Préparation à l'agrégation interne

Compléments d'algèbre et de géométrie

I. Préambules sur les espaces affines et la convexité.

Soit E un espace vectoriel réel. On appelle sous-espace affine de E toute partie de E de la forme

$$a + F = \{a + x, \ x \in F\}$$

avec $a \in E$ et F un sous-espace vectoriel de E. Dans ce problème, l'ensemble vide n'est donc pas un sous-espace affine de E.

Une partie C de E est dite convexe si pour tout $x, y \in C$, le segment $[x, y] = \{tx + (1 - t)y, t \in [0, 1]\}$ est contenu dans C. L'intersection d'une famille de convexes étant convexe, on appelle enveloppe convexe d'une partie A de E l'intersection de toutes les parties convexes de E contenant A. C'est donc, pour l'inclusion, le plus petit convexe de E contenant A. On le note Conv (A).

On dit qu'une partie C de E est un cône (de centre 0) si pour tout $x \in C$, la demi-droite $\mathbb{R}_+ x = \{tx, t \geq 0\}$ est contenu dans C. L'intersection d'une famille de cônes étant un cône, on appelle enveloppe conique d'une partie A de E l'intersection de tous les cônes (de centre 0) de E contenant A. C'est donc, pour l'inclusion, le plus petit cône (de centre 0) de E contenant A. On le note Cone (A).

Si $k \in \mathbb{N}^*$, $a_1, ..., a_k \in E$, $\lambda_1, ..., \lambda_k \in \mathbb{R}$, on dit que $\lambda_1 a_1 + \cdots + \lambda_k a_k$ est:

- une combinaison barycentrique de a_1, \ldots, a_k si $\lambda_1 + \ldots + \lambda_k = 1$,
- une combinaison vectorielle de a_1, \ldots, a_k si $\lambda_1 + \ldots + \lambda_k = 0$,
- une combinaison convexe de a_1, \ldots, a_k si $\lambda_1 + \ldots + \lambda_k = 1$ et pour tout $i = 1, \ldots, k, \lambda_i \geq 0$,
- une combinaison convexe conique de a_1, \ldots, a_k si pour tout $i = 1, \ldots, k, \lambda_i \geq 0$.
- 1. Soit \mathcal{F} un sous-espace affine de E. Montrer qu'il existe un unique sous-espace vectoriel F de E tel que pour tout $x \in \mathcal{F}$, on a $\mathcal{F} = x + F$. On appelle F l'espace vectoriel directeur de \mathcal{F} .
- 2. Montrer que l'intersection d'une famille de sous-espaces affines de E est soit vide, soit un sous-espace affine de E. Dans ce dernier cas, que peut-on dire de son espace vectoriel directeur?
- 3. Soit A une partie de E. Montrer qu'il existe (pour l'inclusion) un plus petit sous-espace affine de E contenant A. On le note Aff(A).
- 4. Soient \mathcal{F} un sous-espace affine de E et $a_1, ..., a_k \in \mathcal{F}$. Montrer que toute combinaison barycentrique de $a_1, ..., a_k$ est un élément de \mathcal{F} . Que peut-on dire d'une combinaison vectorielle de $a_1, ..., a_k$?
- 5. Soit $A \subset E$. Montrer que Aff (A) est l'ensemble des combinaisons barycentriques d'éléments de A. Si $A = \{a_1, ..., a_k\}$, montrer que l'espace vectoriel directeur de Aff (A) est engendré par la famille $(a_2 a_1, ..., a_k a_1)$.
- 6. Soit $A \subset E$. Montrer que A est convexe si et seulement si pour tout $a_1, ..., a_k \in A$, toute combinaison convexe de $a_1, ..., a_k$ est un élément de A.
- 7. Soit $A \subset E$. Montrer que Conv(A) est l'ensemble des combinaisons convexes d'éléments de A.
- 8. Soit $A \subset E$. Montrer que $\operatorname{Conv}(\operatorname{Cone}(A)) = \operatorname{Cone}(\operatorname{Conv}(A))$ et que c'est l'ensemble des combinaisons convexes coniques d'éléments de A.

II. Lemme de Farkas et optimisation (inspiré de X-ENS 2020).

Notations et Définitions

Pour tout entier $k \in \mathbb{N}^*$, on désignera le produit scalaire usuel sur \mathbb{R}^k par $\langle \cdot, \cdot \rangle$, et la norme euclidienne sur \mathbb{R}^k par $\|\cdot\|$.

Dans tout le sujet, on se place sur \mathbb{R}^n , où $n \in \mathbb{N}^*$, muni de la norme euclidienne.

A. Inégalité de convexité et identité du parallélogramme.

- 1. Soit $u, v \in \mathbb{R}^n$, $v \neq 0$. Montrer que ||u+v|| = ||u|| + ||v|| si et seulement si u et v sont positivement liés, c'est-à-dire il existe $\lambda \geq 0$ tel que $u = \lambda v$.
- 2. Soit $u, v \in \mathbb{R}^n$, $u \neq v$. Montrer que pour tout $x \in \mathbb{R}^n$:

$$\forall t \in [0,1], \ ||tu + (1-t)v - x|| \le t||u - x|| + (1-t)||v - x||$$

et qu'il y a égalité si et seulement si t = 0 ou t = 1 ou $x \in Aff(u, v) \setminus [u, v]$.

3. Soit $u, v \in \mathbb{R}^n$, $u \neq v$. Montrer que pour tout $x \in \mathbb{R}^n$:

$$\forall t \in [0,1], \ ||tu + (1-t)v - x||^2 \le t||u - x||^2 + (1-t)||v - x||^2$$

et qu'il y a égalité si et seulement si t=0 ou t=1. Indication : étudier la convexité de l'application $t\mapsto ||tu+(1-t)v-x||^2$.

4. (Identité du parallélogramme) Soit $u, v \in \mathbb{R}^n$. Montrer que :

$$\left\| \frac{u+v}{2} \right\|^2 + \left\| \frac{u-v}{2} \right\|^2 = 2\|u\|^2 + 2\|v\|^2.$$

B. Projection sur un convexe fermé et hyperplan séparateur.

Soient C un convexe fermé non vide de \mathbb{R}^n et $x \in \mathbb{R}^n$.

- 5. Montrer qu'il existe un unique point $P_C(x) \in C$ tel que $||P_C(x) x|| = \inf_{y \in C} ||y x||$. Indication : pour l'unicité, on pourra utiliser les questions de la partie précédente.
- 6. Soit $\overline{x} \in C$. Montrer que $\overline{x} = P_C(x)$ si et seulement si

$$\forall y \in C, \ \langle x - \overline{x}, y - \overline{x} \rangle \le 0$$

 $Indication: on \ pour ra\ considérer\ la\ fonction\ \psi_y: t \in \mathbb{R} \mapsto ||x - (\overline{x} + t(y - \overline{x}))||^2\ où\ y \in C.$

- 7. En déduire que pour tout $x, y \in \mathbb{R}^n$, $||P_C(y) P_C(x)|| \le ||y x||$.
- 8. Montrer que pour tout $y \in C$, $||y P_C(x)|| \le ||y x||$.
- 9. Soit $u = (u_1, ..., u_n) \notin C$. Montrer qu'il existe un hyperplan affine H de \mathbb{R}^n d'équation $a_1x_1 + ... + a_nx_n = b$ tel que $a_1u_1 + ... + a_nu_n > b$ et pour tout $x = (x_1, ..., x_n) \in C$, $a_1x_1 + ... + a_nx_n \leq b$.

Le convexe C est contenu dans un demi-espace séparé par l'hyperplan H et le point u est contenu dans l'autre demi-espace séparé par l'hyperplan H. On dit que H est un **hyperplan séparateur** de C et x.

On suppose désormais que C est un convexe compact non vide de \mathbb{R}^n . Soit R > 0 tel que C est inclus dans la boule ouverte B(0,R) de \mathbb{R}^n . Soit $u = (u_1,...,u_n) \in \partial C = C \setminus \mathring{C}$.

- 10. Soit $\epsilon > 0$.
 - (a) Montrer qu'il existe $v \in \mathbb{R}^n \setminus C$ tel que $||u P_C(v)|| < \epsilon$. On choisit un tel v.
 - (b) Montrer que la demi-droite affine $[P_C(v), v) = P_C(v) + \mathbb{R}_+(v P_C(v))$ rencontre la sphère S(0, R) en exactement un point w et que $P_C(v) = P_C(w)$.
- 11. En déduire que $P_C(S(0,R)) = \partial C$.
- 12. Montrer qu'il existe un hyperplan affine H de \mathbb{R}^n d'équation $a_1x_1+...+a_nx_n=b$ tel que $a_1u_1+...+a_nu_n=b$ et pour tout $x=(x_1,...,x_n)\in C,\ a_1x_1+...+a_nx_n\leq b.$

Le convexe C est contenu dans un demi-espace séparé par l'hyperplan H et le point u est dans l'hyperplan H. On dit que H est un **hyperplan d'appui** à C en x.

C. Lemme de Farkas

Soient $m \in \mathbb{N}^*$ et (u_1, \ldots, u_m) une famille de vecteurs de \mathbb{R}^n . On note C l'enveloppe convexe conique de u_1, \ldots, u_m , c'est-à-dire :

$$C = \left\{ \sum_{i=1}^{m} \mu_i u_i \mid \forall i \in [1, m] \mid \mu_i \ge 0 \right\}.$$

- 13. Le but de cette question est de montrer que C est un convexe fermé de \mathbb{R}^n .
 - (a) Montrer que C est convexe.
 - (b) Montrer que si (u_1, \ldots, u_m) est une famille libre, alors C est fermé.
 - (c) Soient (v_1, \ldots, v_k) une famille liée de \mathbb{R}^n et x une combinaison convexe conique de v_1, \ldots, v_k . Montrer que x est combinaison convexe conique de k-1 vecteurs parmi v_1, \ldots, v_k .
 - (d) Pour tout $I \subset [1, m]$, on pose $C_I = \{\sum_{i \in I} \mu_i u_i, \forall i \in I \ \mu_i \geq 0\}$. Montrer que

$$C = \bigcup_{I} C_{I}$$

où l'union est prise sur les ensembles $I \subset [1, m]$ tels que $(u_i)_{i \in I}$ est une famille libre. En déduire que C est fermé.

On veut démonter le résultat suivant :

Lemme de Farkas $Si \ v \in \mathbb{R}^n$, alors une et une seule des deux assertions suivantes est vérifiée :

- (i) $v \in C$,
- (ii) il existe $w \in \mathbb{R}^n$ tel que $\langle v, w \rangle < 0$ et $\forall i \in [1, m], \langle u_i, w \rangle \geq 0$.
- 14. On considère un vecteur $v \in \mathbb{R}^n \setminus C$.
 - (a) Montrer que $\langle P_C(v), P_C(v) v \rangle = 0$.
 - (b) On pose $w = P_c(v) v$. Montrer que $\langle v, w \rangle < 0$ et $\langle u_i, w \rangle \ge 0$ pour tout $i \in [1, m]$.
- 15. Conclure la preuve du lemme de Farkas.

III. Théorème de Carathéodory, groupe orthogonal et boule unité de $M_n(\mathbb{R})$ (d'après Mines-Ponts 2013 MP2)

Notations et définitions.

Soit E un espace vectoriel euclidien (préhilbertien réel de dimension finie). On note \langle,\rangle le produit scalaire de E et ||.|| la norme euclidienne associée.

Si H est une partie de E, on appelle enveloppe convexe de H, notée $\operatorname{Conv}(H)$, la plus petite partie convexe de E contenant H, c'est-à-dire l'intersection de tous les convexes de E contenant H.

Si H est une partie convexe de E, un élément x de H est dit extrémal (dans H) si pour tout $a, b \in H$, si $x \in [a, b]$, alors x = a ou x = b.

Soit n un entier naturel ≥ 2 . On désigne par $M_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n à coefficients réels. On note I la matrice identité de $M_n(\mathbb{R})$ et si $A \in M_n(\mathbb{R})$, on note tA la matrice transposée de A. On rappelle que le groupe orthogonal $O_n(\mathbb{R})$ de $M_n(\mathbb{R})$ est l'ensemble des matrices U de $M_n(\mathbb{R})$ telles que $U^tU = I$. On rappelle également qu'une matrice symétrique réelle est dite positive si ses valeurs propres sont positives ou nulles.

On pourra identifier \mathbb{R}^n et l'ensemble des matrices colonnes $M_{n,1}(\mathbb{R})$. On munit chacun d'eux du produit scalaire canonique, pour lequel la base canonique est orthonormée. On note $||.||_2$ la norme sur $M_n(\mathbb{R})$ subordonnée à la norme euclidienne de \mathbb{R}^n : pour tout $A \in M_n(\mathbb{R})$,

$$||A||_2 = \sup_{X \in \mathbb{R}^n, ||X|| = 1} \frac{||AX||}{||X||}.$$

Les parties A, B, C et D sont indépendantes.

A. Projeté sur un convexe

Soit H une partie de E non vide, fermée et convexe. Soit $x \in E$. On note

$$d(x, H) = \inf\{||x - h||, h \in H\}.$$

- 1. Montrer qu'il existe un unique $h_0 \in H$ tel que $d(x, H) = ||h h_0||$. Indication : pour l'unicité, on pourra utiliser l'égalité du parallélogramme.
- 2. Montrer que h_0 est l'élément de H caractérisé par la condition :

$$\forall h \in H, \langle x - h_0 | h - h_0 \rangle \le 0.$$

Indication: on pourra utiliser la fonction $q: t \mapsto ||th_0 + (1-t)h - x||^2$ définie sur \mathbb{R} .

Le vecteur h_0 s'appelle le projeté de x sur H.

B. Théorème de Carathéodory et compacité

Dans cette partie, on suppose que E est de dimension n. On dit que $x \in E$ est une combinaison convexe des p éléments $x_1, x_2, ..., x_p \in E$ s'il existe des réels $\lambda_1, ..., \lambda_p$ positifs ou nuls tels que $x = \lambda_1 x_1 + ... + \lambda_p x_p$ et $\lambda_1 + ... + \lambda_p = 1$.

3. Montrer que l'enveloppe convexe Conv(H) d'une partie H de E est constituée des combinaisons convexes d'éléments de H.

On souhaite montrer que l'enveloppe convexe Conv(H) est constituée des combinaisons convexes d'au plus n+1 éléments de H.

Soit $x = \lambda_1 x_1 + ... + \lambda_p x_p$ une combinaison convexe de $x_1, x_2, ..., x_p \in H$ avec $p \geq n+2$.

- 4. Montrer qu'il existe p réels non tous nuls $\mu_1, ..., \mu_p$ tels que $\mu_1 x_1 + ... + \mu_p x_p = 0$ et $\mu_1 + ... + \mu_p = 0$. Indication: on pourra considérer la famille $(x_2 - x_1, ..., x_p - x_1)$.
- 5. En déduire que x s'écrit comme combinaison convexe d'au plus p+1 éléments de H, puis conclure que $\operatorname{Conv}(H)$ est constituée des combinaisons convexes d'au plus n+1 éléments de H.
- 6. Application: si H est une partie compacte de E, montrer que Conv(H) est compacte. Indication: On pourra montrer que Conv(H) est l'image d'un compact par une application continue. On rappelle qu'un produit fini d'espaces métriques compacts est compact.

C. Enveloppe convexe de $O_n(\mathbb{R})$ et points extrémaux de la boule unité de $M_n(\mathbb{R})$.

- 7. Montrer que l'enveloppe convexe $\operatorname{Conv}(\operatorname{O}_n(\mathbb{R}))$ est compacte. On note \mathcal{B} la boule unité fermée de $(M_n(\mathbb{R}), ||.||_2)$. C'est une partie convexe de $M_n(\mathbb{R})$.
- 8. Montrer que Conv $(O_n(\mathbb{R}))$ est contenue dans \mathcal{B} .
- 9. Soit $U \in \mathcal{O}_n(\mathbb{R})$. Montrer que si $U = \frac{V+W}{2}$ avec $V, W \in \mathcal{B}$, alors pour tout $X \in \mathbb{R}^n$, on a ||VX|| = ||WX|| = ||X|| et UX et VX sont positivement liés. En déduire que U est extrémal dans \mathcal{B} .

D. Décomposition polaire.

Soit f un endomorphisme de E. On note A la matrice de f dans une base orthonormée de E, et on note f^* l'adjoint de f.

- 10. Montrer que ${}^{t}AA$ est une matrice symétrique réelle positive. Exprimer $||A||_{2}$ en fonction des valeurs propres de ${}^{t}AA$.
- 11. Montrer qu'il existe un endomorphisme auto-adjoint positif h de E tel que $f^* \circ f = h^2$.
- 12. Montrer que la restriction de h à $\operatorname{Im} h$ induit un automorphisme de $\operatorname{Im} h$. On notera \tilde{h} cet automorphisme.
- 13. Montrer que ||h(x)|| = ||f(x)|| pour tout $x \in E$. En déduire que Ker h et $(\operatorname{Im} f)^{\perp}$ ont même dimension et qu'il existe un isomorphisme v de Ker h sur $(\operatorname{Im} f)^{\perp}$ qui conserve la norme.
- 14. À l'aide de \tilde{h} et v, construire un automorphisme orthogonal u de E tel que $f = u \circ h$.
- 15. En déduire que toute matrice $A \in M_n(\mathbb{R})$ s'écrit sous la forme A = US, où $U \in O_n(\mathbb{R})$ et S est une matrice symétrique positive.

Remarque : si A est inversible, cette écriture est unique. La décomposition polaire permet de montrer que l'enveloppe convexe de $O_n(\mathbb{R})$ est exactement la boule unité de $(M_n(\mathbb{R}),||.||_2)$.

IV. Étude d'une conique

Dans le plan affine \mathbb{R}^2 , on considère la conique \mathcal{C} d'équation :

$$x^2 - 6xy + y^2 + 6x - 2y - 1 = 0.$$

On lui associe les deux formes quadratiques sur les espaces vectoriels \mathbb{R}^2 et \mathbb{R}^3 suivantes :

$$q: (x,y) \mapsto x^2 - 6xy + y^2$$

$$Q: (x,y,z) \mapsto x^2 - 6xy + y^2 + 6xz - 2yz - z^2$$

(la forme Q est obtenue en homogénéisant au degré 2 l'équation de \mathcal{C} à l'aide de la variable z.)

A. Étude affine de la conique.

- 1. Montrer que l'application affine $i: \mathbb{R}^2 \to \mathbb{R}^3$ définie par i(x,y) = (x,y,1) envoie bijectivement le plan affine \mathbb{R}^2 sur le plan affine d'équation z=1 dans \mathbb{R}^3 et envoie bijectivement \mathcal{C} sur l'intersection du cône isotrope de Q et du plan affine d'équation z=1 dans \mathbb{R}^3 . Quel lien peut-on faire entre q et Q?
- 2. Orthogonaliser la forme quadratique q à l'aide du procédé de Gauss. Quelle peut-être la nature de la conique \mathcal{C} ?
- 3. Orthogonaliser la forme quadratique Q à l'aide du procédé de Gauss et préciser la nature de la conique \mathcal{C} .

B. Étude métrique de la conique.

On munit désormais le plan affine \mathbb{R}^2 de la structure euclidienne induite par le produit scalaire usuel.

4. Déterminer un repère orthonormé de \mathbb{R}^2 dans lequel l'équation de la conique \mathcal{C} est de la forme

$$\frac{X^2}{a^2} \pm \frac{Y^2}{b^2} = 1$$

(forme réduite de l'équation de la conique).