Examen Vendredi 19 mai

Durée 3h. Téléphones, ordinateurs, documents interdits. Toute réponse doit être justifiée.

Exercice 1 (environ 4 pts). On considère la fonction $F: \mathbb{R}^3 \to \mathbb{R}$ définie par $F(x, y, z) = 1 + x^3 z^2 - z^3 xy$, et l'ensemble de niveau $S = \{(x, y, z) : F(x, y, z) = 0\}$.

- (1) Montrer que (1, 2, 1) est un point de S.
- (2) Montrer que le théorème des fonctions implicites s'applique en le point a = (1, 2, 1), pour écrire S au voisinage de a comme le graphe d'une fonction de la forme $z = \psi(x, y)$.
- (3) Calculer les dérivées partielles d'ordre 1 de ψ en (1,2), ainsi qu'un développement limité à l'ordre 1 pour ψ autour de (1,2).
- (4) Donner une équation pour le plan tangent à la surface S en le point (1, 2, 1).

Exercice 2 (environ 5 pts). Soient $f, g : \mathbb{R}^2 \to \mathbb{R}$ définies respectivement par $g(x, y) = x^2 + 8xy + 7y^2$, et $f(x, y) = \sqrt{x^2 + y^2}$.

- (1) Déterminer les points critiques de la fonction g, et préciser leur nature.
- (2) Montrer qu'il existe deux formes linéaires indépendantes u(x,y), v(x,y) telles que g(x,y) = u(x,y)v(x,y).
- (3) Donner l'allure des ensembles de niveau de g.

Dans la suite, on considère l'ensemble de niveau $H = \{(x, y) \in \mathbb{R}^2 : x^2 + 8xy + 7y^2 = 225\}.$

- (4) H est-il compact?
- (5) Montrer que f admet un minimum sur H. Admet-t-elle un maximum sur H?
- (6) Donner des conditions nécessaires sur $(x, y) \in \mathbb{R}^2$ pour que ce point soit un minimum de la restriction $f|_H$, obtenu grâce à un résultat du cours sur les extrema liés (on donnera un énoncé précis de ce résultat).
- (7) Calculer $\min_{H} f$.

Exercice 3 (environ 6 pts). Soit $U \subset \mathbb{R}^n$ un ouvert contenant 0, et soit $\Psi : U \to \mathcal{L}(\mathbb{R}^n, \mathbb{R}^n)$ de classe C^k , $k \geq 1$ avec $\Psi(0) = I_n$.

- (1) Montrer qu'il existe un ouvert V tel que $0 \in V \subset U$ et $\Psi(V) \subset GL_n(\mathbb{R})$, c'est-à-dire que $\Psi(v)$ est inversible pour tout $v \in V$.
- (2) Montrer que l'application $\Phi: U \to \mathbb{R}^n$ donnée par $\Phi(x) = \Psi(x)(x)$ est différentiable sur U, et calculer sa différentielle en un $a \in U$ quelconque.
- (3) Montrer que Φ est un difféomorphisme local en 0.

Exercice 4 (environ 7 pts). On considère l'équation différentielle

$$t^2y'' + ty' - 4y = 4t^2 \quad (E).$$

- (1) Montrer qu'il existe une et une seule solution définie sur $]0, +\infty[$ qui satisfait y(1) = 1, y'(1) = 0.
- (2) Existe-t-il une et une seule solution définie au voisinage de 0 satisfaisant y(0) = 1, y'(0) = 0?

Dans toute la suite de l'exercice, on considère uniquement les solutions sur l'intervalle $]0, +\infty[$.

- (3) Ecrire l'équation homogène (E_0) associée à (E), et trouver les $\alpha \in \mathbb{R}^*$ tel que t^{α} soit solution de (E_0) .
- (4) Donner la solution générale de (E_0) .
- (5) Ecrire la solution générale de l'équation différentielle (E).
- (6) Résoudre le problème de Cauchy de la question (1).
- (7) Donner un système de deux équations différentielles d'ordre 1, à deux fonctions inconnues, qui soit équivalent à l'équation (E).
- (8) Décrire le système homogène associé au système de la question précédente, ainsi que sa résolvante R_1^t , pour $t \in]0, +\infty[$ quelconque. *Indication: on pourra utiliser les résultats de la question* (4).

Pour la question suivante, on rappelle les formules suivantes (dont l'utilisation n'est pas obligatoire):

$$K(s(t)) = \frac{||\gamma'(t) \wedge \gamma''(t)||}{||\gamma'(t)||^3}, \qquad T(s(t)) = -\frac{\langle \gamma'(t) \wedge \gamma''(t), \gamma'''(t) \rangle}{||\gamma'(t) \wedge \gamma''(t)||^2}.$$

Exercice 5 (environ 5 pts). On considère la courbe paramétrée $\gamma: \mathbb{R} \to \mathbb{R}^3$ définie par $\gamma(t) = (\cos^3 t, \sin^3 t, \cos 2t)$.

- (1) Pour quelles valeurs du paramètre t la courbe est-elle régulière? bi-régulière?
- (2) Calculer la longueur d'arc $s(t) = \int_0^t ||\gamma'(u)|| du$ pour t entre 0 et $\pi/2$, et en déduire une paramétrisation par longueur d'arc δ pour la courbe γ (on précisera l'intervalle de définition de δ).
- (3) Montrer que $\tau(s(t)) = (-3\cos t, 3\sin t, -4)/5$ (ici τ désigne le vecteur tangent unitaire dans le trièdre de Frenet).
- (4) Donner une expression pour $\frac{d}{dt}(\tau(s(t)))$ qui fait intervenir le vecteur normal unitaire $\nu(s(t))$ et la courbure K(s(t)).
- (5) Déduire la valeur de la courbure K(s(t)), pour $t \in]0, \pi/2[$ quelconque.
- (6) Calculer le plan osculateur et le cercle osculateur à γ au point de paramètre $t = \pi/4$.