Examen Jeudi 23 mai

Durée 3h. Téléphones, ordinateurs, documents interdits. Toute réponse doit être justifiée.

Exercice 1. Soit $f: \mathbb{R}^2 \to \mathbb{R}$ définie par $f(x,y) = x^4 + (6-4y)x^2 + 5y^2 - 16y + 16$.

- (1) Déterminer les points critiques de f.
- (2) Calculer la matrice hessienne de f en chacun de ces points critiques, et en déduire leur nature (max/min local, pt de selle).
- (3) Montrer que $f(x,y) 3 \ge 0$ pour tout $(x,y) \in \mathbb{R}^2$. Que peut-on en déduire sur la globalité des extrema trouvés ci-dessus?
- (4) Montrer que $f(x,y) \longrightarrow +\infty$ lorsque $||(x,y)|| \to +\infty$, et retrouver le résultat précédent.

Exercice 2. On considère le système différentiel Y'=AY, où $Y(t)=\begin{pmatrix} y_1(t)\\y_2(t) \end{pmatrix}$ et

$$A(t) = \begin{pmatrix} 1 + \sin t & 1 \\ 0 & \sin t \end{pmatrix}.$$

- (1) Rappeler le résultat du cours sur la structure de l'ensemble des solutions définies sur \mathbb{R} .
- (2) Donner la solution générale du système (par la méthode de votre choix).
- (3) Exprimer la solution du problème de Cauchy Y' = AY, $Y(0) = \binom{a}{b}$, pour tout $a, b \in \mathbb{R}$.
- (4) Rappeler la définition de l'exponentielle e^B d'une matrice B.
- (5) Rappeler le résultat du cours relatif à la résolution des systèmes linéaires homogènes (à coefficients non-constants) en termes d'exponentielles de matrices.
- (6) Déduire de ce qui précède la valeur de $M(t) = e^{\int_0^t A(s)ds}$, pour $t \in \mathbb{R}$ quelconque.

Exercice 3. Soit $V = M_n(\mathbb{R})$ l'espace vectoriel des matrices $n \times n$ rélles, et $||| \cdot |||$ la norme triple déduite de la norme euclidienne sur \mathbb{R}^n . Soit U un ouvert de V et $f: U \to V$ une application différentiable.

- (1) Décrire une norme ||(H, K)|| sur l'espace vectoriel $V \times V$, et montrer qu'il s'agit bien d'une norme.
- (2) Rappeler la définition de $f(x) = o_{x\to a}(g(x))$ et montrer, en utilisant la norme du point précédent, que $HK = o_{(H,K)\to(0,0)}(||(H,K)||)$.
- (3) Montrer que l'application $\Psi: V \times V \to V$ définie par $\Psi(A, B) = AB$ est différentiable sur tout $V \times V$, et donner une formule pour sa différentielle $d\Psi(A, B)$.
- (4) Soit $\Phi: U \to V \times V$ définie par $\Phi(A) = (A, f(A))$. Montrer que Φ est différentiable sur U, et décrire sa différentielle.
- (5) Ici et dans la suite de cette exercice, on note $U \subset V$ le sous-ensemble de matrices inversibles. Montrer que U est un ouvert.

Dans la suite ce cet exercice, $f: U \to V$ désigne l'application qui envoie A sur son inverse A^{-1} . On admet ici que f est différentiable (ceci découle des formules pour l'inverse en termes de cofacteurs, qui sont des fonctions polynomiales en les coefficients).

- (6) En utilisant les questions précédentes et le fait que $A \cdot f(A) = I_n$ pour tout $A \in U$, donner une formule pour df(A).
- (7) Montrer que f(U) = U, et que f est un difféomorphisme de classe C^1 .
- (8) Montrer que f est un difféomorphisme de classe C^{∞} .

Pour la question suivante, on rappelle les formules suivantes (dont l'utilisation n'est pas obligatoire):

$$K(s(t)) = \frac{||\gamma'(t) \wedge \gamma''(t)||}{||\gamma'(t)||^3}, \qquad T(s(t)) = -\frac{\langle \gamma'(t) \wedge \gamma''(t), \gamma'''(t) \rangle}{||\gamma'(t) \wedge \gamma''(t)||^2}.$$

Exercice 4. Soit $\gamma: \mathbb{R} \to \mathbb{R}^3$ définie par $\gamma(t) = (\cos t, \sin t, \cosh t)$.

- (1) Déterminer le tangent unitaire et le vecteur binormal en un point de γ de paramètre quelconque t.
- (2) Donner une équation pour le plan osculateur à γ en un point de paramètre t quelconque.
- (3) Donner (et justifier) une formule pour la distance entre l'origine et le plan d'équation ax + by + cz = d dans \mathbb{R}^3 .
- (4) Calculer la distance à l'origine du plan osculateur calculé dans la question (2), en fonction de t.
- (5) Montrer que les plans osculateurs à γ en tous ses points sont tangents à une même sphère centrée à l'origine.
- (6) Donner le rayon du cercle osculateur à γ au point de paramètre t.