Contrôle continu n° 2 25 mars 2016

Durée : 2h. Documents et téléphones interdits. Barême indicatif : 3/6/4/7

Exercice 1. (question de cours) Soit $U \subset \mathbb{R}^n$ un ouvert, $a \in U$ et soit $f: U \to \mathbb{R}$ une fonction de classe C^{∞} qui a un point critique en a.

- 1. Démontrer que si Hess(f, a) est définie positive, alors f a un minimum local strict en a.
- 2. Montrer que la réciproque de l'implication précédente est fausse.

Exercice 2. On considère l'ensemble C des points $(x,y) \in \mathbb{R}^2$ tels que

$$2x^2y^3 - 2xy^2 - xy - y^2 = 1.$$

- 1. Montrer qu'il existe un unique point de la forme (n,1) dans C avec $n \in \mathbb{Z}$.
- 2. Montrer que le théorème des fonctions implicites s'applique pour décrire C au voisinage de ce point (n, 1), pour donner x comme une fonction de y. On notera φ la fonction correspondante, définie au voisinage de y = 1.
- 3. Montrer que φ est de classe C^{∞} au voisinage de 1, et donner un développement limité à l'ordre 1 pour φ autour de y=1.
- 4. Expliquer comment calculer $\alpha = \varphi''(1)$ (on donnera une équation de degré 1 que doit satisfaire α , que l'on ne demande pas de résoudre).

Exercice 3. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ définie par $f(x,y) = (x^2 + 2y, 2y^2 - x)$.

- 1. Déterminer l'ensemble des points au voisinage desquels cette application admet un inverse local de classe C^1 .
- 2. On note g l'inverse local de f, défini au voisinage de (0,0), tel que g(0,0)=(0,0). Donner un développement limité à l'ordre 1 pour g autour de (0,0).

Exercice 4. Soient p = (-1,0) et $q = (1,0) \in \mathbb{R}^2$, et on considère la fonction $f : \mathbb{R}^2 \to \mathbb{R}$ définie par f(v) = ||v - p|| + ||v - q||, où ||w|| désigne la norme euclidienne de $w \in \mathbb{R}^2$.

- 1. Soit $U \subset \mathbb{R}^2$ le plus grand ouvert sur lequel f est différentiable. Donner une description de U, et calculer la différentielle de f en un point quelconque $a \in U$.
- 2. Pour quels $a \in U$ le théorème des fonctions implicites donne-t-il une description locale de l'ensemble de niveau f(a) localement comme le graphe d'une fonction $y = \phi(x)$?
- 3. Pour quels $a \in U$ l'ensemble de niveau de f contenant a est-il une courbe régulière? Pour un tel a, donner une expression pour la droite tangente à l'ensemble de niveau correspondant de f en a.
- 4. Soit $I \subset \mathbb{R}$ un intervalle ouvert, et $\gamma: I \to \mathbb{R}^2$ une courbe différentiable contenue dans un ensemble de niveau de f. Montrer que pour tout $t \in I$, on a

$$\frac{\langle \gamma'(t), \gamma(t) - p \rangle}{||\gamma(t) - p||} = -\frac{\langle \gamma'(t), \gamma(t) - q \rangle}{||\gamma(t) - q||}$$

- 5. Donner une formule pour l'angle entre $\gamma'(t)$ et $\gamma(t) p$.
- 6. Déduire que la tangente à l'ensemble de niveau en $\gamma(t)$ est la bissectrice extérieure au sommet $\gamma(t)$ du triangle formé par p, q et $\gamma(t)$ (on rappelle que la bissectrice extérieure en un sommet est la droite par ce sommet orthogonale à la bissectrice usuelle).