Prépa Agreg interne UGA - Algèbre linéaire

June 22, 2024

1 Pour se décrasser

Exercice 1.

Pour les deux matrices suivantes, calculer une base du noyau, une base de l'image, et des équations définissant l'image de chaque matrice.

$$\begin{pmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$

Exercice 2.

Soit
$$a \in \mathbb{R}$$
. Résoudre le système
$$\begin{cases} (1-a)x + y + z + t = 0 \\ x + (1-a)y + z + t = 0 \\ x + y + (1-a)z + t = 0 \\ x + y + z + (1-a)t = 0 \end{cases}$$

Exercice 3.

Soient P_0, \ldots, P_n des polynômes non nuls de $\mathbb{R}[X]$ tels que

$$deg(P_i) = i$$
 pour tout $i \in [0, n]$.

Démontrer que la famille $(P_0, ..., P_n)$ est une base du sous-espace vectoriel $\mathbb{R}_n[X]$ constitué par les polynômes de degré inférieur ou égal à n.

Exercice 4.

Soit
$$n \ge 1$$
, et soit $\Delta_n : \mathbb{C}_n[X] \longrightarrow \mathbb{C}_n[X]$
 $P \longmapsto P(X+1) - P(X)$.

Calculer $\ker(\Delta_n)$ et en déduire que $\operatorname{Im}(\Delta_n) = \mathbb{C}_{n-1}[X]$.

Exercice 5.

Soit
$$u: \mathbb{R}_3[X] \longrightarrow \mathbb{R}_3[X]$$

 $P \longmapsto P(X) - P(1) - (X - 1)P'(X).$

Écrire la matrice représentative de u dans la base $\mathcal{B} = (1, X, X^2, X^3)$. Calculer une base $\ker(u)$, une base de $\operatorname{Im}(u)$ et décrire $\operatorname{Im}(u)$ en termes d'équations.

Exercice 6.

Soient
$$a, b \in \mathbb{R}$$
. Déterminer le rang de la matrice $M = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & a & b & 1 \\ 1 & b & a & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$.

Exercice 7.

Soient $x \in \mathbb{R}$ et $n \ge 2$ un entier. On considère la matrice suivante de $M_n(\mathbb{R})$:

$$A(n) = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ -1 & x & 0 & \dots & 0 & 0 \\ 0 & -1 & x & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \ddots & \ddots & x & 0 \\ 0 & 0 & \dots & 0 & -1 & x \end{pmatrix}.$$

Calculer det(A(n)) et rg(A(n)) pour tout $n \ge 1$.

Exercice 8.

On considère les sous-espaces vectoriels de \mathbb{R}^3 suivants:

$$P = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\} \text{ et } D = \text{Vect}_{\mathbb{R}}((1, 1, 1)).$$

On note \mathcal{B} la base canonique de \mathbb{R}^3 .

- (1) Montrer sans calculs que $\mathbb{R}^3 = P \oplus D$.
- (2) Calculer explicitement la décomposition de $(x, y, z) \in \mathbb{R}^3$.
- (3) Donner la matrice représentative de $p_{P//D}$ dans la base canonique. Quelle est la patrice représentative de $p_{D//P}$ dans la base canonique ?
- (4) Calculer une base (e'_1, e'_2) de P et une base e'_3 de D. Expliquer pourquoi $\mathscr{B}' = (e'_1, e_2, e'_3)$ est une base de \mathbb{R}^3 .
- (5) Donner sans calculs la matrice de $p_{P//D}$ dans la base \mathscr{B}' ?
- (6) Retrouver le résultat dans la question 3. en utilisant la formule de changement de base.

Exercice 9.

Soit $V = \mathcal{F}(\mathbb{R}; \mathbb{R})$ l'espace vectoriel des fonctions réelles à valeurs réelles. Soit \mathscr{P} le sous-ensemble des fonctions paires, et \mathscr{I} le sous-ensemble des fonctions impaires.

Montrer que \mathscr{P} et \mathscr{I} sont des sous-espaces de V, et que $V = \mathscr{P} \oplus \mathscr{I}$.

2 Quelques grands classiques

Exercice 10.

Soit E un K-espace vectoriel de dimension finie, et soient F, G deux sous-espaces vectoriels de E.

En appliquant le théorème du rang à l'application linéaire $u\colon F\times G\longrightarrow E$, montrer la formule de Grassmann:

$$\dim_K(F+G) = \dim_K(F) + \dim_K(G) - \dim_K(F \cap G).$$

Exercice 11.

Soit E un K-espace vectoriel (non nécessairement de dimension finie), et soit $u \in \mathcal{L}(E)$. On suppose que pour tout $x \in E$, la famille (x, u(x)) est liée.

Montrer que u est une homothétie, i.e. il existe $\lambda \in K$ tel que $u = \lambda Id_E$.

Exercice 12.

Soit E un K-espace vectoriel, et soient $p_1, \ldots, p_r \in \mathcal{L}(E)$. On pose $F_i = \text{Im}(p_i)$. Montrer l'équivalence des deux propriétés suivantes:

- (i) On a $E = F_1 \oplus \cdots \oplus F_r$, et pour tout $i = 1, \dots, r$, p_i est la projection sur F_i parallèlement à $\bigoplus_{i \neq i} F_i$
- (ii) On a $p_1 + \cdots + p_r = \mathrm{Id}_E$, pour tout $1 \le i \le r$, $p_i \circ p_i = p_i$, et pour tous $i \ne j$, $p_i \circ p_i = 0$

Exercice 13.

On se propose ici de déterminer les automorphismes de K-algèbre de $M_n(K)$, c'est-à-dire les applications K-linéaires $\theta: M_n(K) \longrightarrow M_n(K)$ bijectives telles que $\theta(AB) = \theta(A)\theta(B)$ pour tous $A, B \in M_n(K)$ et $\theta(I_n) = I_n$.

(1) Soit $P \in GL_n(K)$ une matrice inversible. Montrer que l'application Int(P): $M_n(K) \longrightarrow M_n(K)$ est un automorphisme de K-algèbre de $M_n(K)$.

Le but de la suite est de démontrer la réciproque. On note $E_{ij} \in M_n(K)$ la matrice dont tous les coefficients sont nuls, sauf celui en position (i, j), qui vaut 1.

Soit $\theta: M_n(K) \longrightarrow M_n(K)$ un automorphisme de K-algèbre. On pose alors $F_{ij} = \theta(E_{ij})$

- (2) Vérifier que, pour tous $1 \le i, j, k, \ell \le n$, on a $F_{ij}F_{k\ell} = 0$ si $j \ne k, F_{ij}F_{j\ell} = F_{i\ell}$ et $F_{11} + \cdots + F_{nn} = I_n$.
- (3) En utilisant l'exercice précédent, montrer que $K^n = \text{Im}(F_{11}) \oplus \cdots \oplus \text{Im}(F_{nn})$.
- (4) Montrer que l'application $K^n \longrightarrow K^n$ induit par double restriction un isomorphisme de $Im(F_{11})$ sur $Im(F_{ii})$.
- (5) Déduire des questions précédentes que l'on a $\dim_K(\operatorname{Im}(F_{ii}) = 1 \text{ pour tout } i$, et que si X_1 est un vecteur non nul de $\operatorname{Im}(F_{11})$, alors $(F_{11}X_1, \dots, F_{n1}X_1)$ est une base de K^n .
- (6) Soit $P \in M_n(K)$ la matrice dont la j-ème colonne est $F_{j1}X_1$. Justifier que $P \in GL_n(K)$. Si ε_k désigne le k-ième vecteur colonne de la base canonique de K^n , montrer que $F_{ij}P\varepsilon_k = PE_{ij}\varepsilon_k$ pour tous i, j, k.
- (7) En déduire que $F_{ij}P = PE_{ij}$ pour tous i, j, puis $\theta = Int(P)$.

3 Noyau et image des itérés d'un endomorphisme

Exercice 14.

Soit E un K-espace vectoriel de dimension quelconque, et soit $u \in \mathcal{L}(E)$.

(1) On suppose *E* de dimension finie. A-t-on toujours $E = \ker(u) \oplus \operatorname{Im}(u)$?

(2) On suppose encore E de dimension finie. Montrer l'équivalence

$$E = \ker(u) \oplus \operatorname{Im}(u) \iff \ker(u) = \ker(u \circ u).$$

(3) Le résultat est-il encore vrai si E est de dimension infinie?

Exercice 15.

Soit E un K-espace vectoriel, et soit $u \in \mathcal{L}(E)$. Pour tout $k \geq 0$, on pose $u^k = u \circ \cdots \circ u$, avec par convention $u^0 = \mathrm{Id}_E$.

(1) Montrer que pour tout $k \ge 0$, on a

$$\ker(u^k) \subset \ker(u^{k+1})$$
 et $\operatorname{Im}(u^{k+1}) \subset \operatorname{Im}(u^k)$.

- (2) Soit $p \ge 0$ un entier vérifiant $\ker(u^{p+1}) = \ker(u^p)$. Montrer que pour tout $k \ge 0$, on a $\ker(u^{p+k}) = \ker(u^p)$.
- (3) Soit $p \ge 0$ vérifiant $\text{Im}(u^{p+1}) = \text{Im}(u^p)$. Montrer que pour tout $k \ge 0$, on a $\text{Im}(u^{p+k}) = \text{Im}(u^p)$.
- (4) Démontrer l'équivalence des propriétés suivantes :
 - (a) $ker(u^2) = ker(u)$;
 - (b) pour tout $k \ge 1$, $ker(u^k) = ker(u)$;
 - (c) $ker(u) \cap Im(u) = \{0\}.$
- (5) Démontrer l'équivalence des propriétés suivantes :
 - (d) $\operatorname{Im}(u^2) = \operatorname{Im}(u)$;
 - (e) pour tout $k \ge 1$, $\text{Im}(u^k) = \text{Im}(u)$;
 - (f) $E = \ker(u) + \operatorname{Im}(u)$.
- (6) Démontrer l'équivalence des propriétés suivantes :
 - (g) $ker(u^2) = ker(u)$ et $Im(u^2) = Im(u)$;
 - (h) $E = \ker(u) \oplus \operatorname{Im}(u)$.
- (7) On suppose que *E* est de dimension finie sur *K*. Montrer que les propriétés (a)-(h) sont toutes équivalentes à :
 - (i) $rg(u^2) = rg(u)$.
- (8) a. Montrer que $C = \bigcap_{k \ge 0} \operatorname{Im}(u^k)$ et $N = \bigcup_{k \ge 0} \ker(u^k)$ sont des sous-espaces de E, stables par u.
 - b. Montrer les équivalences suivantes :
 - (1) u est injectif $\iff N = \{0\}.$
 - (2) u est surjectif $\iff C = E$.
- (9) a. On suppose qu'il existe un entier $k \ge 0$ tel que $\text{Im}(u^k) = \text{Im}(u^{k+1})$. Soit r(u) le plus petit entier vérifiant cette égalité.

Montrer que $u_C \in \mathcal{L}(C)$ est surjectif, et que $E = N + \text{Im}(u^{r(u)})$.

b. On suppose qu'il existe $k \ge 0$ tel que $\ker(u^k) = \ker(u^{k+1})$. On note s(u) le plus petit entier vérifiant cette égalité.

Montrer que $u_N \in \mathcal{L}(N)$ est nilpotent, i.e. qu'il existe $p \ge 1$ tel que $u_N^p = 0$, et que l'on a $N \cap \text{Im}(u^{s(u)}) = \{0\}.$

On dit que u est de caractère fini s'il existe deux entiers r, $s \ge 0$ tels que $\text{Im}(u^r) = \text{Im}(u^{r+1})$ et $\ker(u^s) = \ker(u^{s+1})$.

- (10) a. On suppose que u est de caractère fini. Montrer que $E = N \oplus C$, que u_N est nilpotent et que u_C est un automorphisme de C.
 - b. Montrer que s'il existe $p \ge 0$ tel que

$$\ker(u^p) = \ker(u^{p+1})$$
 et $\operatorname{Im}(u^{p+1}) = \operatorname{Im}(u^{p+2})$,

alors $\text{Im}(u^p) = \text{Im}(u^{p+1})$.

De même, montrer que s'il existe $p \ge 0$ tel que

$$Im(u^p) = Im(u^{p+1})$$
 et $ker(u^{p+1}) = ker(u^{p+2}),$

alors $ker(u^p) = ker(u^{p+1})$.

- c. En déduire que si u est de caractère fini, on a r(u) = s(u).
- d. Montrer que si E est de dimension finie, tout $u \in \mathcal{L}(E)$ est de caractère fini. Si E est de dimension infinie, donner un exemple d'endomorphisme $u \in \mathcal{L}(E)$ tel que N = C = E, et un autre tel que $N = C = \{0\}$.

4 Matrices de trace nulle

Exercice 16.

Si $A = (a_{ij})_{i,j} \in M_n(K)$, la trace de A, notée tr(A), est la somme des coefficients diagonaux de A, i.e.

$$\operatorname{tr}(A) = \sum_{i=1}^{n} a_{ii}.$$

- (1) Montrer que l'application tr : $M_n(K) \longrightarrow K$ est K-linéaire. Quelle est la dimension de son noyau ?
- (2) Montrer que pour tous $A, B \in M_n(K)$, on a $tr(A^t) = tr(A)$ et tr(AB) = tr(BA).
- (3) Montrer que deux matrices semblables ont même trace.
- (4) Si E est un K-espace vectoriel de dimension finie, et si $u \in \mathcal{L}(E)$, la trace d'une matrice représentative de u est indépendante de la base choisie. On note alors tr(u) la trace d'une matrice représentative de u dans une base arbitraire.
- (5) Montrer que l'application $\operatorname{tr}: \mathscr{L}(E) \longrightarrow K$ est linéaire, que $\operatorname{tr}(u \circ v) = \operatorname{tr}(v \circ u)$ pour tous $u, v \in \mathscr{L}(E)$ et que deux endomorphismes semblables ont même trace.
- (6) On suppose que $\dim_K(E) = 2$. Si u n'est pas une homothétie, montrer qu'il existe une base \mathscr{B} de E telle que $\operatorname{Mat}(u;\mathscr{B}) = \begin{pmatrix} 0 & -\det(u) \\ 1 & \operatorname{tr}(u) \end{pmatrix}$ (utiliser l'exercice 11).

Oue se passe-t-il si u est une homothétie?

Exercice 17.

Soit un corps K de caractéristique 0 (i.e. on a $n \cdot 1_K \neq 0_K$ dans K pour tout entier $n \geq 1$. Par exemple, c'est vrai si $K = \mathbb{Q}, \mathbb{R}, \mathbb{C}$). Le but de cet exercice est de démontrer que tout matrice $A \in M_n(K)$ de trace nulle est semblable à une matrice dont la diagonale est nulle.

On procède par récurrence sur n.

(1) Traiter le cas n = 1.

On suppose le résultat vrai pour les matrices de taille n. Soit $A \in M_{n+1}(K)$ telle que tr(A) = 0. On suppose $A \neq 0$, sinon le résultat est clair.

(2) On note u l'endomorphisme de K^{n+1} dont la matrice dans la base canonique est A. En utilisant l'exercice 11, montrer qu'il existe un vecteur $x \in K^{n+1}$ tel que (x, u(x)) est libre.

(3) En déduire qu'il existe une base
$$\mathscr{B}$$
 de K^{n+1} telle que $\operatorname{Mat}(u;\mathscr{B}) = \begin{pmatrix} 0 & L \\ \hline 1 & \\ 0 & \\ \vdots & M \\ 0 & \end{pmatrix}$, où $L \in \mathbb{R}$

 $M_{1\times n}(L)$ et $M\in M_n(K)$.

- (4) Justifier qu'il existe $Q \in GL_n(K)$ tel $M' = Q^{-1}MQ$ soit à diagonale nulle.
- (5) En déduire successivement que $Mat(u; \mathcal{B})$, puis A, est semblable à une matrice à diagonale nulle et conclure.
- (6) Montrer que le résultat est faux si K est de caractéristique > 0 (prendre par exemple $K = \mathbb{F}_2$).

Exercice 18.

Un commutateur de $M_n(K)$ est une matrice de la forme [A, B] = AB - BA, où $A, B \in M_n(K)$.

- (1) Montrer que tout commutateur de $M_n(K)$ est de trace nulle.
- (2) a. Soit D ∈ M_n(K) une matrice diagonale dont les éléments diagonaux sont deux à deux distincts. Montrer que les matrices commutant avec D sont exactement les matrices diagonales. Le résultat est-il vrai pour une matrice diagonale quelconque ?
 - b. Soit \mathcal{N} l'ensemble des matrices à diagonale nulle. Montrer que \mathcal{N} est un sous-espace vectoriel de $M_n(K)$.
 - c. Soit $D \in M_n(K)$ une matrice diagonale. Montrer que pour tout $N \in \mathcal{N}$, $[D, N] \in \mathcal{N}$, et que l'application $N \mapsto [D, N]$ est un endomorphisme.

Montrer de plus que, si les éléments diagonaux de D sont deux à deux distincts, l'application précédente est un automorphisme de $\mathcal N$.

- d. En déduire que si K possède au moins n éléments, alors toute matrice $N \in M_n(K)$ de trace nulle est un commutateur.
- (3) On suppose que K est de caractéristique 0. Justifier qu'il existe au moins une matrice diagonale $D \in M_n(K)$ dont les éléments diagonaux sont deux à deux distincts. Déduire des questions précédentes et de l'exercice 17 qu'une matrice $A \in M_n(K)$ est de trace nulle si et seulement si c'est un commutateur.

5 Transvections, dilatations, commutateurs

Exercice 19.

Soit $n \ge 1$. Une matrice de transvection de $M_n(K)$ est une matrice de la forme

où $i \neq j$ et $\lambda \in K^{\times}$.

Une matrice de dilatation de $M_n(K)$ est une matrice diagonale de la forme

$$D(\lambda) = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & \lambda \end{pmatrix},$$

où $\lambda \in K^{\times}$.

- (1) Montrer que $D(\lambda)$ est inversible et calculer son inverse.
- (2) Montrer que $T_{i,j}(\lambda) \in SL_n(K)$ (i.e. $T_{i,j}$ est de déterminant 1), et que $T_{i,j}(\lambda)^{-1} = T_{i,j}(-\lambda)$.
- (3) Soit $A \in M_{m \times n}(K)$. On note L_1, \ldots, L_m les lignes de A et C_1, \ldots, C_n les colonnes de A. Si $T_{i,j}(\lambda) \in M_m(K)$, décrire l'effet de l'opération $A \rightsquigarrow T_{i,j}(\lambda)A$ sur les lignes de A. De même, si $T_{i,j}(\lambda) \in M_n(K)$, décrire l'effet de l'opération $A \rightsquigarrow AT_{i,j}(\lambda)$ sur les colonnes de A.

Si $D(\lambda) \in M_m(K)$, décrire l'effet de l'opération $A \rightsquigarrow D(\lambda)A$ sur les lignes de A. De même, si $D(\lambda) \in M_n(K)$, décrire l'effet de l'opération $A \rightsquigarrow AD(\lambda)$ sur les colonnes de A.

On se propose de démontrer que toute matrice de $SL_n(K)$ est un produit de matrices de transvections.

- (4) a. Soit $A \in SL_n(K)$. Montrer qu'il suffit de démontrer l'existence de matrices de transvections $T_1, \ldots, T_r, T'_1, \ldots, T'_s$ telles que $T_1 \cdots T_r A T'_1 \cdots T'_s = I_n$ pour obtenir le résultat voulu.
 - b. En déduire que pour démontrer le résultat voulu, il suffit de démontrer que toute matrice de déterminant 1 peut se ramener à la matrice identité I_n par opérations du type $L_i \longleftarrow L_i + \lambda L_j$ et $C_i \longleftarrow C_i + \lambda L_i$, où $i \neq j$ et $\lambda \in K^{\times}$.

Le but de la question suivante est de démontrer le fait précédent par récurrence sur $n \ge 1$.

- (5) a. Traiter le cas n = 1.
 - b. On suppose le fait établi pour les matrices de taille n. Soit $A = (a_{ij})_{i,j} \in SL_{n+1}(K)$. Montrer que l'on peut se ramener au cas d'une matrice A vérifiant $a_{11} \neq 0$, puis au cas d'une matrice vérifiant $a_{11} \neq 0$ et $a_{21} \neq 0$.
 - c. Montrer alors que l'on peut se ramener au cas d'une matrice vérifiant $a_{11} = 1$, puis à une matrice de la forme

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ \hline 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{pmatrix}.$$

- d. Quel est le déterminant de A'? Achever la récurrence.
- (6) **Application numérique.** On suppose que $2 \neq 0_K$ dans K. Écrire $-I_2$ comme produit de matrices de transvection.
- (7) Montrer que toute matrice de $GL_n(K)$ est produit de matrices de transvection et d'au plus une matrice de dilatation que l'on précisera.

Exercice 20.

Un *commutateur* de $SL_n(K)$ est une matrice de $SL_n(K)$ de la forme $[A, B] = ABA^{-1}B^{-1}$, avec $A, B \in SL_n(K)$.

Le but de cet exercice est de démontrer que toute matrice de $SL_n(K)$ est un produit de commutateurs si $n \ge 3$ ou si n = 2 et $|K| \ge 4$.

On note \mathscr{C} l'ensemble des produits d'un nombre fini de commutateurs.

- (1) Montrer \mathscr{C} est un sous-groupe de $SL_n(K)$, i.e. qu'il contient I_n , et qu'il est stable par produit et par passage à l'inverse. Montrer également que si $A \in \mathscr{C}$, alors toute matrice semblable à A est un élément de \mathscr{C} .
- (2) Montrer que toute matrice de transvection est semblable à $T_{n-1,n}(1)$, puis en déduire que toutes les matrices de transvection sont semblables.

Indication. Si (e_1, \ldots, e_n) est la base canonique de K^n , considérer l'endomorphisme de K^n associé à Ti, $j(\lambda)$ et considérer la base $(e_1, \ldots, e_{i-1}, e_n, e_{i+1}, \ldots, e_{i-1}, e_n, e_{i+1}, \ldots, e_{n-2}, e_i, \lambda e_i)$.

- (3) En utilisant l'exercice 19 et la première question, montrer qu'il suffit de montrer que & contient au moins une matrice de transvection.
- (4) On suppose que $|K| \ge 4$, si bien que l'on peut choisir un élément $\lambda \in K \setminus \{0, 1, -1\}$. On pose

$$U = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}, \ V = T_{1,2}(1) \in \operatorname{SL}_2(K).$$

Calculer W = [U, V]. Conclure dans le cas n = 2, puis dans le cas $n \ge 2$.

(5) On suppose que |K| = 2 ou 3 et $n \ge 3$. On pose

$$U = T_{1,3}(1), \ V = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Calculer W = [U, V]. Montrer que W est semblable à $T_{2,3}(1)$. Conclure dans le cas n = 3, puis dans le cas $n \ge 3$.

- (6) On souhaite montrer que $-I_2$ n'est pas égale à un commutateur de $SL_2(\mathbb{C})$. On suppose au contraire que $-I_2 = [A, B]$, avec $A, B \in SL_2(\mathbb{C})$.
 - a. Montrer que $B = -ABA^{-1}$ et calculer tr(B).
 - b. Utiliser l'exercice 16 pour montrer soigneusement que l'on peut supposer que $B = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
 - c. Calculer alors [A, B] (ne pas oublier que det(A) = 1 pour les calculs) et conclure.
- (7) On pose $U = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$. Pour $\mu \in \mathbb{C}^{\times}$, calculer $[U, T_{1,2}(\mu)]$ et $[U, T_{2,1}(\mu)]$, et utiliser les calculs faits dans l'exercice 19 pour écrire $-I_2$ comme un produit de commutateurs de $\mathrm{SL}_2(\mathbb{C})$.

Exercice 21.

Soit E un K-espace vectoriel de dimension $n \ge 2$. Soit H un hyperplan de E (i.e. un sous-espace de dimension n-1), et soit D une droite de E telle que $D \subset H$. On dit que $u \in \mathcal{L}(E)$ est **une** transvection d'hyperplan H et de droite D si les conditions suivantes sont vérifiées :

- (1) $u \neq \mathrm{Id}_E$;
- (2) on a u(x) = x, pour tout $x \in H$;
- (3) on a $u(x) x \in D$, pour tout $x \in E$.

On dit que $u \in \mathcal{L}(E)$ est une *transvection* s'il existe un hyperplan H et une droite D de E incluse dans H tels que u soit une transvection d'hyperplan H et de droite D.

- (1) Soit $u \in \mathcal{L}(E)$. Montrer l'équivalence des propriétés suivantes:
 - (a) u est une transvection;
 - (b) il existe une base \mathscr{B} de E telle que $\mathrm{Mat}(u;\mathscr{B}) = T_{n-1,n}(1)$
 - (c) il existe une base \mathscr{B} de E telle que $\mathrm{Mat}(u;\mathscr{B}) = T_{i,j}(\lambda)$, avec $i \neq j$ et $\lambda \in K^{\times}$. On pourra s'aider de l'exercice 20.
- (2) Montrer que $u \in SL(E)$, et que toutes les transvections sont semblables dans GL(E).
- (3) On souhaite montrer que si $n \ge 3$, toutes les transvections sont semblables dans SL(E), i.e. que pour toutes transvections $u, v \in SL(E)$, il existe $\varphi \in SL(E)$ (et pas seulement $\varphi \in GL(E)$) telle que $u = \varphi^{-1} \circ v \circ \varphi$.

On se fixe une base \mathcal{B}_0 de E, et on note $u_1 \in SL(E)$ l'unique endomorphisme de E tel que $Mat(u_1; \mathcal{B}_0) = T_{n-1,n}(1)$.

- a. Soit $u \in SL(E)$ une transvection. Justifier l'existence de $\varphi \in GL(E)$ telle que $u = \varphi^{-1} \circ u_1 \circ \varphi$.
- b. Pour toute matrice diagonale D inversible, expliciter $D^{-1}T_{n-1,n}(1)D$. En déduire l'existence d'une matrice diagonale D telle que $D^{-1}T_{n-1,n}(1)D = T_{n-1,n}(1)$ et $\det(D) = \det(\varphi)^{-1}$. On prendra soin de dire où on utilise l'hypothèse $n \ge 3$.
- c. En déduire que u est semblable à u_1 dans SL(E), puis conclure.
- (4) On suppose maintenant que n=2. On se fixe une base \mathcal{B}_0 de E, et on note $u_{\lambda} \in SL(E)$ l'unique endomorphisme de E tel que $Mat(u_{\lambda}; \mathcal{B}_0) = T_{1,2}(\lambda)$, pour tout $\lambda \in K^{\times}$.
 - a. En utilisant le même genre d'arguments que précédemment, montrer que toute transvection est semblable dans SL(E) à une transvection u_{λ} , pour un certain $\lambda \in K^{\times}$.
 - b. Soient $\lambda, \mu \in K^{\times}$. Montrer que u_{λ} et u_{μ} sont semblables dans SL(E) si et seulement si $\lambda \mu^{-1}$ est un carré dans K^{\times} .
 - c. Donner un système complet de représentants des classes de similitude dans SL(E) des transvections de E, lorsque $K = \mathbb{C}$, \mathbb{R} , \mathbb{F}_p (p premier) et \mathbb{Q} .

Exercice 22.

Soit E un K-espace vectoriel de dimension $n \ge 1$. Soit H un hyperplan de E et D une droite de E tels que $E = H \oplus D$, et soit $\lambda \in K \setminus \{0, 1\}$. La *dilatation* d'hyperplan H, de direction D et de rapport λ est l'unique endomorphisme $u \in \mathcal{L}(E)$ tel que :

- (1) on a u(x) = x, pour tout $x \in H$;
- (2) on a $u(x) = \lambda x$, pour tout $x \in D$.

Autrement dit, on a

$$u(x_H + x_D) = x_H + \lambda x_D,$$

pour tout $x_H \in H$ et tout $x_D \in D$.

On dit que $u \in \mathcal{L}(E)$ est une *dilatation* s'il existe un hyperplan H et une droite D supplémentaires dans E, et un scalaire $\lambda \in K \setminus \{0, 1\}$ tels que u soit la dilatation d'hyperplan H, de direction D et de rapport λ .

- (1) Soit $u \in \mathcal{L}(E)$. Montrer que u est une dilatation si et seulement s'il existe une base \mathcal{B} de E telle que $Mat(u; \mathcal{B}) = D(\lambda)$, avec $\lambda \in K \setminus \{0, 1\}$.
- (2) Montrer que deux dilatations sont semblables dans GL(E) si et seulement si elles ont même déterminant.
- (3) Montrer que deux dilatations sont semblables dans SL(E) si et seulement si elles ont même déterminant (on distinguera les cas n = 1 et $n \ge 2$)

- (4) Montrer que tout élément de SL(E) est la composée de transvections, et que tout élément de GL(E) est la composée de transvection et d'au plus une dilatation.
- (5) On souhaite montrer que si $|K| \ge 3$, tout élément de GL(E) est la composée de dilatations.
 - a. Régler le cas n = 1. On suppose $n \ge 2$ dans la suite.
 - b. Justifier qu'il suffit de montrer que toute transvection est un produit de dilatations. Soit $\lambda \in K \setminus \{0, 1\}$ (un tel λ existe par hypothèse sur K). Soit u une transvection, et soit \mathcal{B} une base telle que $\mathrm{Mat}(u;\mathcal{B}) = T_{n-1,n}(1)$.
 - c. Montrer l'égalité

$$T_{n-1,n}(1) = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & \lambda^{-1} \end{pmatrix} \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & 1 \\ & & & \lambda \end{pmatrix}.$$

- d. Montrer que la première matrice est la matrice représentative d'une dilatation bien choisie dans la base \mathcal{B} .
- e. Vérifier l'identité

$$P\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} P^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & \lambda \end{pmatrix}, \text{ avec } P = \begin{pmatrix} 1 & 1 \\ 0 & \lambda - 1 \end{pmatrix},$$

et en déduire que la seconde matrice est semblable à $D(\lambda)$.

- f. Conclure.
- g. Que se passe-t-il si |K| = 2?