
3·25

17
25
T (4, E2)

Below is a summary of all the commensurability theorems known for the lat-

tices we are treating in this work. The number above the arrow denotes the

theorem from which the commensurability is deduced. The number below the

arrow indicates the index of the intersection in each of the groups.
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(2, 6, 6)
3.5.1←−→
3:2

(6, 6)

(2, 3, 3)
3.5.1←−→
1:2

(3, 3, 3)

(2, 4, 3)
3.5.1←−→
1:2

(3, 3, 4)

(6, 6, 3)
3.5.2←−→
3:1

(6, 2)
3.5.2←−→
1:4

(6, 6)
3.5.4←−→
4:1

(3, 6)

(10, 10, 5)
3.5.2←−→
3:1

(10, 2)
3.5.2←−→
1:1

(10, 5)

(12, 12, 6)
3.5.2←−→
3:1

(12, 2)
3.5.2←−→
1:1

(12, 6)

(18, 18, 9)
3.5.2←−→
3:1

(18, 2)
3.5.2←−→
1:4

(18, 3)
3.5.4←−→
4:1

(3, 9)
3.5.4←−→
1:4

(9, 3)

(4, 4, 3)
3.5.3←−→
3:1

(4, 3)
3.5.4←−→
4:1

(3, 4)

(4, 4, 5)
3.5.3←−→
3:1

(4, 5)

(4, 4, 6)
3.5.3←−→
3:1

(4, 6)

(3, 4, 4)
3.5.5←−→
1:3

T (4, E2)

(3, 5)
3.5.4←−→
1:4

(5, 3)

(3, 7)
3.5.4←−→
1:4

(7, 3)

(3, 8)
3.5.4←−→
1:4

(8, 3)

(3, 10)
3.5.4←−→
1:4

(10, 3)

(3, 12)
3.5.4←−→
1:4

(12, 3)

(5, 5/2)
3.5.2←−→
1:1

(5, 2)

(7, 7/2)
3.5.2←−→
1:1

(7, 2)

(9, 9/2)
3.5.2←−→
1:1

(9, 2)

(4, 8)
3.5.3←−→
2:1

(8, 4)
3.5.2←−→
1:1

(8, 2)

(4, 4)

(5, 4)

(5, 5)

(6, 4)

Remark that the commensurability between lattices with 3-fold symmetry

coming from Corollary 3.5.2 can give index 1 or index 4 according to whether we

are considering the 4-fold symmetry given by k = p
2 or not. Commensurability

coming from Theorem 3.5.4 always has index 4. The only commensurability
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coming from Corollary 3.5.3 which has not been explained earlier in this section

is the one for (4, 8) and (8, 4). In these cases, the index is 2 because the ball

5-tuple associated to (4, 8) has a 3-2-fold symmetry that we do not consider in

the calculation.
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Chapter 8

Future work

We believe that this construction can be extended further. In particular, our

future research plans go in two di�erent directions.

On one hand, we would like to use the same construction to consider the

lattices in PU(3, 1), found by Deligne-Mostow and Thurston. In fact, one of

the two non-arithmetic lattices known in PU(3, 1) arises from cone metrics on

a sphere with 6 cone singularities and it would be very interesting to build a

fundamental domain for it. This would also allow us to calculate the volume and

have an explicit presentation for it. Preliminary works for this case are in Section

8.1.

Moreover, Veech proved (see [Vee93] and Theorem 8.2.1 below) that the mod-

uli space of a torus with cone singularities of a certain type has a complex hyper-

bolic structure. Recently, Ghazouani and Pirio (see [GP17] and Theorem 8.2.2

below) analysed the cone manifold arising as metric completion of this moduli

space, using a similar procedure as Thurston's. We hope to use a similar ge-

ometrical representation to get good coordinates and eventually �nd some new

(potentially non-arithmetic) lattices by building explicitly the cone manifold de-

scribing the moduli space. More details on the preliminary works for this case are

in Section 8.2.
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8.1 Dimension 3

In this section we will �rst introduce the Deligne-Mostow lattices we would like

to treat and explain how to parametrise them using complex coordinates. Then

we will present the moves we are considering as potential generators of the lattices

and we will start studying what happens when pairs of cone points coalesce.

8.1.1 Lattices and con�gurations

We are considering some of the Deligne-Mostow lattices that can be found in

the appendix of [Thu98]. Among these, we take the ones of dimension 3 (ball 6-

tuples). Later, we will work speci�cally on the ones which have a 4-fold symmetry

(i.e. the ball 6-tuples which have at least 4 equal values).

In the following table we give the ball 6-tuple in the �rst 6 columns and the

corresponding values of the angles de�ned as

φ = π(1− µ1 − µ2), θ = π(1− µ3 − µ4), ψ = π(1− µ5 − µ6).

Their geometric meaning can be deduced by Figure 8.1.

µ1 µ2 µ3 µ4 µ5 µ6 θ φ ψ A/NA

1/3 1/3 1/3 1/3 1/3 1/3 π/3 π/3 π/3 A

3/4 1/4 1/4 1/4 1/4 1/4 π/2 0 π/2 A

1/2 1/4 1/4 1/4 1/4 1/2 π/2 π/4 π/4 A

5/6 1/6 1/6 1/6 1/6 1/2 2π/3 0 π/3 A

2/3 1/6 1/6 1/6 1/6 2/3 2π/3 π/6 π/6 A

1/2 1/3 1/3 1/3 1/3 1/6 π/3 π/6 π/2 A

3/8 3/8 3/8 3/8 3/8 1/8 π/4 π/4 π/2 A

3/5 3/10 3/10 3/10 3/10 1/5 2π/5 π/10 π/2 A

5/10 3/10 3/10 3/10 3/10 3/10 2π/5 2π/5 π/5 A

3/4 1/6 1/6 1/6 1/6 7/12 2π/3 π/12 π/4 A

7/12 1/4 1/4 1/4 1/4 5/12 π/2 π/6 π/3 NA

5/6 1/3 1/6 1/6 1/6 1/3 2π/3 −π/6 π/2 A

2/3 1/2 1/6 1/6 1/6 1/3 2π/3 −π/6 π/2 A
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1/2 1/2 1/6 1/6 1/6 1/2 2π/3 0 π/3 A

2/3 1/6 1/3 1/3 1/3 1/6 π/3 π/6 π/2 A

1/2 1/3 1/3 1/6 1/6 1/2 π/2 π/6 π/3 A

5/12 5/12 1/4 1/4 1/4 5/12 π/2 π/6 π/3 A

7/12 7/12 1/6 1/6 1/6 1/3 2π/3 −π/6 π/2 A

Table 8.1: Lattices of dimension 3.

When φ is negative, we will need to consider a di�erent con�guration, in the

same way as we did in Section 6.3.3. When φ is 0, we expect to need to use a

di�erent parametrisation and this will be done in future research.

From now on we restrict ourselves to the 4-fold symmetry case. The discussion

can easily be generalised to the other cases (see Remark 8.1.1).

From the ball 6-tuple (µ1, . . . , µ6) we are choosing θi = 2π(1 − µi) to be the

angles around the singularities of the cone metric on the sphere. Then θ, φ and

ψ are de�ned so that the cone metric on the sphere has angles

(π − θ + 2φ, π + θ, π + θ, π + θ, π + θ, π − θ + 2ψ) .

They also satisfy θ+φ+ψ = π, as the ball 6-tuple veri�es
∑
µi = 2 (see (3.2.1)).

We also notice that the angle φ is always the smallest.

Finally, we point out that the angles θ and ψ are always positive, while φ can

be 0. This case will be studied separately in the future.

The decagon Π describing the cone metric can be described as in the left hand

side of Figure 8.1, by taking two big black triangles T4 and T−4 and removing

from each of them a copy of a green triangle T1 and T−1, a copy of a red triangle

T2 and T−2 and a copy of a blue triangle T3 and T−3. Then one side of each of

the triangles will be our coordinates zi and we will allow the sides to be complex

numbers (i.e. vectors) as in the right hand side of Figure 8.1, just like in previous

works.

We can now calculate the Hermitian form that gives the area of the polygon
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T3

T2

T-2

T1

T-1

T-4

T4

π

θ

θ

φ ψ

v-1

v1

v-2

v2

v0

v-3

v3

v-4

v4

v*

πz1

z4

z3

C'

C

BA=0

C'

C

z1 z4 z3

-iei(φ+θ/2)z2

BA=0

-iei(φ+θ/2)z2

T-3

T3

T2

T-2

T1

T-1 T-4

T4

T-3

Figure 8.1: The con�guration.

Π. We give it in matrix form as

H =


− sinψ(sinφ+sin(θ−ψ))

sin θ 0 0 0

0 −1+cos θ
2 sin θ 0 0

0 0 − sinφ(sinφ+sin(θ−φ))
sin θ 0

0 0 0 sinψ sinφ
sin(ψ+φ)

 .

It has signature (3,1), as sin θ, sinψ, sinφ and sin(θ + φ) are positive and so are

sinψ + sin(θ − ψ) = sin θ cosψ + sinψ(1− cos θ) and sinφ+ sin(θ − φ).

We will also need the coordinates of the vertices and of some additional points

in the con�guration in Figure 8.1.
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A = 0,

B = z4,

C =
sinψ

sin θ
eiφz4,

C ′ =
sinψ

sin θ
e−iφz4,

v0 = B − z1 = z4 − z1,

v1 = z4 −
cos(θ/2− ψ)

cos(θ/2)
e−iψz1,

v−1 = z4 −
cos(θ/2− ψ)

cos(θ/2)
eiψz1,

v2 =
sinψ

sin θ
eiφz4 +

cos(θ/2)

sin θ
e−iψz2,

v−2 =
sinψ

sin θ
e−iφz4 +

cos(θ/2)

sin θ
eiψz2,

v3 = v2 − z2 =
sinψ

sin θ
eiφz4 −

cos(θ/2)

sin θ
eiφz2,

v−3 =
sinψ

sin θ
e−iφz4 −

cos(θ/2)

sin θ
e−iφz2,

v4 =
cos(θ/2− φ)

cos(θ/2)
eiφz3,

v−4 =
cos(θ/2− φ)

cos(θ/2)
e−iφz3,

v∗ = z3.

8.1.2 Moves

The moves are the automorphisms of the sphere swapping the vertices. When

the cone angles are the same, we will denote the move that swaps vi and vj as

Rij . When the two angles are not the same, we consider the move swapping the

cone points twice in the spirit of Thurston's butter�y move and we will call the

move Aij .

The move sending v1 to v−1 (i.e. swapping v1 and v0 twice) is given by the
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matrix

A01 =


e2iψ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .

The move swapping v2 and v3 (by sending v3 on v2) is given by the matrix

R23 =


1 0 0 0

0 eiθ 0 0

0 0 1 0

0 0 0 1

 .

The move sending v−4 to v4 (i.e. swapping v4 and v∗ twice) is given by the

matrix

A4∗ =


1 0 0 0

0 1 0 0

0 0 e2iφ 0

0 0 0 1

 .

Now, the move R12 swapping v1 and v2 can be found by solving the equations

v′∗ = v∗, v′2 = v1, v′3 = v3, v′4 = v4,

v′0 = v0, v′−1 = v−2, v′−3 = v−3, v′−4 = v−4.

The matrix of the move is

R12 =
1

sinψ(1− e−iθ)
·

·



− sin θe−iψ − cos θ2 0 sinφ

− sinψ(sinψ+sin(θ−ψ))

cos θ
2

− sinψe−iθ 0 sinφ sinψ

cos θ
2

0 0 sinψ(1− e−iθ) 0

− sinψ − sin(θ − ψ) − cos θ2 0 sinψ + sin θeiψ


.

In the case of R34 we cannot do exactly the same thing. This is because we

are changing z3, so we are changing the position of the origin, seen as the common

vertex of T3 and T4. To do this, we need to change the coordinates, imposing that

the origin of our coordinates is in B instead. This simply means subtracting B
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from the coordinates of each vertex. This will allow us to proceed in the same

way, because z1 remains unchanged when applying R34.

We hence ask that, in the new coordinates,

v′∗ = v∗, v′1 = v1, v′2 = v2, v′4 = v3,

v′0 = v0, v′−1 = v−1, v′−2 = v−2, v′−3 = v−4.

By solving the equations we get the matrix

R34 =
1

sinφ(1− e−iθ)
·

·



sinφ(1− e−iθ) 0 0 0

0 − sinφe−iθ − sinφ(sinφ+sin(θ−φ))

cos θ
2

sinφ sinψ

cos θ
2

0 − cos θ2 − sin θe−iφ sinψ

0 − cos θ2 − sinφ− sin(θ − φ) sinφ+ sin θeiφ


.

We will also consider P1 = R23R12 and P2 = R23R34 and their inverses. They

are as follows.

P1 =
1

sinψ(1− e−iθ)
·

·



− sin θe−iψ − cos θ2 0 sinφ

− sinψ(sinψ+sin(θ−ψ))

cos θ
2

eiθ − sinψ 0 sinφ sinψ

cos θ
2

eiθ

0 0 sinψ(1− e−iθ) 0

− sinψ − sin(θ − ψ) − cos θ2 0 sinψ + sin θeiψ


,

P2 =
1

sinφ(1− e−iθ)
·

·



sinφ(1− e−iθ) 0 0 0

0 − sinφ − sinφ(sinφ+sin(θ−φ))

cos θ
2

eiθ sinφ sinψ

cos θ
2

eiθ

0 − cos θ2 − sin θe−iφ sinψ

0 − cos θ2 − sinφ− sin(θ − φ) sinφ+ sin θeiφ


,
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P−1
1 =

1

sinψ(1− eiθ)
·

·



− sin θeiψ − cos θ2e
−iθ 0 sinφ

− sinψ(sinψ+sin(θ−ψ))

cos θ
2

− sinψ 0 sinφ sinψ

cos θ
2

0 0 sinψ(1− eiθ) 0

− sinψ − sin(θ − ψ) − cos θ2e
−iθ 0 sinψ + sin θe−iψ


,

P−1
2 =

1

sinφ(1− eiθ)
·

·



sinφ(1− eiθ) 0 0 0

0 − sinφ − sinφ(sinφ+sin(θ−φ))

cos θ
2

sinφ sinψ

cos θ
2

0 − cos θ2e
−iθ − sin θeiφ sinψ

0 − cos θ2e
−iθ − sinφ− sin(θ − φ) sinφ+ sin θe−iφ


.

In the following, we will keep track of the following three sets of coordinates

z =


z1

z2

z3

1

 , u = P1z, v = P2z.

8.1.3 Collapsing cone points

The vertices of the polyhedron are made by making pairs of vertices of Π

collapse. To have a vertex �i.e. a 0-dimensional facet� we need 6 conditions,

hence 3 equations in the z-coordinates. We will now give the equations of the

subspaces obtained when a pair of vertices of Π collapses. Intersecting them, we

will have the coordinates of the vertices of the polyhedron. The subspace Li,j is

the one obtained by collapsing vertices vi and vj , with i, j ∈ {0, 1, 2, 3, 4, ∗}. Note

that 2 sin θ
2 cos

(
θ
2 − φ

)
= sinφ+ sin(θ − φ) and −e−i(θ+φ) = ei(π−θ−φ) = eiψ.
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Subspace Vertices collapsing Equation on z-coordinates

L∗0 v0 = v∗ z1 + z3 = 1

L∗1 v∗ = v−1
sinψ+sin(θ−ψ)

sin θ eiψz1 + z3 = 1

L∗2 v∗ = v−2
cos θ

2
sinψ e

−iθz2 + sin θ
sinψe

iφz3 = 1

L∗3 v∗ = v−3
cos θ

2
sinψ z2 + sin θ

sinψe
iφz3 = 1

L∗4 v∗ = v4 = v−4 z3 = 0

L01 v0 = v1 = v−1 z1 = 0

L02 v0 = v2
sin θ
sinφe

iψz1 +
cos θ

2
sinφ z2 = 1

L03 v0 = v3
sin θ
sinφe

iψz1 +
cos θ

2
sinφ e

−iθz2 = 1

L04 v0 = v4 z1 + sinφ+sin(θ−φ)
sin θ eiφz3 = 1

L12 v1 = v2
sinψ+sin(θ−ψ)

sinφ z1 +
cos θ

2
sinφ z2 = 1

L13 v1 = v3
sinψ+sin(θ−ψ)

sinφ z1 +
cos θ

2
sinφ e

−iθz2 = 1

L14 v−1 = v4
sinψ+sin(θ−ψ)

sin θ eiψz1 + sinφ+sin(θ−φ)
sin θ eiφz3 = 1

L23 v2 = v3 z2 = 0

L24 v−2 = v−4
cos θ

2
sinψ e

−iθz2 + sinφ+sin(θ−φ)
sinψ z3 = 1

L34 v3 = v4
cos θ

2
sinψ z2 + sinφ+sin(θ−φ)

sinψ z3 = 1

Subspace Vertices collapsing Equation on u-coordinates

L∗0 v0 = v∗ u1 + u3 = 1

L∗1 v∗ = v−1
cos θ

2
sinψ e

−iθu2 + sin θ
sinψe

iφu3 = 1

L∗2 v∗ = v−2
cos θ

2
sinψ u2 + sin θ

sinψe
iφu3 = 1

L∗3 v∗ = v−3
sinψ+sin(θ−ψ)

sin θ e−iψu1 + e2iφu3 = 1
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L∗4 v∗ = v4 = v−4 u3 = 0

L01 v0 = v1 = v−1
sin θ
sinφe

−iψu1 +
cos θ

2
sinφ u2 = 1

L02 v0 = v2
sin θ
sinφe

−iψu1 +
cos θ

2
sinφ e

−iθu2 = 1

L03 v0 = v3 u1 = 0

L04 v0 = v4 u1 + sinφ+sin(θ−φ)
sin θ eiφu3 = 1

L12 v1 = v2 u2 = 0

L13 v1 = v3
sinψ+sin(θ−ψ)

sinφ u1 +
cos θ

2
sinφ u2 = 1

L14 v−1 = v4
cos θ

2
sinψ e

−iθu2 + sinφ+sin(θ−φ)
sinψ e2iφu3 = 1

L23 v2 = v3
sinψ+sin(θ−ψ)

sinφ u1 +
cos θ

2
sinφ e

−iθu2 = 1

L24 v−2 = v−4
cos θ

2
sinψ u2 + sinφ+sin(θ−φ)

sinψ u3 = 1

L34 v3 = v4
sinψ+sin(θ−ψ)

sin θ e−iψu1 + sinφ+sin(θ−φ)
sin θ eiφu3 = 1

Subspace Vertices collapsing Equation on v-coordinates

L∗0 v0 = v∗ v1 + v3 = 1

L∗1 v∗ = v−1
sinψ+sin(θ−ψ)

sin θ eiψv1 + v3 = 1

L∗2 v∗ = v−2 v3 = 0

L∗3 v∗ = v−3
cos θ

2
sinψ e

−iθv2 + sin θ
sinψe

−iφv3 = 1

L∗4 v∗ = v4 = v−4
cos θ

2
sinψ v2 + sin θ

sinψe
−iφv3 = 1

L01 v0 = v1 = v−1 v1 = 0

L02 v0 = v2 e2iψv1 + sinφ+sin(θ−φ)
sin θ e−iφv3 = 1

L03 v0 = v3
sin θ
sinφe

iψv1 +
cos θ

2
sinφ v2 = 1

L04 v0 = v4
sin θ
sinφe

iψv1 +
cos θ

2
sinφ e

−iθv2 = 1
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L12 v1 = v2
sinψ+sin(θ−ψ)

sin θ eiψv1 + sinφ+sin(θ−φ)
sin θ e−iφv3 = 1

L13 v1 = v3
sinψ+sin(θ−ψ)

sinφ v1 +
cos θ

2
sinφ v2 = 1

L14 v−1 = v4
sinψ+sin(θ−ψ)

sinφ e2iψu1 +
cos θ

2
sinψ e

−iθv2 = 1

L23 v2 = v3
cos θ

2
sinψ e

−iθv2 + sinφ+sin(θ−φ)
sinψ v3 = 1

L24 v−2 = v−4
cos θ

2
sinψ v2 + sinφ+sin(θ−φ)

sinψ v3 = 1

L34 v3 = v4 v2 = 0

Remark that when calculating the coordinates of these subspaces, we are mak-

ing a choice each time on whether to choose vi or v−i for collapsing the coordinates.

We keep in mind that potentially this might need to be changed, or both cases

might need to be considered.

The next step will be to remark that in each of these subspaces, we are in one

of the situations previously analysed in this work, i.e. we have a sphere with �ve

cone singularities and either 3- or 2-fold symmetry. This means that we want to

�nd one of the polyhedra previously constructed as real 4-dimensional facets of

the cone manifold that we are trying to build. In other words we need to check

that all the vertices of those polyhedra are included in the list of new vertices.

Remark that the new con�gurations is parametrised in a slightly di�erent way,

in order to have the parameters to be real and positive when they are along the

positive real axis, but the same vertices of Π will be collapsing.

For example, on L∗4, when z3 = 0, we are exactly in the 3-fold symmetry

case, as v1, v2 and v3 have same cone angle. Then ~Av−1, ~v−2C ′ and ~AC ′ will

have the same role as z1, z2 and z3 in Chapter 5 respectively. We hence need all

the con�gurations we had in the 14 vertices of the 3-fold symmetry case to be

contained in the subspace L∗4.

On L23, when z2 = 0, we have a 2-fold symmetry con�guration of type 3©.

Again, the roles of the coordinates change and involve some vertices not marked

in out �gure, but it is possible to describe the relation. Moreover, only the
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con�gurations given by one of the three copies the form the fundamental domain

in Chapter 6 can be easily seen as degenerations of the triangles, but it is possible

to use the moves to �nd the others.

With a similar analysis for each 2-dimensional subspace, one can �nd the

potential vertices of the new polyhedron describing the cone manifold in the three

dimensional case.

Then one will need to better understand the bisectors in higher dimensional

complex hyperbolic space in order to use similar arguments like the ones previously

described.

Remark 8.1.1. In fact, this is also true for the 3-dimensional lattices without 4-

fold symmetry. When collapsing pairs of cone points, we can still �nd a lower

dimensional lattice with 2- or 3-fold symmetry. More speci�cally, we have one of

three cases:

• either the collapsing is not possible and we have a degeneration similar to

Proposition 4.4.1,

• or we �nd one of the lattices in Tables 3.1 and 3.2,

• or we get one of the lattices we had excluded which still satisfy condition

ΣINT, i.e. one of the lattices with p =∞.

To cover the third case, we expect that we will need to change the parameters

in a similar way as we will have to do for the cases where φ = 0 previously

mentioned. In fact, this means that certain sides of Π are parallel, so they do

not close up to form a triangle, but they form a strip that is in�nite only on one

side (i.e. a "triangle" with two parallel sides). One idea is to use the width of

the strip as a new parameter, instead of one of the (now in�nite) sides of the

triangle. In other words, to use the side of the triangle which remains �nite.

When φ = 0 and this parameter is 0 (i.e. we collapse the two cone points v0

and v1), the area of the polygon goes to zero and certain other cone points are

forced to collapse. Therefore, the set of such con�gurations where these two cone

points have collapsed corresponds to a point in the ideal boundary, just like in
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the 2-dimensional case, when one of the orders of generators was ∞ and hence

the corresponding angle was 0.

8.2 Tori with cone points

The starting point of this construction is a theorem from Veech which can

be found in [Vee93] and generalises some basic results of Thurston to higher

genus surfaces. First remark that we can de�ne a (inde�nite when p > 1) complex

hyperbolic space of type (p, q) in the same way we de�ned Hn
C, where the signature

of the Hermitian form is (p, q). We will denote such a space as CHp+q−1
p and the

group of linear maps preserving the Hermitian structure as PU(p, q). When p = 1,

this is the complex hyperbolic space as de�ned in Chapter 2. Now Veech's theorem

states that moduli spaces of higher genus surfaces has a (CHp+q−1
p , PU(p, q))-

structure (see 3.2.4 for the de�nition of an (X,G)-structure), provided that we

�x the values of the holonomy. This means not only �xing the angle of the cone

singularities, as we did for the case of the sphere, but also �xing the holonomy

along curves around the genus. Roughly speaking, each part of moduli space with

�xed holonomy is called a leaf of the Veech foliation of the moduli space. More

precisely, we have the following theorem.

Theorem 8.2.1. Let S be a surface of genus g with N cone singularities whose

angles satisfy the Gauss-Bonnet formula (3.2.1) and are not integer multiples

of 2π. A leaf of the Veech foliation of S with its area form has a geometric

structure modelled on (CHp+q−1
p , PU(p, q)), for p and q two integers such that

p+ q = 2g +N − 2. Moreover, p = 1 in exactly two cases:

• when g = 0 and all cone angles are between 0 and 2π, giving a (N − 3)-

dimensional complex hyperbolic structure,

• when g = 1, one cone angle is between 2π and 4π and the others are all

between 0 and 2π, giving a (N−1)-dimensional complex hyperbolic structure.

The �rst case is the one studied by Thurston. Recently, in [GP17], Ghazouani

and Pirio showed that the same analysis on the metric completion is also possible
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for the second case. In particular, for the second case of the theorem above, they

proved the following.

Theorem 8.2.2. Fixing a rational linear holonomy, the metric completion of a

leaf of the Veech foliation is a complex hyperbolic cone manifold of dimension

N −1 with �nite volume, which has a strati�ed structure. The number of strata is

�nite and they are �nite covers of lower dimensional leaves. Appropriate surgeries

explain how to pass between strata and allow calculation the cone angles around

each stratum. These surgeries include inverting the collapsing of cone points (as

in Thurston's work) as well as pinching along curves around the genus.

This is a starting point to try and �nd a similar procedure to the one used

in this work to explicitly describe the cone manifold and potentially �nd (new)

complex hyperbolic lattices as holonomy of the cone manifold.

The �rst case we have been investigating is the one of a torus with three cone

singularities.

8.2.1 The con�gurations

The �rst step is to choose three parameters that geometrically describe the

leaf in the moduli space.

Let the cone angles be 2θ ∈ (2π, 4π), 2φ, 2ψ ∈ (0, 2π). Note that 2θ + 2φ +

2ψ = 6π, so they satisfy the Gauss-Bonnet formula (3.2.1). Let 2α and 2β be the

two holonomy angles along two curves around the genus as in Figure 8.2.

Similarly to the case of the sphere, we cut the torus along straight arcs between

cone points in such a way that the result is an octagon with vertices in (positive)

cyclic order v1, v2, v3, v4, v−4, v−3, v−2, v−1. The side pairing map identi�es

sides (v−j , v−(j+1)) with (vj , vj+1) for j = 1, 2, 3 and also identi�es (v−1, v1) with

(v−4, v4). The vertex on the torus obtained by glueing v2 and v−2 is the one of

angle 2φ, while the vertex obtained by v3 and v−3 is the one of angle 2ψ. Then

the holonomy 2α is also the angle between the line through v2, v3 and the line

through v−2, v−3, while the holonomy 2β is the angle between the line through

v1, v−1 and the line through v4, v−4. We assume that the �rst pair of lines meet

on the side of v2 and the second pair of lines meet on the side of v1 (see Figure
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Figure 8.2: The special octagon and the parameters.

8.2).

Let us �rst assume that the cut from v1 to v2 and then to v3 cuts the cone

angle at v2 in half.

Let X± be the intersection point of the line through v±1, v±2 and the line

through v±3, v±4. Moreover, let A be the intersection point of the line through

v1, v2 and the line through v−1, v−2 and 0 the intersection point of the line

through X+, v3 and the line through X−, v−3. Let 0 be the origin and A be on

the negative imaginary axis.

Let z1, z2 and z3 be such that:

−iei(φ−α)z1 =
−−→
Av1, −iei(φ−α)z2 =

−−−→
v2X+, −iei(φ−α)z3 =

−−−→
AX+. (8.2.1)

Remark that the −iei(φ−α) factor means that the zi are coherent with our co-

ordinates space (i.e. the zi's are real and positive when horizontal and pointing

towards right). Let us call the triangles formed by 0, A, X± as T±3, the triangle
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formed by v1, v−1, A as T1, the triangle formed by v4, v−4, 0 as T−1 and the

triangles formed by v±3, v±2, X± as T±2.

Let us now consider the general case. The con�guration will look like Figure

8.3. To determine what the zi's are, we need to �rst �nd the points A and X±.

Then they can be de�ned as above. Since the angles of the triangles T2, T3 and T1

are all determined by the initial cone angles, one only needs to glue these triangles

on the sides v1v−1 and v2v3 to obtain the points X+ and A. Then the zi's are

de�ned by (8.2.1).

In view of this, we can write the coordinates of the vertices of our triangles as

v1 = −iei(φ−α)z1 + i
sin(φ+ ψ)

sin(α+ ψ)
z3,

v−1 = −ie−i(φ−α)z1 + i
sin(φ+ ψ)

sin(α+ ψ)
z3,

v2 = iei(φ−α)z2 + i
sin(φ− α)

sin(α+ ψ)
e−i(α+ψ)z3,

v−2 = ie−i(φ−α)z2 + i
sin(φ− α)

sin(α+ ψ)
ei(α+ψ)z3,

v3 = −i sin(φ)

sin(ψ)
e−i(α+ψ)z2 + i

sin(φ− α)

sin(α+ ψ)
e−i(α+ψ)z3,

v−3 = −i sin(φ)

sin(ψ)
ei(α+ψ)z2 + i

sin(φ− α)

sin(α+ ψ)
ei(α+ψ)z3,

v4 = i
sin(φ− α)

sin(α+ ψ)
e−i(α+ψ+2β)z1,

v−4 = i
sin(φ− α)

sin(α+ ψ)
ei(α+ψ+2β)z1,

A = i
sin(φ+ ψ)

sin(α+ ψ)
z3

X+ = i
sin(φ− α)

sin(α+ ψ)
e−i(α+ψ)z3.

The area of the octagon is then

A = Area(T3) + Area(T−3)−Area(T2)−Area(T−2)−Area(T1)−Area(T−1)

= 2 Area(T3)− 2 Area(T2)−Area(T1)−Area(T−1)

= −sin(φ− α) sin(φ+ ψ)

sin(α+ ψ)
|z3|2 +

sin(φ) sin(φ+ ψ)

sin(ψ)
|z2|2

+
sin(φ− α) sin(φ+ ψ)

sin(α+ ψ)
|z1|2
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Figure 8.3: The generic octagon and the parameters.

Note that the angle θ can be given in terms of φ and ψ as θ = 3π − φ − ψ

because of the curvature formula, therefore the quadruple (α, β, φ, ψ) determine

uniquely the con�guration. For each prescribed initial datum of cone angles and

holonomy (α, β, φ, ψ), we can parametrise the con�guration of points by the triplet

(z1, z2, z3) and vice versa, for each triplet of complex parameters which form a

con�guration with positive area, there is a corresponding cone metric on the torus.

8.2.2 Moves

Some of the moves will be similar to those in the previous case. As before, we

will have some moves swapping cone points and we will take the square when the

two cone points have di�erent angle. The moves swapping cone points vi and vj

will be denoted as Rij , while doing this twice will be denoted as Aij . Moreover,

there will be additional moves corresponding to the two Dehn twists around the

genus.
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The move swapping v2 and v3. We perform a move where v2 and v3 are

swapped, called R23. Note that this changes a con�guration in the following way

(α, β, φ, ψ)
R237−−→ (α′, β′, φ′, ψ′) = (α+ ψ − φ, β, ψ, φ)

After the move, v±1, v±4, x± stay �xed and v′−2 = v−3, v′3 = v2. Hence

z′1 = z1, z′2 = −sin(ψ)

sin(φ)
ei(φ+ψ)z2, z′3 = z3

and

R23 =


1 0 0

0 − sin(φ)
sin(ψ)e

i(φ+ψ) 0

0 0 1

 .

When φ 6= ψ in order to get an isometry we must perform this move twice.

Hence we obtain

A23 =


1 0 0

0 e2i(φ+ψ) 0

0 0 1

 .

The shift and the other moves swapping cone points. We want to apply

a change of coordinates T that cyclically shifts the order of the cone points. In

other words, if the cone angles are (φ, ψ, θ) in this order, the new angles will be

(ψ, θ, φ). It will change the con�guration in the following way

(α, β, φ, ψ)
T7−→ (α′, β′, φ′, ψ′) = (α+ ψ − π, β, ψ, 3π − φ− ψ).

Now we want to give the new parameters z′i in terms of the previous ones.

If we look at T±i, for i = 1, 2, 3, one can see that their angles are not the same

as before. For example, the angle at the origin of T−1 was π − α − ψ, but

π − α′ − ψ′ = −(π + α − φ) < 0. This means that T−1 is "pointing downwards"

and the con�guration of the triangles is as shown in the right hand side of Figure

8.4.

Now, we want to �nd a relation between the new coordinates z′i and the old

ones zi. To do this, we need to solve the equations

v′1 = v2 v′2 = v3, v′3 = v4.
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v'3=v4

z1

z2

z3

Figure 8.4: The change of coordinates that shifts the angles upwards.

Note that the new coordinates z′i describe the con�guration in terms of the new

axis, which has O′ as the origin. Moreover, the negative imaginary axis is along

the line from O′ pointing towards A′. Let γ be the angle between the line from

O′ to A′ and the vertical and

−→v =
sin(φ+ ψ)

sin(α+ ψ)
e−2iβz1,

then the coordinates of the vi with respect to the new axis [vi]2 are given by

[vi]2 = e−iγ ([vi]1 −−→v ) .

Taking the coordinates of the v′i as expressed in the above equations, but with
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the angles primed, we need to solve

v′1 = e−iαz′1 −
sin(φ)

sin(φ− α)
z′3

‖

v2 = e−iγ
(
ei(φ−α)z2 +

sin(φ− α)

sin(α+ ψ)
ei(φ−α)z3 −

sin(φ+ ψ)

sin(α+ ψ)
e−2iβz1

)
,

v′2 = −e−iαz′2 −
sin(α)

sin(φ− α)
ei(φ−α)z′3

‖

v3 = e−iγ
(
− sin(φ)

sin(ψ)
e−i(α+ψ)z2 +

sin(φ− α)

sin(α+ ψ)
e−i(α+ψ)z3 −

sin(φ+ ψ)

sin(α+ ψ)
e−2iβz1

)
,

v′3 = − sin(ψ)

sin(φ+ ψ)
ei(φ−α)z′2 −

sin(α)

sin(φ− α)
ei(φ−α)z′3

‖

v4 = e−iγ
(
−ei(φ−α−2βz1

)
,

which gives

eiγz′1 = −sin(φ− α)

sin(α)
z2 +

sin(φ− α)

sin(α)
z3,

eiγz′2 =
sin(φ− α) sin(φ+ ψ)

sin(α+ ψ) sin(φ)
e−2iβz1 +

sin(φ+ ψ)

sin(ψ)
z2 −

sin(φ− α) sin(φ+ ψ)

sin(α+ ψ) sin(φ)
z3,

eiγz′3 =
sin(φ− α) sin(φ+ ψ)

sin(α+ ψ) sin(φ)
e−2iβz1 −

sin(ψ − α)

sin(α)
z2 +

sin(ψ) sin2(φ− α)

sin(α+ ψ) sin(φ) sin(α)
z3.

Alternatively, one can geometrically recover the vectors
−−→
A′v′1,

−−→
v′2v
′
3 and

−−−→
A′x′+

in terms of
−−→
Av1,

−−→v2v3 and
−−→
Ax+ and use (8.2.1) to obtain the same equations as

above, remembering that since the axis is rotated by eiγ , the coordinates need to

be changed accordingly.

Therefore the shift is given by the matrix

T (α, β, φ, ψ) = e−iγ


0 − sin(φ−α)

sin(α)
sin(φ−α)

sin(α)

sin(φ+ψ) sin(φ−α)
sin(φ) sin(α+ψ) e−2iβ sin(φ+ψ)

sin(ψ) − sin(φ+ψ) sin(φ−α)
sin(φ) sin(α+ψ)

sin(φ+ψ) sin(φ−α)
sin(φ) sin(α+ψ) e−2iβ − sin(φ−α)

sin(α)
sin(ψ) sin2(φ−α)

sin(φ) sin(α) sin(α+ψ)

 .

Moreover,

T−1(α, β, φ, ψ) = eiγ


0 sin(φ)

sin(ψ)e
2iβ − sin(φ−α)

sin(α+ψ)e
2iβ

sin(φ)
sin(ψ)

sin(φ)
sin(ψ) − sin(φ)

sin(ψ)

sin(α) sin(φ+ψ)
sin(ψ) sin(α+ψ)

sin(φ)
sin(ψ) − sin(φ)

sin(ψ)

 .
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Figure 8.5: The inverse shift.

Remark 8.2.3. These matrices seem not to be the inverse of each other. This is

because all the matrices we gave so far are applied to the con�guration (α, β, φ, ψ).

The matrix T−1 is, in fact, the inverse shift on φ, ψ and θ rather than the inverse

matrix of T . In fact, T and T−1 satisfy T−1(α′, φ′, ψ′) = T−1(α+ψ−π, β, ψ, 3π−

φ− ψ) = (T (α, φ, ψ))−1, where (α, φ, ψ)
T7−→ (α′, φ′, ψ′) and

T−1(α+ ψ − π, β, ψ, 3π − φ− ψ) =

eiγ


0 sin(ψ)

sin(φ+ψ)e
2iβ sin(α)

sin(φ−α)e
2iβ

sin(ψ)
sin(φ+ψ)

sin(ψ)
sin(φ+ψ) − sin(ψ)

sin(φ+ψ)

sin(φ) sin(α+ψ)
sin(φ+ψ) sin(φ−α)

sin(ψ)
sin(φ+ψ) − sin(ψ)

sin(φ+ψ)

 .

This is the same idea as in the 2-fold symmetry case (see Chapter 6).

Then the move swapping v3 and v4 is A34 = T−1A23T , with the matrices

applied to the correct con�guration according to

(α, β, φ, ψ)
T7−→ (α+ ψ − π, β, ψ, 3π − φ− ψ)

R237−−→ (2π + α− φ− ψ, β, 3π − φ− ψ,ψ)

R237−−→ (α+ ψ − π, β, ψ, 3π − φ− ψ)
T−1

7−−→ (α, β, φ, ψ).
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Figure 8.6: The �rst Dehn twist.

Similarly, we can �nd the move swapping v1 and v2 by shifting in the other

direction. Remembering that the shift in the other direction is T−1, the move will

be A12 = TA23T
−1, where the matrices are applied to the correct con�guration

according to:

(α, β, φ, ψ)
T−1

7−−→ (π + α− φ, β, 3π − φ− ψ, φ)

R237−−→ (φ+ ψ + α− 2π, β, φ, 3π − φ− ψ)

R237−−→ (π + α− φ, β, 3π − φ− ψ, φ)
T7−→ (α, β, φ, ψ).

The geometric meaning of the inverse shift is shown in Figure 8.5.

The moves given by Dehn twists around the genus The next move we

want to consider is a Dehn twist D1 along a closed curve starting from the side

v1v−1 and closing up on the corresponding point of v4v−4, without intersecting

other sides of the octagon. This is shown in Figure 8.6.

Again, one can express the vectors
−−→
A′v′1,

−−→
v′2v
′
3 and

−−−→
A′x′+ in terms of

−−→
Av1,

−−→v2v3

and
−−→
Ax+ and use (8.2.1) to �nd the matrix of the move. Let η be the angle

between the new negative imaginary axis (along the line through O′ and A′) and
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Figure 8.7: The second Dehn twist.

the vertical axis in our original coordinates. Then, de�ning

A = 2 sin(α+ β − φ) sin(α+ ψ),

one can see that the Dehn twist is

D1 =
ie−iη

A
·

·


− sin(φ− α)e−i(α+ψ+2β) − sin(α+ ψ)e−i(φ−α) 0 sin(φ+ ψ)

0 Aei(α−β−φ) 0

− sin(φ+ ψ)e−2iβ 0 −iAe−2iβ − sin(θ + ψ)

 .

Remark that

(α, β, φ, ψ)
D17−−→ (α+ β, β, φ, ψ).

Finally, we want to consider a Dehn twist D2 along the closed curve starting

from the side v−2v−3 and closing up on the corresponding point of v2v3, without

intersecting other sides of the octagon. This is shown in Figure 8.7. Let ξ be the

angle between the old and new axis and de�ne

A = sin(φ+ ψ),
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then the Dehn twist is

D2 =
ie−iξe−iα

A
·

·


Ae−i(φ−2α) 0 0

0 −i
(
sin(φ)e−i(α+ψ) + sin(ψ)e−i(φ−α)

)
2 sin(ψ) sin(φ− α)

0 2 sin(φ) sin(α+ ψ) 2 sin(ψ) sin(φ− α)− iAeiα

 .

Remark that

(α, β, φ, ψ)
D27−−→ (α, α+ β, φ, ψ).

The next step would be to start studying what happens when pairs of cone

points coalesce, as well as what happens when we pinch a curve around the genus,

in order to study the lower dimensional strata of the cone manifold.

Our idea is to keep track of the main coordinates, as well as the two coordinates

obtained after applying the two shifts, so that all the moves are reasonable to

study.

My plans for my future research are to keep developing the ideas presented in

this chapter to get a better understanding of complex hyperbolic lattices.
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