Université Grenoble Alpes

Préparation à l'Agrégation interne 2021-2022. Mercredi 8 Décembre 2021. Equations différentielles, linéaires et non linéaires.

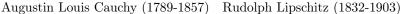
Laurent BONAVERO

Table des matières

Le théorème de Cauchy-Lipschitz	2
Le lemme de Gronwall et quelques applications	Ę
Trois exemples d'études qualitatives	6
Fourier et équations différentielles	6
Un problème de préparation à l'écrit (Nouveauté 2021-2022)	7

Avant cette séance, il est impératif de revoir seuls les paragraphes 12.2 et 10.9 du programme officiel.

Quelques extraits de Wikipédia.



Augustin Louis, baron Cauchy, est un mathématicien français, membre de l'Académie des sciences et professeur à l'École polytechnique. Il est l'un des mathématiciens les plus prolifiques de l'histoire avec près de 800 parutions et sept ouvrages. Ses recherches couvrent l'ensemble des domaines mathématiques de l'époque.

Rudolph Lipschitz est un mathématicien allemand. Lipschitz a laissé son nom aux applications dont les variations sont contrôlées linéairement par celles de la variable (application lipschitzienne). En réalité, son travail s'étend sur des domaines aussi variés que la théorie des nombres, l'analyse, la géométrie différentielle et la mécanique classique, en particulier la résolution des équations du mouvement dans le formalisme d'Hamilton-Jacobi. Son travail sur les équations différentielles vient préciser les résultats obtenus par Cauchy. Lipschitz a en outre donné un critère de convergence des développements en série de Fourier.

LE THÉORÈME DE CAUCHY-LIPSCHITZ

Dans cette partie, je développe les idées de la démonstrations du théorème de Cauchy-Lipschitz dans le cas linéaire et dans le cas non linéaire autonome. Lors de la séance de cours, je me focaliserai sur les parties IV, V et VI, les trois premières étant plus classiques et sans doute déjà abordées lors de la préparation.

Partie I. Un théorème de point fixe.

Soit $(E, \| \|)$ un espace vectoriel normé complet. Soit A une partie fermée de E. Soit $f: A \to A$ une application contractante : il existe $k \in [0, 1[$ tel que

$$\forall (x,y) \in A^2, \|f(x) - f(y)\| \le k\|x - y\|.$$

- (1) Montrer que f possède au plus un point fixe $a \in A$.
- (2) Soient $x_0 \in A$ et (x_n) la suite définie par : $\forall n \geq 0, x_{n+1} = f(x_n)$.
 - (a) Montrer que la suite (x_n) est bien définie et à valeurs dans A.
 - (b) Montrer que pour tout $n \ge 0$: $||x_{n+1} x_n|| \le k^n ||x_1 x_0||$. En déduire que la suite (x_n) est de Cauchy.
 - (c) En déduire que la suite (x_n) converge dans A. Que peut-on dire alors de la limite de (x_n) ?
- (3) En déduire que f possède un unique point fixe $a \in A$.
- (4) Soit $(E, \| \|)$ un espace vectoriel normé complet. Soit A une partie fermée de E. Soit $h: A \to A$ une application dont un itéré est contractant :

$$\exists m \in \mathbb{N}^*, \ \exists k \in [0, 1[, \forall (x, y) \in A^2, \|h^{\circ m}(x) - h^{\circ m}(y)\| \le k\|x - y\|.$$

Montrer que h possède un unique point fixe $a \in A$.

Partie II. Un espace vectoriel normé complet.

Soient a < b deux réels fixés et F un espace vectoriel de dimension finie que l'on munit d'une quelconque de ses normes $\| \|$. Soit $E = \mathcal{C}([a,b],F)$ que l'on munit de la norme de la convergence uniforme :

$$\forall f \in E, \|f\|_{\infty} = \sup_{t \in [a,b]} \|f(x)\|.$$

Montrer que $(E, || ||_{\infty})$ est un espace vectoriel normé complet. *Indication*: on rappelle que F est lui-même complet.

Partie III. Une démonstration du théorème de Cauchy-Lipschitz linéaire.

Soient I un intervalle de \mathbb{R} , $A:I\to M_n(\mathbb{R})$ une application continue, $B:I\to\mathbb{R}^n$ une application continue. On considère le problème de Cauchy

$$\begin{cases} X'(t) &= A(t)X(t) + B(t) \\ X(t_0) &= X_0 \end{cases}$$

(1) Montrer que $X:I\to\mathbb{R}^n$ est solution si et seulement si

$$\forall t \in I, \ X(t) = X_0 + \int_{t_0}^t (A(s)X(s) + B(s)) \, ds.$$

(2) Soit [a, b] un segment inclus dans I et contenant t_0 . On munit \mathbb{R}^n d'une quelconque de ses normes $\| \|, \mathcal{C}([a, b], \mathbb{R}^n)$ de la norme de la convergence uniforme et $M_n(\mathbb{R})$ de la norme matricielle définie

$$par : \forall A \in M_n(\mathbb{R}), \|A\| = \sup_{X \in \mathbb{R}^n \setminus \{0\}} \frac{\|AX\|}{\|X\|}.$$

Soit $T: \mathcal{C}([a,b],\mathbb{R}^n) \to \mathcal{C}([a,b],\mathbb{R}^n)$ l'application définie par :

$$\forall X \in \mathcal{C}([a,b], \mathbb{R}^n), \forall t \in [a,b], (T(X))(t) = X_0 + \int_{t_0}^t (A(s)X(s) + B(s)) ds.$$

Pour $m \in \mathbb{N}^*$, on note $T^m = T^{\circ m}$ le m-ième itéré de T.

- (a) Montrer que le réel $M = \sup_{t \in [a,b]} ||A(t)||$ est bien défini.
- (b) Montrer que pour tout $m \in \mathbb{N}^*$, pour tout $t \in [a, b]$ et pour tout $X, Y \in \mathcal{C}([a, b], \mathbb{R}^n)$:

$$\|(T^m(X))(t) - (T^m(Y))(t)\| \le \frac{|t - t_0|^m M^m}{m!} \|X - Y\|_{\infty}.$$

En déduire que pour m assez grand, T^m est contractant.

- (c) En déduire que le problème de Cauchy ci-dessus possède une unique solution sur [a, b].
- (3) En déduire que le problème de Cauchy ci-dessus possède une unique solution sur I.

Partie IV. Un deuxième espace vectoriel normé complet.

Soient I = [a, b] et J = [c, d] deux segments de \mathbb{R} , soit $E = \mathcal{C}(I, J)$ que l'on munit de la norme de la convergence uniforme :

$$\forall f \in E, \|f\|_{\infty} = \sup_{t \in [a,b]} \|f(x)\|.$$

Montrer que $(E, || ||_{\infty})$ est un espace vectoriel normé complet.

Partie V. Une démonstration du théorème de Cauchy-Lipschitz non linéaire autonome.

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction de classe C^1 .

On considère le problème de Cauchy

$$\begin{cases} x'(t) &= f(x(t)) \\ x(0) &= x_0 \end{cases}$$

(1) Montrer que $x: I \to \mathbb{R}$ est solution sur un intervalle I si et seulement si

$$\forall t \in I, \, x(t) = x_0 + \int_0^t f(x(s)) \, \mathrm{d}s.$$

Soient
$$M = \sup_{x \in [x_0 - 1, x_0 + 1]} |f(x)|$$
 et $k = \sup_{x \in [x_0 - 1, x_0 + 1]} |f'(x)|$

(2) Montrer que M et k sont bien définis

Soit $T: \mathcal{C}([-\tau,\tau],[x_0-1,x_0+1]) \to \mathcal{C}([-\tau,\tau],[x_0-1,x_0+1])$ l'application définie par :

$$\forall x \in \mathcal{C}([-\tau, \tau], [x_0 - 1, x_0 + 1]), \forall t \in [-\tau, \tau], (T(x))(t) = x_0 + \int_0^t f(x(s)) ds.$$

(3) Montrer que si $\tau \leq 1/M$, on a bien

$$\forall x \in \mathcal{C}([-\tau, \tau], [x_0 - 1, x_0 + 1]), T(x) \in \mathcal{C}([-\tau, \tau], [x_0 - 1, x_0 + 1]).$$

On suppose dans toute la suite que $\tau \leq 1/M$.

(4) Montrer pour tout $t \in [-\tau, \tau]$ et pour tout $x, y \in \mathcal{C}([-\tau, \tau], [x_0 - 1, x_0 + 1])$:

$$\left| \left(T(x) \right)(t) - \left(T(y) \right)(t) \right| \le \tau k \|x - y\|_{\infty}.$$

(5) En déduire que le problème de Cauchy ci-dessus possède une unique solution sur $[-\tau, \tau]$ dès que $\tau < \min(1/M, 1/k)$.

Partie VI. Un exemple où tout se calcule à la main!

Soit (y_n) la suite de fonctions définies par

$$\forall t \in \mathbb{R}, y_0(t) = 1$$

et

$$\forall n \in \mathbb{N}, \forall t \in \mathbb{R}, y_{n+1}(t) = 1 + \int_0^t y_n^2(s) \, \mathrm{d}s.$$

- (1) En supposant que la suite (y_n) converge, deviner sa limite à l'aide des parties précédentes.
- (2) (a) Montrer que pour tout n, y_n est un polynôme. Déterminer son degré d_n .

(b) En écrivant

$$y_n(t) = \sum_{k=0}^{d_n} a_k t^k,$$

montrer que $a_k \in [0,1]$ pour tout $k \in [0,d_n]$ et que $a_k = 1$ pour tout $k \in [0,n]$.

- (c) En déduire que la suite (y_n) converge uniformément vers une fonction très simple sur tout segment de la forme $[-\tau, \tau]$ avec $0 \le \tau < 1$.
- (3) Déterminer un τ explicite pour lequel l'application $T: \mathcal{C}([-\tau,\tau],[0,2]) \to \mathcal{C}([-\tau,\tau],[0,2])$ définie par :

$$\forall y \in \mathcal{C}([-\tau, \tau], [0, 2]), \forall t \in [-\tau, \tau], (T(y))(t) = 1 + \int_0^t y^2(s) \, ds$$

soit contractante.

Partie VII. Le théorème de Cauchy-Lipschitz de l'Agrégation Interne

Théorème A. (Cauchy-Lipschitz dans le cas \mathcal{C}^1)

Soit $f: U \to \mathbb{R}^n$ une fonction de classe \mathcal{C}^1 définie sur un ouvert U de $\mathbb{R} \times \mathbb{R}^n$. Alors, pour tout $(t_0, x_0) \in U$, le problème de Cauchy

$$\begin{cases} x'(t) &= f(t, x(t)) \\ x(t_0) &= x_0 \end{cases}$$

possède unique solution maximale $x: I \to \mathbb{R}^n$ définie sur un intervalle I de \mathbb{R} contenant t_0 .

Les cas n=2 et n=3 sont mis en avant dans le programme de l'Agrégation Interne, ainsi que la conséquence suivante pour les équations différentielles d'ordre 2.

Théorème B. (Cauchy-Lipschitz à l'ordre 2)

Soit $f: U \to \mathbb{R}$ une fonction de classe C^1 définie sur un ouvert U de $\mathbb{R} \times \mathbb{R}^3$. Alors, pour tout $(t_0, x_0, v_0) \in U$, le problème de Cauchy

$$\begin{cases} x''(t) &= f\left(t, x(t), x'(t)\right) \\ x(t_0) &= x_0 \\ x'(t_0) &= v_0 \end{cases}$$

possède unique solution maximale $x: I \to \mathbb{R}$ définie sur un intervalle I de \mathbb{R} contenant t_0 .

On rappelle qu'une solution est dite **maximale** si elle n'est pas la restriction d'une solution définie sur un intervalle plus grand.

Ci-dessous, sous forme d'exercice, quelques précisions supplémentaires.

(1) Montrer que le théorème A implique le théorème B.

Dans les deux questions suivantes, on suppose que f est définie sur $\mathbb{R} \times \mathbb{R}^n$.

- (2) Montrer que l'intervalle de définition d'une solution maximale de x' = f(t, x) est un intervalle ouvert.
- (3) Montrer que si l'intervalle de définition I d'une solution maximale de x' = f(t, x) est de la forme $I =]\alpha, \beta[$ avec $\beta \in \mathbb{R}$, alors x n'est pas bornée au voisinage de β . Indication : raisonner par l'absurde et en écrivant que

$$x(t) = x(t_0) + \int_{t_0}^{t} f(s, x(x)) ds,$$

montrer que x se prolonge en β .

LE LEMME DE GRONWALL ET QUELQUES APPLICATIONS

Le lemme de Gronwall est un résultat sur les "inéquations différentielles", il a plusieurs formes et possède de nombreuses applications concernant l'étude théorique d'équations différentielles que l'on ne sait pas résoudre directement, et du comportement asymptotique de leurs solutions.

Exercice 1. [Lemme de Gronwall, version différentielle]

(1) Soit $r: \mathbb{R}^+ \to \mathbb{R}$ une fonction de classe \mathcal{C}^1 et soit $a: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue vérifiant :

$$\forall t > 0, r'(t) < a(t)r(t).$$

Démontrer que

$$\forall t \geq 0, r(t) \leq r(0) \exp\left(\int_0^t a(s) ds\right).$$

(2) Dans cette question, \mathbb{R}^n est muni de sa structure euclidienne classique. Pour $M \in M_n(\mathbb{R})$, on pose $\|MX\|$

$$||M|| = \sup_{X \in \mathbb{R}^n \setminus \{0\}} \frac{||MX||}{||X||}.$$

Soit $A: \mathbb{R}^+ \to M_n(\mathbb{R})$ une fonction continue telle que

$$\int_0^{+\infty} ||A(t)|| \mathrm{d}t < +\infty.$$

Soit $u: \mathbb{R}^+ \to \mathbb{R}^n$ une solution de u'(t) = A(t)u(t) avec $u(0) = u_0 \in \mathbb{R}^n$.

- (a) On pose $r(t) = ||u(t)||^2$. Montrer que r vérifie une inéquation différentielle. En déduire que r est bornée.
- (b) En déduire que u possède une limite en $+\infty$ notée u_{∞} .
- (c) Montrer que l'application $u_0 \mapsto u_\infty$ est un automorphisme linéaire de \mathbb{R}^n .

 Indication: considérer le Wronskien d'un système fondamental de solutions de l'équation u'(t) = A(t)u(t).

Exercice 2. [Lemme de Gronwall, version intégrale]

(1) Soient $f: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue, $a: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue à valeurs ≥ 0 et M un réel tels que

$$\forall t \geq 0, f(t) \leq M + \int_0^t a(s)f(s)ds.$$

Montrer que

$$\forall t \geq 0, f(t) \leq M \exp\left(\int_0^t a(s) ds\right).$$

(2) Soit $q: \mathbb{R}^+ \to \mathbb{R}$ une fonction continue, intégrable sur \mathbb{R}^+ . Soit (E) l'équation différentielle

$$y'' + (1 + q(x))y = 0.$$

(a) Soient y une solution de (E) et z la fonction définie par

$$\forall x \in \mathbb{R}^+, z(x) = y(x) + \int_0^x \sin(x-t)q(t)y(t)dt.$$

Montrer que z est de classe \mathcal{C}^2 et est solution d'une équation différentielle à coefficients constants très simple.

(b) En déduire qu'il existe une constante M telle que

$$\forall t \in \mathbb{R}^+, |y(x)| \le M + \int_0^x |q(t)||y(t)|| dt.$$

- (c) En déduire que y est bornée sur \mathbb{R}^+ .
- (d) Question subsidiaire. D'où vient la fonction z?

Trois exemples d'études qualitatives

Voici trois exercices autour des études qualitatives des solutions d'EDL non linéaires. Les deux premiers sont "faciles", le suivant l'est moins.

Exercice 3. [Etude qualitative] Soit

$$(E): y' = x^2 + y^2.$$

- (1) Justifier l'existence d'une unique solution maximale y de (E) vérifiant y(0)=0.
- (2) Justifier que y est une fonction impaire. Indication : introduire z(x) = -y(-x) et déterminer un problème de Cauchy dont z est solution...
- (3) Etudier la monotonie et la concavité de y.
- (4) Montrer que y est définie sur un intervalle borné de \mathbb{R} .
- (5) Dresser le tableau de variation de y.

Exercice 4. [Etude qualitative]

(1) Montrer que le problème de Cauchy

$$\begin{cases} y' = \frac{1}{1+xy} \\ y(0) = 0 \end{cases}$$

possède une solution maximale y unique.

- (2) Montrer que celle-ci est impaire et strictement croissante.
- (3) Montrer qu'elle est définie sur \mathbb{R} .
- (4) Déterminer la limite de y en $+\infty$.

Exercice 5. [X/ESPCI 2017, PC]

Soient f une fonction continue de \mathbb{R} dans \mathbb{R} et u une fonction de classe C^2 de [-1,1] dans \mathbb{R} . On suppose que

$$u'' + f(u) = 0$$
, $u(1) = u(-1) = 0$ et $u > 0$ sur $]-1, 1[$.

- (1) Montrer que u est paire.
- (2) Montrer que u' est de signe constant sur]-1,0] et sur [0,1[.

Fourier et équations différentielles

Voici quatre exercices mélant Fourier et ED. Les trois premiers se placent dans le cadre linéaire, le dernier dans un cadre non linéaire.

Exercice 6. [Faire ses gammes]

Déterminer les solutions 2π -périodiques de l'équation différentielle

$$y'' + e^{it}y = 0.$$

Exercice 7. [Faire ses gammes]

Soient $\alpha \in \mathbb{C} \setminus i\mathbb{Z}$ et $f : \mathbb{R} \to \mathbb{C}$ une fonction continue et 2π -périodique. Soit y une solution de

$$y' + \alpha y = f$$
.

(1) Montrer que y est 2π -périodique si et seulement si $y(0) = y(2\pi)$.

(2) En déduire qu'il existe unique solution 2π -périodique y de l'équation différentielle $y' + \alpha y = f$ et déterminer son développement de Fourier complexe en fonction de celui de f.

Exercice 8. [Faire ses gammes]

Montrer que l'équation différentielle

$$y^{(4)} + y'' + y = |\sin(x)|$$

possède une unique solution π -périodique.

Exercice 9. [Parseval et équations différentielles]

- (1) Fourier pour des fonctions T-périodiques. Soit $f: \mathbb{R} \to \mathbb{C}$ une fonction T-périodique, continue par morceaux.
 - (a) Vérifier que la fonction $t\mapsto g(t)=f\left(\frac{T}{2\pi}t\right)$ est 2π -périodique.
 - (b) On définit les coefficients de Fourier de f par les formules

$$\forall n \in \mathbb{Z}, c_n(f) = \frac{1}{T} \int_0^T f(t)e^{-2in\pi t/T} dt$$

et

$$\forall n \in \mathbb{N}, \ a_n(f) = \frac{2}{T} \int_0^T f(t) \cos\left(\frac{2n\pi t}{T}\right) dt \ ; \ b_n(f) = \frac{2}{T} \int_0^T f(t) \sin\left(\frac{2n\pi t}{T}\right) dt.$$

Définir la série de Fourier de f, énoncer le théorème de convergence normale, le théorème de Dirichlet et la formule de Parseval pour les fonctions T-périodiques.

- (2) Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R} , que l'on suppose k-lipschitzienne. On s'intéresse aux solutions maximales de l'équation différentielle y' = f(y).
 - (a) Montrer que toutes les solutions maximales de y' = f(y) sont définies sur \mathbb{R} .
 - (b) Montrer que si y est une solution T-périodique de y' = f(y), alors

$$T \ge \frac{2\pi}{k}$$
.

Indication: on pourra montrer que

$$\iint_{[0,T]^2} |y'(s) - y'(t)|^2 dt ds \le k^2 \iint_{[0,T]^2} |y(s) - y(t)|^2 dt ds$$

puis développer y en série de Fourier.

Un problème de préparation à l'écrit (Nouveauté 2021-2022)

On considère dans tout l'exercice le problème de Cauchy suivant :

$$(P_a) \quad \begin{cases} x' = \cos x + \cos t, \ (t, x) \in \mathbb{R} \times \mathbb{R} \\ x(0) = a \in \mathbb{R}. \end{cases}$$

- (1) Montrer l'existence et l'unicité d'une solution maximale x_a à (P_a) .
- (2) On note I_a l'intervalle (ouvert) de définition de x_a . Le but de cette question est de montrer que $I_a = \mathbb{R}$. Pour cela, on raisonne par l'absurde en supposant par exemple que $I_a =]\alpha, \beta[$ avec $\beta \in \mathbb{R}$.
 - (a) Montrer que x'_a est bornée.

(b) En écrivant que

$$\forall t \in I_a, \ x_a(t) = a + \int_0^t x_a'(s) \, \mathrm{d}s,$$

montrer que x_a possède une limite en β .

- (c) Conclure.
- (3) Symétries des solutions.
 - (a) Montrer que si a = 0, alors x_a est une fonction impaire.
 - (b) Montrer que si b est un réel de la forme $a+2k\pi$, $k \in \mathbb{Z}$, alors la solution x_b de (P_b) satisfait $x_b(t) = x_a(t) + 2k\pi$ pour tout t réel.
 - (c) Montrer que x_a est 2π -périodique si et seulement si $x_a(2\pi) = a$.
- (4) (a) Soit $\alpha \in \mathbb{R}$ tel que $x_a(\alpha) = 0$. Montrer que $x_a(t) > 0$ pour tout $t > \alpha$ suffisamment proche de α .
 - (b) Soit $\beta \in \mathbb{R}$ tel que $x_a(\beta) = \pi$. Montrer que $x_a(t) < \pi$ pour tout $t > \beta$ suffisamment proche de β .
 - (c) En déduire que si $a \in [0, \pi]$, alors pour tout $t \ge 0$, $x_a(t) \in [0, \pi]$.
 - (d) Déduire des questions précédentes que pour tout $a \in \mathbb{R}$, x_a est bornée sur \mathbb{R} .

On considère dans toute la suite la fonction $F: \mathbb{R}^2 \to \mathbb{R}$ définie par

$$\forall (a,t) \in \mathbb{R}^2, F(a,t) = x_a(t)$$

La fonction F est le flot de l'équation différentielle. On admettra que F est de classe \mathcal{C}^{∞} .

- (5) (a) Pour $a \in \mathbb{R}$, que vaut F(a,0)? En déduire la valeur de $\frac{\partial F}{\partial a}(a,0)$.
 - (b) Calculer $\frac{\partial^2 F}{\partial t \partial a}$ en fonction de $\frac{\partial F}{\partial a}$ et F.
 - (c) En déduire que

$$\frac{\partial F}{\partial a}(a,t) = \exp\left(-\int_0^t \sin F(a,s) \,\mathrm{d}s\right).$$

(6) On note L la fonction définie par

$$\forall a \in [0, \pi], L(a) = F(a, 2\pi) = x_a(2\pi).$$

- (a) Montrer que $L'(a) \in]0,1[$ pour tout $a \in [0,\pi],$ puis que $\sup_{a \in [0,\pi]} L'(a) = k \in]0,1[$.
- (b) En déduire que L admet un unique point fixe a_0 dans $[0,\pi]$ et que pour tout $a\in[0,\pi]$, $\lim_{n\to+\infty}L^{\circ n}(a)=a_0$.
- (c) Montrer que x_{a_0} est 2π -périodique.
- (d) Montrer que pour tout $a \in [0, \pi]$

$$\lim_{n \to +\infty} x_a(2n\pi) = a_0.$$

(7) (a) Soient c et d dans $[0, \pi]$. Montrer que

$$|x_c(t) - x_d(t)| \le |x_c(2n\pi) - x_d(2n\pi)| \exp(2\pi).$$

pour tout $n \in \mathbb{N}$ et tout $t \in [2n\pi, 2(n+1)\pi]$.

(b) Déduire des questions précédentes que pour tout $a \in [0, \pi]$, alors

$$\lim_{t \to +\infty} |x_a(t) - x_{a_0}(t)| = 0.$$

(c) Interpréter le résultat obtenu.