Centrale-Supélec 2004 – MATHÉMATIQUES II

Objectif du problème

Cette introduction est destinée à expliquer le type des résultats obtenus dans le problème. Ce dernier ne commence qu'à partir du I.

Dans la démonstration en 1994 du « dernier théorème » de Fermat par Andrew Wiles, les « courbes elliptiques » jouent un rôle central par le biais de l'action du groupe $SL_2(\mathbb{Z})$ sur le demi-plan ouvert $\mathcal{H} = \{z \in \mathbb{C} : \text{Im}(z) > 0\}.$

En effet, il se trouve que l'ensemble des courbes elliptiques sur le corps \mathbb{C} est en bijection (à un \mathbb{C} isomorphisme près) avec l'ensemble des réseaux de \mathbb{C} (à une similitude près), lui-même en bijection
avec l'ensemble des orbites du demi-plan \mathscr{H} sous l'action de $SL_2(\mathbb{Z})$. Ce sont quelques propriétés de
ces deux derniers ensembles que nous proposons d'étudier dans ce problème.

Partie I - Matrices carrées d'ordre 2 à coefficients entiers

Soit $\mathcal{M}_2(\mathbb{Z})$ l'ensemble des matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ carrées d'ordre 2 à coefficients dans l'anneau \mathbb{Z} des entiers relatifs.

Dans les parties I, II, III, les lettres a, b, c, d désignent des éléments de \mathbb{Z} . On pose :

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

I.A- Démontrer que l'ensemble $\mathcal{M}_2(\mathbb{Z})$ est un anneau.

I.B-

- I.B.1) Démontrer que l'ensemble $GL_2(\mathbb{Z})$ des éléments de $\mathscr{M}_2(\mathbb{Z})$ inversibles dans $\mathscr{M}_2(\mathbb{Z})$ est un groupe pour la multiplication, appelé le groupe des unités de l'anneau $\mathscr{M}_2(\mathbb{Z})$.
- I.B.2) Montrer que

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z})$$
 si et seulement si $|ad - bc| = 1$.

I.C- On pose

$$SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{Z}) : ad - bc = 1 \right\}.$$

- I.C.1) Montrer que $SL_2(\mathbb{Z})$ est un groupe pour la multiplication des matrices.
- I.C.2) Déterminer l'ensemble des couples $(c, d) \in \mathbb{Z} \times \mathbb{Z}$ tels que la matrice $\begin{pmatrix} 3 & 5 \\ c & d \end{pmatrix}$ appartienne à $SL_2(\mathbb{Z})$.
- I.C.3) Déterminer l'ensemble des couples $(c, d) \in \mathbb{Z} \times \mathbb{Z}$ tels que la matrice $\begin{pmatrix} 3 & 5 \\ c & d \end{pmatrix}$ appartienne à $GL_2(\mathbb{Z})$.
- I.C.4) Quelle est la condition nécessaire et suffisante portant sur le couple (a,b) de $\mathbb{Z} \times \mathbb{Z}$ pour qu'il existe une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ appartenant à $GL_2(\mathbb{Z})$?

I.D- Soient S et T les éléments de $SL_2(\mathbb{Z})$ définis par

$$S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \text{ et } T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Pour chacune des trois matrices T, S et TS, répondre aux questions suivantes :

- I.D.1) La matrice est-elle diagonalisable, ou à défaut trigonalisable, dans $\mathcal{M}_2(\mathbb{C})$? Donner une forme réduite éventuelle ainsi qu'une matrice de passage.
- I.D.2) La matrice est-elle diagonalisable, ou à défaut trigonalisable, dans $\mathcal{M}_2(\mathbb{R})$? Donner une forme réduite éventuelle ainsi qu'une matrice de passage.
- **I.E-** On cherche les matrices A de $SL_2(\mathbb{Z})$ telles que $A^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$.
 - I.E.1) Soit A une telle matrice. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{R})$ et préciser les formes réduites diagonales possibles de A.
 - I.E.2) En déduire l'ensemble des matrices solutions A.
- **I.F-** On cherche les matrices A de $SL_2(\mathbb{Z})$ telles que

$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- I.F.1) Soit A une telle matrice. Montrer que A est diagonalisable dans $\mathcal{M}_2(\mathbb{C})$ et calculer la trace $\mathrm{Tr}\,(A)$ de A.
- I.F.2) Donner la forme générale des matrices solutions A en fonction des trois paramètres a, b, c et d'une relation liant ces trois paramètres.

I.G-

- I.G.1) Démontrer que si deux matrices U et V de $\mathscr{M}_2(\mathbb{R})$ sont semblables en tant que matrices de $\mathscr{M}_2(\mathbb{C})$, alors elles sont semblables dans $\mathscr{M}_2(\mathbb{R})$.
- I.G.2) En déduire que les matrices A de $SL_2(\mathbb{Z})$ solutions de l'équation :

$$A^2 = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$$
 sont semblables dans $\mathscr{M}_2(\mathbb{R})$ à la matrice $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Partie II - Réseaux de C

On note \mathscr{H} le demi-plan ouvert défini par $\mathscr{H}=\{z\in\mathbb{C}:\operatorname{Im}\,(z)>0\}.$

 $\mathscr{B} = (\alpha, \beta)$ étant une base de \mathbb{C} considéré comme plan vectoriel réel, on appelle réseau engendré par \mathscr{B} l'ensemble $\Lambda_{\mathscr{B}} = \mathbb{Z}\alpha + \mathbb{Z}\beta = \{u\alpha + v\beta; (u, v) \in \mathbb{Z}^2\}.$

Pour simplifier les notations, un réseau sera généralement désigné par la lettre Λ , sans préciser quelle base $\mathscr B$ de $\mathbb C$ l'engendre.

II.A-

- II.A.1) De quelle structure algébrique est doté un réseau Λ ?
- II.A.2) Démontrer que tout réseau Λ peut être engendré par une base $\mathscr{B}=(\alpha,\beta)$ de \mathbb{C} telle que $\frac{\alpha}{\beta}\in\mathscr{H}$.
- II.A.3) Démontrer que pour tout quadruplet $(a,b,c,d) \in \mathbb{Z}^4$ et pour tout $z \in \mathbb{C}$ tel que $cz+d\neq 0$, on a

$$\operatorname{Im}\left(\frac{az+b}{cz+d}\right) = \frac{ad-bc}{\left|cz+d\right|^{2}}\operatorname{Im}\left(z\right).$$

II.B-

II.B.1) Démontrer que si deux bases $\mathscr{B} = (\omega_1, \omega_2)$ et $\mathscr{B}' = (\omega_1', \omega_2')$ de \mathbb{C} telles que $\frac{\omega_1}{\omega_2} \in \mathscr{H} \text{ et } \frac{\omega_1'}{\omega_2'} \in \mathscr{H}$

engendrent le même réseau Λ , alors il existe une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ telle que $\begin{pmatrix} \omega_1' \\ \omega_2' \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \end{pmatrix}$.

- II.B.2) Étudier la réciproque.
- II.C- On considère un réseau Λ engendré par une base $\mathscr{B} = (\omega_1, \omega_2)$ de \mathbb{C} telle que $\frac{\omega_1}{\omega_2} \in \mathscr{H}$. Déterminer l'ensemble des couples $(c,d) \in \mathbb{Z}^2$ tels que $\mathscr{B}' = (\omega_1', \omega_2')$ avec $\omega_1' = 3\omega_1 + 5\omega_2$ et $\omega_2' = c\omega_1 + d\omega_2$ soit une base de \mathbb{C} engendrant également le réseau Λ .
- II.D- Pour tout complexe $\tau \in \mathbb{C} \setminus \mathbb{R}$ on note Λ_{τ} le réseau engendré par la base $(\tau, 1)$ de \mathbb{C} . On suppose que $\tau \in \mathcal{H}$. Trouver la condition nécessaire et suffisante pour qu'un élément $\tau' \in \mathcal{H}$ vérifie $\Lambda_{\tau'} = \Lambda_{\tau}$.

Partie III - Similitudes directes de centre O laissant stable un réseau

Si Λ est un réseau et z un nombre complexe, on pose $z\Lambda = \{z\rho; (\rho \in \Lambda)\}$. On dit que deux réseaux Λ et Λ' sont semblables s'il existe $\lambda \in \mathbb{C}^*$ tel que $\Lambda' = \lambda \Lambda$.

III.A-

- III.A.1) Démontrer que tout réseau Λ est semblable à un réseau Λ_{τ} où $\tau \in \mathcal{H}$.
- III.A.2) Démontrer que deux réseaux Λ_{τ} et $\Lambda_{\tau'}$, où $(\tau, \tau') \in \mathcal{H} \times \mathcal{H}$, sont semblables si et seulement si il existe une matrice $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ telle que $\tau' = \frac{a\tau + b}{c\tau + d}$.

La fin de la partie III montre qu'il existe des similitudes directes de centre O, autres que des homothéties, laissant stable un réseau donné Λ .

III.B- Soit Λ un réseau.

- III.B.1) Indiquer, sans faire de démonstration, le lien existant entre l'ensemble $S(\Lambda) = \{z \in \mathbb{C}; z\Lambda \subset \Lambda\}$ et l'ensemble des similitudes directes σ de centre O laissant stable le réseau Λ , c'est-à-dire telles que $\sigma(\Lambda) \subset \Lambda$.
- III.B.2) Quel est l'ensemble des homothéties de centre O laissant stable le réseau Λ ? En déduire l'ensemble $S(\Lambda) \cap \mathbb{R}$.
- III.B.3) De quelle structure algébrique est doté l'ensemble $S(\Lambda)$?
- III.B.4) $\mathscr{B} = (\omega_1, \omega_2)$ étant une base de \mathbb{C} , on pose $\tau = \frac{\omega_1}{\omega_2}$. Comparer les ensembles $S(\Lambda_{\mathscr{B}})$ et $S(\Lambda_{\tau})$.
- III.B.5) Quelle relation d'inclusion existe-t-il entre les ensembles $S(\Lambda_{\tau})$ et Λ_{τ} ?
- III.C- τ étant un complexe de $\mathbb{C} \setminus \mathbb{R}$, on considère le réseau Λ_{τ} engendré par la base $(\tau, 1)$ de \mathbb{C} .
 - III.C.1) On suppose que l'ensemble $S(\Lambda_{\tau})$ n'est pas réduit à \mathbb{Z} . Montrer que τ est alors racine d'un polynôme du second degré à coefficients dans \mathbb{Z} .

- III.C.2) Réciproquement, on suppose que τ est racine non réelle d'un polynôme $P(X) = uX^2 + vX + w$ du second degré à coefficients u, v, w dans \mathbb{Z} .
 - a) Montrer que $S(\Lambda_{\tau})$ n'est pas contenu dans \mathbb{R} .
 - b) Que dire des ensembles $S(\Lambda_{\tau})$ et Λ_{τ} si u=1?

Partie IV - Action du groupe Γ des homographies associées à $SL_2(\mathbb{Z})$ sur l'ensemble \mathscr{H}

Dans cette dernière partie, on étudie l'action de ce groupe Γ sur l'ensemble \mathcal{H} .

On introduit au IV.D un sous-ensemble fondamental \mathscr{F} de \mathscr{H} . On montre aux questions IV.E et IV.F que Γ est engendré par les homographies s et t associées aux matrices S et T introduites au I.D et qu'un système de représentants des orbites de Γ est constitué par les points de \mathscr{F} .

À toute matrice $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ de $SL_2(\mathbb{Z})$ on associe l'application $g:\mathcal{H}\to\mathbb{C}$ définie par : $\forall \tau\in\mathcal{H}, g(\tau)=\frac{a\tau+b}{c\tau+d}.$

IV.A-

- IV.A.1) Montrer que l'on a $g(\mathcal{H}) \subset \mathcal{H}$. On identifie dorénavant g avec l'application de \mathcal{H} vers \mathcal{H} qu'elle induit. Lorsque la matrice A parcourt $SL_2(\mathbb{Z})$, l'application correspondante g de \mathcal{H} vers \mathcal{H} décrit un ensemble noté Γ . Dans la suite de cette question on s'intéresse aux propriétés de la surjection $\Phi: \left\{ \begin{array}{l} SL_2(\mathbb{Z}) \to \Gamma \\ A \mapsto g \end{array} \right.$
- IV.A.2) Montrer que $\Phi(A) \circ \Phi(A') = \Phi(AA')$. En déduire que la loi \circ de composition des applications est une loi interne sur Γ .
- IV.A.3) Pour tout $A \in SL_2(\mathbb{Z})$, montrer que $\Phi(A)$ est une bijection de \mathscr{H} sur \mathscr{H} et que l'on a $[\Phi(A)]^{-1} = \Phi(A^{-1})$. En déduire que (Γ, \circ) est un groupe.
- IV.A.4) Montrer que $[\Phi(A) = id_{\mathcal{H}}] \Leftrightarrow [A = I_2].$
- IV.A.5) a) Résoudre l'équation $\Phi(A') = \Phi(A)$.
 - b) En utilisant les matrices S et T définies en I.D, vérifier que le groupe (Γ, \circ) n'est pas commutatif.

IV.B-

IV.B.1) Montrer que le cercle $\mathscr{C}(\omega,R)$ de centre $\omega\in\mathbb{C}$ et de rayon R>0 a pour équation $|z|^2-(\omega\overline{z}+\overline{\omega}z)+|\omega|^2=R^2.$

À quelle condition nécessaire et suffisante ce cercle est-il inclus dans \mathcal{H} ?

IV.B.2) On appelle s l'application de \mathscr{H} vers \mathscr{H} associée à la matrice $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ définie au I.D, c'est-à-dire l'élément $s = \Phi(S)$ de Γ. Déterminer l'image par s d'un cercle $\mathscr{C}(\omega, R)$ inclus dans \mathscr{H} .

IV.C-

- IV.C.1) Trouver l'image par s d'une droite $\mathscr D$ incluse dans $\mathscr H$, c'est-à-dire d'une droite $\mathscr D$ d'équation $y=\beta$, avec $\beta>0$.
- IV.C.2) Trouver l'image par s d'une demi-droite \mathcal{D}_+ d'équation

$$\left\{\begin{array}{l} x=\alpha\\ y>0 \end{array}\right., \text{ où } \alpha\in\mathbb{R}, \text{ incluse dans } \mathscr{H}.$$

IV.D- On introduit le sous-ensemble \mathscr{F} de \mathscr{H} , défini par

$$\mathscr{F} = \left\{ \tau \in \mathscr{H} : |\tau| \geqslant 1, |\operatorname{Re}(\tau)| \leqslant \frac{1}{2} \right\}.$$

On appelle t l'application de \mathscr{H} vers \mathscr{H} associée à la matrice $T=\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ définie au I.D, c'est-à-dire l'élément $t=\Phi(T)$ de Γ . Représenter graphiquement l'ensemble \mathscr{F} et ses images $t\left(\mathscr{F}\right)$ et $t^{-1}\left(\mathscr{F}\right)$ par les applications t et t^{-1} .

- IV.E- On note G le sous-groupe de Γ engendré par l'ensemble $\{s,t\}$. Soit τ un élément de \mathcal{H} .
 - IV.E.1) Montrer qu'il existe un élément $g_0 \in G$ tel que

$$(\forall g \in G) \operatorname{Im} (g(\tau)) \leq \operatorname{Im} (g_0(\tau)).$$

IV.E.2) On pose alors $\tau' = g_0(\tau)$. Démontrer qu'il existe un entier $m \in \mathbb{Z}$ tel que

$$|\operatorname{Re}(t^m(\tau'))| \leqslant \frac{1}{2}.$$

- IV.E.3) Vérifier que $|t^m(\tau')| \ge 1$ et en conclure que $t^m(\tau') \in \mathscr{F}$.
- **IV.F-** On peut démontrer le résultat suivant, que l'on admettra ici : si $\tau \in \mathscr{F}$ et si pour un élément $g \in \Gamma$, avec $g \neq id_{\mathscr{H}}$, on a $g(\tau) \in \mathscr{F}$ alors τ est un point frontière de \mathscr{F} , autrement dit on a $\operatorname{Re}(\tau) = \frac{1}{2}$ ou $|\tau| = 1$.

En utilisant ce résultat ainsi que ceux de la section IV.E, démontrer que $G = \Gamma$. Indication : on pourra considérer un point τ intérieur à F (c'est-à-dire $\tau \in \mathring{F}$) et son image $g(\tau)$ par $g \in \Gamma$.

••• FIN •••