Exercices sur les équations différentielles

Exercice (1).

1. Soit l'équation différentielle

$$(\mathcal{H}_1): \sin(t) \cdot y'(t) - 2\cos(t) \cdot y(t) = 0.$$

Que peut-on dire de la dimension de l'espace des solutions de (\mathcal{H}) sur \mathbb{R} ?

2. Soit l'équation différentielle

$$(\mathcal{H}_2): x^2 \cdot y''(x) - 4x \cdot y'(x) + (x^2 + 6) \cdot y(x) = 0.$$

- a) Déterminer les solutions de (\mathcal{H}_2) développables en séries entières.
- b) Quelle est la dimension de l'espace des solutions de (\mathcal{H}) sur \mathbb{R} ?

► Corrigé.-

1. Soit $k \in \mathbb{Z}$ quelconque, sur l'intervalle $I_k =]k\pi$; $(k+1)\pi[$:

l'équation différentielle $y'(t) = 2 \cdot \frac{\cos(t)}{\sin(t)} \cdot y(t)$ a pour solution la

fonction $y_k: t \mapsto \lambda_k \cdot e^{\int 2\frac{\cos(t)}{\sin(t)} dt} = \lambda_k \cdot e^{2\ln(|\sin(t)|)} = \lambda_k \cdot \sin^2(t)$ (où $\lambda_k \in \mathbb{R}$).

On vérifie alors facilement que pour tout $k \in \mathbb{Z}$, la fonction

$$x_k: \mathbb{R} \to \mathbb{R}$$

$$t \mapsto \begin{cases} \sin^2(t) & \text{si } t \in]k\pi; (k+1)\pi[\\ 0 & \text{sinon} \end{cases}$$

est une solution de (\mathcal{H}_1) .

En effet, x_k est de classe C^1 sur $\mathbb{R} \setminus \{k\pi; (k+1)\pi\}$, et on a

clairement $x_k(k\pi) = x'_k(k\pi) = 0$.

Il reste à vérifier assez facilement que la famille $(x_k)_{k\in\mathbb{N}}$ est libre : par conséquent, dim $(S_{\mathcal{H}_1}(\mathbb{R})) = +\infty$, où $S_{\mathcal{H}_1}(\mathbb{R})$ est l'espace des solutions de \mathcal{H}_1 sur \mathbb{R} .

2. On résout ici l'équation différentielle :

$$(\mathcal{H}_2): \ x^2 \cdot y''(x) - 4x \cdot y'(x) + (x^2 + 6) \cdot y(x) = 0.$$

a) Supposons que $(\mathcal{H}_2$ possède une solution développable en série entière : $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ (de rayon de convergence R > 0), alors pour tout x tel que |x| < R:

$$y'(x) = \sum_{n=1}^{+\infty} n a_n x^{n-1}$$
 et $y''(x) = \sum_{n=2}^{+\infty} n(n-1) a_n x^{n-2}$.

Ainsi, pour tout x tel que |x| < R:

$$0 = x^{2} \cdot y''(x) - 4x \cdot y'(x) + (x^{2} + 6) \cdot y(x)$$

$$\Leftrightarrow 0 = \sum_{n=2}^{+\infty} n(n-1)a_{n}x^{n-2} - 4\sum_{n=1}^{+\infty} na_{n}x^{n} + (x^{2} + 6)\sum_{n=0}^{+\infty} a_{n}x^{n}$$

$$\Leftrightarrow 0 = \sum_{n=1}^{+\infty} (n(n-1) - 4n)a_{n}x^{n} + 6\sum_{n=0}^{+\infty} a_{n}x^{n} + \sum_{n=0}^{+\infty} a_{n}x^{n+2}$$

$$\Leftrightarrow 0 = 6a_{0} + \sum_{n=1}^{+\infty} (n^{2} - 5n + 6)a_{n}x^{n} + \sum_{n=2}^{+\infty} a_{n-2}x^{n}$$

$$\Leftrightarrow 0 = 6a_{0} + 2a_{1} \cdot x + \sum_{n=2}^{+\infty} ((n^{2} - 5n + 6)a_{n} + a_{n-2})x^{n}.$$

On en déduit :

$$a_0 = a_1 = 0$$
 et pour tout entier $n \ge 2$, $(n^2 - 5n + 6)a_n + a_{n-2} = 0$.
Or $(n^2 - 5n + 6) = (n-2)(n-3)$, donc pour $n = 2$ et $n = 3$ on a: $0 \cdot a_n + 0 = 0$, qui est toujours vrai, tandis que pour tout entier $n \ge 4$: $a_n = \frac{-a_{n-2}}{(n-2)(n-3)}$, qui s'écrit aussi :

$$\forall n \in \mathbb{N}, \quad a_{2n+2} = \frac{-a_{2n}}{2n(2n-1)} \text{ et } a_{2n+3} = \frac{-a_{2n+1}}{(2n+1)(2n+2)}$$

Une récurrence facile donne alors, pour tout $n \in \mathbb{N}^*$:

$$a_{2n} = \frac{(-1)^{n-1}}{(2n-2)!} \cdot a_2$$
 et $a_{2n+1} = \frac{(-1)^{n-1}}{(2n-1)!} \cdot a_3$,

d'où la forme générale des solutions de (\mathcal{H}_2) développables en série entière :

$$y(x) = a_2 \cdot \sum_{n=1}^{+\infty} \frac{(-1)^n x^{2n}}{(2n-2)!} + a_3 \cdot \sum_{n=1}^{+\infty} \frac{(-1)^n x^{2n+1}}{(2n-1)!}$$
$$= a_2 \cdot x^2 \cdot \sum_{k=0}^{+\infty} (-1)^k \cdot \frac{x^{2k}}{(2k)!} + a_3 \cdot x^2 \cdot \sum_{k=0}^{+\infty} (-1)^k \cdot \frac{x^{2k+1}}{(2k+1)!}$$
$$= a_2 \cdot x^2 \cdot \cos(x) + a_3 \cdot x^2 \cdot \sin(x).$$

Remarquons que le rayon de convergence de ces solutions est infini. L'ensemble des solutions de (\mathcal{H}_2) développables en série entière, est donc $\mathrm{Vect}(y_1,y_2)$, où $y_1: \mathbb{R} \to \mathbb{R}$ et $y_2: \mathbb{R} \to \mathbb{R}$. $x \mapsto x^2 \cdot \cos(x) \qquad x \mapsto x^2 \cdot \sin(x)$

b) L'espace des solutions de (\mathcal{H}_2) sur $I_1 =]-\infty$; 0[ou $I_2 =]0$; $+\infty[$ est de dimension 2 et comme y_1 et y_2 sont solutions de (\mathcal{H}_2) sur \mathbb{R} , ces fonctions sont aussi solutions de l'équation différentielle sur I_1 et sur I_2 . On en déduit :

$$S_{\mathcal{H}_2}(]-\infty;0[) = \text{Vect}(y_1,y_2) \text{ et } S_{\mathcal{H}_2}(]0;+\infty[) = \text{Vect}(y_1,y_2).$$

Par conséquent, si y est solution de \mathcal{H}_2 sur \mathbb{R} , alors y est solution de (\mathcal{H}_2) sur I_1 et sur I_2 , donc il existe des réels $\lambda_1, \mu_1, \lambda_2, \mu_2$ tels que :

$$\forall x \in]0; +\infty[: \quad y(x) = \lambda_1 \cdot x^2 \cos(x) + \mu_1 \cdot x^2 \sin(x),$$

et $\forall x \in]0; +\infty[: \quad y(x) = \lambda_2 \cdot x^2 \cos(x) + \mu_2 \cdot x^2 \sin(x).$

Or sur $]-\infty\,;0[$:

$$y'(x) = \lambda_1 \cdot 2x \cos(x) - \lambda_1 \cdot x^2 \sin(x) + \mu_1 \cdot 2x \sin(x) + \mu_1 \cdot x^2 \cos(x)$$
 et
$$y''(x) = \lambda_1 \cdot 2\cos(x) - \lambda_1 \cdot 4x \sin(x) - \lambda_1 \cdot x^2 \cos(x) + \mu_1 \cdot 2\sin(x) + \mu_1 \cdot 4x \cos(x) - \mu_1 \cdot x^2 \sin(x).$$

D'où:
$$y(x) \xrightarrow{x \to 0} 0$$
, $y'(x) \xrightarrow{x \to 0} 0$ et $y''(x) \xrightarrow{x \to 0} 2\lambda_1$.

De même : $y(x) \xrightarrow[x>0]{x\to 0} 0$, $y'(x) \xrightarrow[x>0]{x\to 0} 0$ et $y''(x) \xrightarrow[x>0]{x\to 0} 2\lambda_2$.

On peut donc recoller les solutions au point 0 si et seulement si $\lambda_1 = \lambda_2$.

On conclut donc que l'ensemble des solutions de (\mathcal{H}_2) sur \mathbb{R} est :

$$S_{\mathcal{H}_2}(\mathbb{R}) = \operatorname{Vect}(z_1, z_2, z_3),$$

où:

$$z_1: \mathbb{R} \to \mathbb{R}$$
 , $z_2: \mathbb{R} \to \mathbb{R}$ et $z_3: \mathbb{R} \to \mathbb{R}$
$$x \mapsto x^2 \cos(x)$$

$$x \mapsto \begin{cases} x^2 \sin(x) & \text{si } x > 0 \\ 0 & \text{sinon} \end{cases} x \mapsto \begin{cases} 0 & \text{si } x > 0 \\ x^2 \sin(x) & \text{sinon} \end{cases}$$

Exercice (2).

1. Soit $(a, b) \in \mathbb{R}^* \times \mathbb{R}$, et soit l'équation

(E):
$$y''(x) - 4y(x) = a|x| + b$$
.

Montrer que l'équation (E) possède une unique solution sur \mathbb{R} qui admet des asymptotes en $+\infty$ et en $-\infty$, et déterminer cette solution.

2. Soit $f \in \mathcal{C}^1(\mathbb{R}_+; \mathbb{R})$ monotone, admettant une limite finie en $+\infty$.

Montrer que toutes les solutions de l'équation différentielle

$$(E): y'' + y = f,$$

sont bornées.

Exercice (3).

Soit $p, q: [a; b] \to \mathbb{R}$ deux fonctions continues, et l'équation :

$$(S.L.): y'' + py' + qy = 0.$$

- 1. Soit y une solution non nulle de (S.L.).
 - a) Montrer que les fonctions y et y' ne s'annulent pas simultanément.
 - b) Montrer que les zéros de y sont en nombre fini.
- 2. Soit y_1 et y_2 deux solutions linéairement indépendantes de (S.L.). On suppose que y_1 admet au moins deux zéros : soient α et β deux zéros consécutifs de y_1 .
 - a) Montrer que y_2 admet au moins un zéro dans l'intervalle ouvert α ; β .
 - b) La fonction y_2 peut-elle avoir plusieurs zéros dans α ; β ?

► Corrigé.-

- 1. a) S'il existe $t_0 \in [a; b]$ tel que $y(t_0) = y'(t_0) = 0$, vu que la fonction nulle est solution de l'équation (S.L.), alors d'après le théorème de Cauchy-Lipschitz linéaire, la solution y est nulle : par l'absurde, il n'existe donc aucun $t \in [a; b]$ tel que y(t) = y'(t) = 0.
 - b) Supposons que la solution y possède une infinité de zéros deux à deux distincts dans [a;b]: on extrait de cette famille infinie une suite $(x_n)_{n\in\mathbb{N}}$ de zéros de y.

D'après le théorème de Bolzano-Weierstrass, on peut alors en extraire une sous-suite $(x_{\varphi(n)})_{n\in\mathbb{N}}$ qui converge dans [a;b].

On note $\ell = \lim_{n \to +\infty} x_{\varphi(n)}$: comme la fonction y est continue, alors $y(\ell) = \lim_{n \to +\infty} \underbrace{y(x_{\varphi(n)})}_{=0} = 0$.

Le théorème de Rolle s'applique par ailleurs, qui assure que pour tout $x \in \mathbb{N}$, il existe un réel c_n compris entre $x_{\varphi(n)}$ et $x_{\varphi(n+1)}$ tel que $y'(c_n) = 0$.

Or $c_n \xrightarrow[n \to +\infty]{} \ell$ (par encadrement), et comme y' est aussi continue, alors $y'(\ell) = \lim_{n \to +\infty} y'(c_n) = 0$.

On a donc trouvé un réel ℓ de $[a\,;b]$ tel que $y(\ell)=y'(\ell)=0$, ce qui contredit le résultat de a) : on en conclut que la solution non nulle y possède un nombre fini de zéros dans $[a\,;b]$.

c) a) Les fonctions y_1 et y_2 sont linéairement indépendantes, donc le wronskien $w(y_1, y_2) = y_1 \cdot y_2' - y_1' \cdot y_2$ ne s'annule pas sur [a; b]. D'après le théorème des valeurs intermédiaires, $w(y_1, y_2)$ reste de

signe constant sur [a; b], et quitte à échanger les rôles de y_1 et y_2 , on peut supposer que $w(y_1, y_2) > 0$. On en déduit :

$$w(y_1, y_2)(\alpha) = \underbrace{y_1(\alpha)}_{=0} \cdot y_2'(\alpha) - y_1'(\alpha) \cdot y_2(\alpha) = -y_1'(\alpha) \cdot y_2(\alpha) > 0,$$
et

$$w(y_1, y_2)(\beta) = y_1(\beta) \cdot y_2'(\beta) - y_1'(\beta) \cdot y_2(\beta) = -y_1'(\beta) \cdot y_2(\beta) > 0.$$

Or α et β sont deux zéros consécutifs de y_1 , donc $y_1'(\alpha)$ et $y_1'(\beta)$ sont de signes opposés. On en déduit que $y_2(\alpha)$ et $y_2(\beta)$ sont de signes opposés; lke théorème des valeurs intermédiaires assure alors l'exisence d'un réel $\gamma \in]\alpha; \beta[$ tel que $y_2(\gamma) = 0$.

b) S'il existe deux réels distincts γ , δ dans $]\alpha; \beta[$ tels que $y_2(\gamma) = y_2(\delta) = 0$, alors par le même raisonnement qu'en 2.a), il existe un réel $c \in]\gamma; \delta[\subset]\alpha; \beta[$ tel que $y_1(c) = 0$, ce qui est incompatible avec le fait que α et β sont deux zéros consécutifs de y_1 .

La fonction y_2 s'annule donc une et une seule fois dans α ; β [.

Exercice (4).

Soit l'équation

$$(S.L.): y''(x) + q(x) \cdot y(x) = 0,$$

où $q: \mathbb{R} \to \mathbb{R}$ est une fonction continue, négative et non nulle sur \mathbb{R} .

- 1. a) Montrer que si y est une solution réelle de (S.L.), alors la fonction y^2 est convexe.
 - b) Montrer que si y est une solution réelle positive de (S.L.) sur un intervalle I, alors y est convexe sur I.
 - c) Montrer que la fonction nulle est l'unique solution réelle bornée de (S.L.).
- 2. Soit φ la solution réelle de (S.L.) telle que $\varphi(0)=1$ et $\varphi'(0)=0$.
 - a) Montrer que $\forall x \in \mathbb{R}, \ |\varphi(x)| \geqslant 1$, puis que $\forall x \in \mathbb{R}, \ \varphi(x) \geqslant 1$ et que φ est convexe sur \mathbb{R} .
 - b) On suppose qu'il existe $\alpha > 0$ tel que $q(x) \leq -\alpha^2$ pour tout $x \in \mathbb{R}$. Montrer que $\varphi(x) \geqslant \operatorname{ch}(\alpha x)$ pour tout $x \in \mathbb{R}$.

Indication: écrire $\varphi'' - \alpha^2 \varphi = f$ avec $f(x) = -(q(x) + \alpha^2)\varphi(x)$, et utiliser la méthode de variation des constantes.

Exercice (5).

Soit l'équation différentielle :

$$(\mathcal{H}): y^{(n)}(t) + a_{n-1} \cdot y^{(n-1)}(t) + \ldots + a_1 \cdot y'(t) + a_0 \cdot y(t) = 0.$$

On suppose que le polynôme $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ est scindé et que $P = \prod_{i=1}^r (X - \lambda_i)^{\alpha_i}$ avec $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ sont deux à deux distincts et $\alpha_1, \alpha_2, \ldots, \alpha_r \in \mathbb{N}^*$.

On définit l'endomorphisme $D: \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ et l'application $I: \mathbb{R} \to \mathbb{R}$. $f \mapsto f'$

On note aussi $\mathcal{S}_{\mathcal{H}}$ l'espace des solutions de (\mathcal{H}) sur \mathbb{R} .

- 1. Montrer que $S_{\mathcal{H}} = \bigoplus_{1 \leq i \leq r} \operatorname{Ker}((D \lambda_i . I)^{\alpha_i}).$
- 2. En déduire que : $\mathcal{S}_{\mathcal{H}} = \left\{ y : t \mapsto \sum_{i=1}^r P_i(t) \cdot e^{\lambda_i \cdot t} \middle| P_i \in \mathbb{R}_{\alpha_i 1}[X] \right\}.$
- 3. Application : résoudre les équations différentielles suivantes :
 - a) $(E_1): y'''(t) 3y''(t) + 3y'(t) y(t) = t 3.$
 - b) $(E_2): y^{(4)}(t) 2y''(t) + y(t) = 0.$

► Corrigé.-

1. Si f est solution de (\mathcal{H}) , alors f est n fois dérivable sur \mathbb{R} , et $f^{(n)} = -a_{n-1} \cdot f^{(n-1)} - \cdots - a_1 \cdot f' - a_0 \cdot f$ qui est dérivable sur \mathbb{R} , donc f est (n+1) fois dérivable sur \mathbb{R} ; de proche en proche, on obtient que f est indéfiniment dérivable sur \mathbb{R} , et $f \in \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{R})$. On en déduit :

$$\left(f \in S_{\mathcal{H}}\right) \Leftrightarrow \left(P(D)(f) = 0\right) \Leftrightarrow f \in \operatorname{Ker}\left(P(D)\right) \Leftrightarrow f \in \bigoplus_{1 \leqslant i \leqslant r} \left(\operatorname{Ker}\left((D - \lambda_i.I)^{\alpha_i}\right)\right),$$

d'après le théorème des noyaux.

2. Pour tout i de $\{1, 2, ..., r\}$, on note $F_{\lambda_i} = \text{Vect}(g_{0, \lambda_i}, g_{1, \lambda_i}, ..., g_{\alpha_i - 1, \lambda_i})$ où les fonctions g_k sont définies pour tout $k \in \mathbb{N}$ par $g_{k, \lambda_i} : \mathbb{R} \to \mathbb{R}$. $t \mapsto t^k \cdot e^{\lambda_i \cdot t}$

Il est facile de voir que $\dim(F_{\lambda_i}) = \alpha_i$ et que :

$$F_{\lambda_i} = \left\{ t \mapsto P_0(t) \cdot e^{\lambda_i \cdot t} \; ; \; P_0 \in \mathbb{R}_{\alpha_i - 1}[X] \right\}$$

D'autre part, pour tout $k \in \mathbb{N}$, $(D - \lambda_i \cdot I)(g_{k,\lambda_i}) = k \cdot g_{k-1,\lambda_i}$.

En effet, pour tout réel t:

$$(D-\lambda_i\cdot I)(g_{k,\lambda_i})(t)=kt^{k-1}\cdot e^{\lambda_i\cdot t}+\lambda_i\cdot t^k\cdot e^{\lambda_i\cdot t}-\lambda_i\cdot t^k\cdot e^{\lambda_i\cdot t}=k\cdot g_{k-1,\lambda_i}(t).$$

Répétant cette opération α_i fois, on obtient pour tout $k \in \{0,1,\ldots,\alpha_i-1\}$, on obtient : $(D-\lambda_i \cdot I)^{\alpha_i}(g_{k,\lambda_i})=0$, et donc pour tout $i \in \{1,2,\ldots,r\}$:

$$F_{\lambda_i} \subset \operatorname{Ker}((D - \lambda_i \cdot I)^{\alpha_i}), \text{ puis } \bigoplus_{1 \leqslant i \leqslant r} F_{\lambda_i} \subset S_{\mathcal{H}}.$$

$$\begin{aligned} \text{Or } \dim \Big(\bigoplus_{1 \leqslant i \leqslant r} F_{\lambda_i} \Big) &= \sum_{i=1}^r \alpha_i = n = \dim(S_{\mathcal{H}}), \text{ d'où } : \quad S_{\mathcal{H}} = \bigoplus_{1 \leqslant i \leqslant r} F_{\lambda_i}, \\ \text{soit } : \quad S_{\mathcal{H}} &= \Big\{ y : \ \mathbb{R} \to \ \mathbb{R} \\ &\quad t \mapsto \sum_{i=1}^r P_i(t) \cdot e^{\lambda_i \cdot t} \\ \end{aligned}$$

- 3. Application.
 - a) L'équation (E_1) : y'''(t) 3y''(t) + 3y'(t) y(t) = t 3 a pour équation homogène associée :

$$y'''(t) - 3y''(t) + 3y'(t) - y(t) = 0 \Leftrightarrow (D - I)^{3}(y)(t) = 0.$$

Ainsi, d'après 2:

$$S_{\mathcal{H}} = \operatorname{Ker}((D-I)^3) = \{(at^2 + bt + c) \cdot e^t; \ a, b \in \mathbb{R}\}.$$

De plus, la fonction $y_p: \mathbb{R} \to \mathbb{R}$ est une solution particulière $t \mapsto -t$

 $de(E_1), donc:$

$$S_{(E_1)} = \{t \mapsto -t + (at^2 + bt + c) \cdot e^t; \ a, b \in \mathbb{R} \},$$

où $S_{(E_1)}$ est l'espace affine des solutions de (E_1) sur \mathbb{R} .

b) L'équation différentielle (E_2) est déjà homogène, et a pour ensemble solution :

$$S_{\mathcal{H}} = \text{Ker}(P(D))$$
 où $P = X^4 - 2X^2 + 1 = (X - 1)^2 (X + 1)^2$
= $\text{Ker}((D - I)^2 (D + I)^2) = \text{Ker}((D - I)^2) \oplus \text{Ker}((D + I)^2).$

Ainsi, d'après 2:

$$S_{(E_2)} = \left\{ y : \mathbb{R} \to \mathbb{R} \\ t \mapsto (at+b) \cdot e^t + (ct+d) \cdot e^{-t} \right\}; \ a, b, c, d \in \mathbb{R} \right\}.$$

Exercice (6).

1. Soit $(a,\ell) \in \mathbb{C}^2$ tel que Re(a) > 0 et soit $f \in \mathcal{C}^1(\mathbb{R}_+;\mathbb{C})$ vérifiant :

$$(f'(t) + a \cdot f(t)) \xrightarrow[t \to +\infty]{} \ell.$$

Montrer que $f(t) \xrightarrow{t \to +\infty} \ell$.

- 2. Soit $g \in \mathcal{C}^2(\mathbb{R}_+; \mathbb{C})$ vérifiant : $\left(g''(t) + g'(t) + g(t)\right) \xrightarrow[t \to +\infty]{} \ell$.

 Montrer que $g(t) \xrightarrow[t \to +\infty]{} \ell$.
- 3. Généraliser.

► Corrigé.-

1. Posons pour tout réel $t \in \mathbb{R}_+$, $g(t) = f(t) - \ell$ et $\varepsilon(t) = g'(t) + a \cdot g(t)$, alors $\varepsilon(t) = f'(t) + a \cdot f(t) - \ell \xrightarrow[t \to +\infty]{} 0$ et g est solution de l'équation différentielle (E): $y' + a \cdot y = \ell$.

L'équation homogène associée à (E) est (H): $y'_H + a \cdot y_H = 0$; il existe donc $\lambda \in \mathbb{C}$ tel que $y_H(t) = \lambda \cdot e^{-at}$.

On utilise ensuite la méthode de variation de la constante, en posant $q(t) = \lambda(t) \cdot e^{-at}$. Pour tout $t \in \mathbb{R}_+$:

$$g'(t) = \lambda'(t) \cdot e^{-at} - \lambda(t) \cdot a \cdot e^{-at} \Leftrightarrow g'(t) + a \cdot g(t) = \lambda'(t) \cdot e^{-at}.$$

Or $g'(t) + a \cdot g(t) = \varepsilon(t)$, donc $\lambda'(t) = e^{at} \cdot \varepsilon(t)$.

On choisit alors : $\lambda(t) = \int_0^t \varepsilon(u) \cdot e^{au} du$; on a alors :

$$g(t) = y_H(t) + \lambda(t) \cdot e^{-at} = \lambda \cdot e^{-at} + \left(\int_0^t \varepsilon(u) \cdot e^{au} du \right) \cdot e^{-at}.$$

De plus : $|\lambda \cdot e^{-at}| = |\lambda| \cdot e^{-\operatorname{Re}(a) \cdot t} \xrightarrow[t \to 0]{} 0 \text{ car } \operatorname{Re}(a) > 0.$

Comme $\varepsilon(t) \xrightarrow[t \to +\infty]{} 0$, alors :

$$\forall \alpha>0, \ \exists A>0 \ {\rm tel \ que \ si} \ u>A \ {\rm alors} \ |\varepsilon(u)|<\alpha.$$

Pour tout t > A, on écrit alors :

$$\Big(\int_0^t \varepsilon(u) \cdot e^{au} \mathrm{d}u \Big) \cdot e^{-at} = \Big(\int_0^A \varepsilon(u) \cdot e^{au} \mathrm{d}u \Big) \cdot e^{-at} + \Big(\int_A^t \varepsilon(u) \cdot e^{au} \mathrm{d}u \Big) \cdot e^{-at},$$

où :

$$\left| \left(\int_0^A \varepsilon(u) \cdot e^{au} du \right) \cdot e^{-at} dt \right| \leq \left(\int_0^A |\varepsilon(u)| \cdot e^{\operatorname{Re}(a) \cdot u} du \right) \cdot e^{-\operatorname{Re}(a) \cdot t} \xrightarrow[t \to +\infty]{} 0,$$

puisque Re(a) > 0. De plus, pour tout t > A:

$$\begin{split} & \left| \left(\int_A^t \varepsilon(u) \cdot e^{au} \mathrm{d}u \right) \cdot e^{-at} \right| = \left(\int_A^t \left| \varepsilon(u) \right| \cdot e^{\mathrm{Re}(a) \cdot u} \mathrm{d}u \right) \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & = \left(\int_A^t \alpha \cdot e^{\mathrm{Re}(a) \cdot u} \mathrm{d}u \right) \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot \left[e^{\mathrm{Re}(a) \cdot u} \right]_A^t \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \leqslant \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \\ & \le \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t} \cdot e^{-\mathrm{Re}(a) \cdot t} = \frac{\alpha}{\mathrm{Re}(a)} \cdot e^{-\mathrm{Re}(a) \cdot t}$$

En rassemblant ces résultats, on en déduit que $g(t) \xrightarrow[t \to +\infty]{} 0$, puis $f(t) = g(t) + \ell \xrightarrow[t \to +\infty]{} \ell$.

2. On suppose que $g \in \mathcal{C}^2(\mathbb{R}_+; \mathbb{C})$ vérifie $g''(t) + g'(t) + g(t) \xrightarrow[t \to +\infty]{} \ell$. Cherchons $\alpha, \beta \in \mathbb{C}$ et une fonction h tels que

$$h(t) = g'(t) + \alpha \cdot g(t)$$
 et $g''(t) + g'(t) + g(t) = h'(t) + \beta \cdot h(t)$.

On a alors:

$$h'(t) + \beta \cdot h(t) = g''(t) + \alpha \cdot g'(t) + \beta \cdot \left(g'(t) + \alpha \cdot g(t)\right) = g''(t) + (\alpha + \beta) \cdot g'(t) + \alpha\beta,$$

et par identification, il suffit de choisir α , $\beta \in \mathbb{C}$ tels que : $\begin{cases} \alpha + \beta &= 1 \\ \alpha \cdot \beta &= 1 \end{cases}$

Les réels α et β sont donc solutions de l'équation $z^2-z+1=0$. Son discriminant est $\Delta=1-4=-3$, et on peut choisir par exemple :

$$\alpha = \frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}$$
 et $\beta = \frac{1}{2} - i \cdot \frac{\sqrt{3}}{2}$

On a alors : $h'(t) + \beta \cdot h(t) = g''(t) + g'(t) + g(t) \xrightarrow[t \to +\infty]{} \ell$. Comme Re $(\beta) = \frac{1}{2} > 0$, alors d'après 1 : $h(t) = g'(t) + \alpha \cdot g(t) \xrightarrow[t \to +\infty]{} \ell$, et comme Re $(\alpha) > 0$, alors d'après 1, $g(t) \xrightarrow[t \to +\infty]{} \ell$.

3. Généralisation : Soit $P = X^n + \sum_{k=0}^{n-1} a_k X^k$ un polynôme dont les racines complexes ont toutes des parties réelles strictement négatives. On considère l'endomorphisme de dérivation $D \colon \mathcal{C}^{\infty}(\mathbb{R}_+;\mathbb{C}) \to \mathcal{C}^{\infty}(\mathbb{R}_+;\mathbb{C})$; on suppose : $P(D)(f)(t) \xrightarrow{t \to +\infty} \ell \in \mathbb{C}$, montrons qu'alors $f(t) \xrightarrow{t \to +\infty} \ell$.

On rédige une preuve par récurrence.

Initialisation.— Soit P(X) = X - a avec $\operatorname{Re}(a) < 0$ et $f \in \mathcal{C}^{\infty}(\mathbb{R}_+; \mathbb{C})$ tels que $P(D)(f)(t) \xrightarrow[t \to +\infty]{} \ell$, soit $f'(t) - a \cdot f(t) \xrightarrow[t \to +\infty]{} \ell$. Comme $\operatorname{Re}(-a) > 0$, alors d'après $1 : f(t) \xrightarrow[t \to +\infty]{} \ell$. **Hypothèse de récurrence.**— Si $Q = X^n + \sum_{k=0}^{n-1} \alpha_k X^k$ est un polynôme dont les racines ont toutes une partie réelle strictement négative, et f est une fonction telle que $Q(D)(f)(t) \xrightarrow[t \to +\infty]{} \ell$, alors $f(t) \xrightarrow[t \to +\infty]{} \ell$.

$$\begin{split} \mathbf{H\acute{e}r\acute{e}dit\acute{e}.} \quad & \text{Soit } P(X) = X^{n+1} + \sum_{k=0}^{n} a_k X^k = \prod_{i=1}^{n+1} (X - \lambda_k) \\ \text{avec } \operatorname{Re}(\lambda_k) < 0 \text{ pour tout } k \in \{1, 2, \dots, n+1\}. \end{split}$$

On écrit alors $P(X) = (X - \lambda_{n+1})Q(X)$ où $Q(X) = \prod_{k=1}^{n} (X - \lambda_{k})$, et on suppose que $P(D)(f)(t) \xrightarrow[t \to +\infty]{} \ell \Leftrightarrow Q(D)(D - \lambda_{n+1} \cdot I)(f)(t) \xrightarrow[t \to +\infty]{} \ell$, alors par hypothèse de récurrence : $(D - \lambda_{n+1} \cdot I)(f)(t) \xrightarrow[t \to +\infty]{} \ell$, et comme $\text{Re}(-\lambda_{n+1}) > 0$, alors d'après 1, $f(t) \xrightarrow[t \to +\infty]{} \ell$.

Exercice (7). Équation de Hill

Soit l'équation différentielle :

$$(\mathcal{H}): \quad y'' + q \cdot y = 0,$$

où $q: \mathbb{R} \to \mathbb{R}$ est continue, périodique de période T > 0.

1. Justifier l'existence de deux solutions y_1 et y_2 de (\mathcal{H}) telles

que :
$$\begin{cases} y_1(0) &= 1 \\ y_1'(0) &= 0 \end{cases}$$
 et
$$\begin{cases} y_2(0) &= 0 \\ y_2'(0) &= 1 \end{cases}$$
 que l'espace des solutions de (\mathcal{H}) est $S_{\mathcal{H}} = \text{Vect}(y_1, y_2)$, et montrer que :

$$\forall t \in \mathbb{R}, \quad w(t) = y_1(t) \cdot y_2'(t) - y_1'(t) \cdot y_2(t) = 1.$$

2. Montrer que si y est une solution de (\mathcal{H}) , alors la fonction $t \mapsto y(t+T)$ est aussi solution, et en déduire que pour tout $t \in \mathbb{R}$:

$$\begin{cases} y_1(t+T) &= y_1(T) \cdot y_1(t) + y_1'(T) \cdot y_2(t) \\ \text{et} & \\ y_2(t+T) &= y_2(T) \cdot y_1(t) + y_2'(T) \cdot y_2(t) \end{cases}.$$

- 3. Soit $\mu \in \mathbb{C} \setminus \{0\}$, et soit $\lambda \in \mathbb{C}$ tel que $\mu = e^{\lambda T}$. Montrer que les trois assertions suivantes sont équivalentes :
 - (i) L'équation (\mathcal{H}) possède une solution y non nulle qui vérifie :

$$\forall t \in \mathbb{R}, \quad y(t+T) = \mu \cdot y'(t).$$

(ii) Le réel μ est solution de l'équation d'inconnue x:

$$x^{2} - (y_{1}(T) + y_{2}'(T)) \cdot x + 1 = 0.$$

(iii) L'équation différentielle (\mathcal{H}) possède une solution y non nulle telle que:

$$\forall t \in \mathbb{R}, \quad y(t) = e^{\lambda t} \cdot u(t),$$

où u est une fonction T-périodique.