Équations différentielles linéaires

Exercice 1

Résoudre à chaque fois sur \mathbb{R} le système différentiel (S).

a)
$$\int x_1'(t) = -x_1(t) +$$

(S):
$$\begin{cases} x_1'(t) &= -x_1(t) + 2x_2(t) + e^{3y} \arctan(3t) \\ x_2'(t) &= 2x_1(t) + 2x_2(t) + 2e^{3t} \arctan(3t) \end{cases}$$

b)
$$(S): \begin{cases} x'(t) = 2x(t) - y(t) + 1 \\ y'(t) = x(t) + 3y(t) + t \end{cases}$$

c)
$$(S): \begin{cases} x'(t) = y(t) + t \\ y'(t) = x(t) - t \end{cases}$$

d)
$$(S): \begin{cases} x_1'(t) = 6x_1(t) + 9x_2(t) - 9x_3(t) + e^{3t} \\ x_2'(t) = 2x_1(t) + 3x_2(t) - e^{3t} \\ x_3'(t) = 3x_1(t) + 3x_2(t) + 2e^{3t} \end{cases}$$

e)
$$(S): \begin{cases} x'(t) = \frac{t}{t^2+1} \cdot x(t) + \frac{1}{t^2+1} \cdot y(t) + \frac{2t^2-1}{t^2+1} \\ y'(t) = \frac{-1}{t^2+1} \cdot x(t) + \frac{t}{t^2+1} \cdot y(t) + \frac{3t}{t^2+1} \end{cases}$$

f)
$$(S): \begin{cases} x'(t) = tx(t) - y(t) + t\cos(t) - t^3\sin(t) \\ y'(t) = x(t) + ty(t) + t\sin(t) + t^3\cos(t) \end{cases}$$

Exercice 2

- 1. Soit l'équation différentielle (\mathcal{H}) : $\sin(t)y'(t) 2\cos(t)y(t) = 0$. Que peut-on dire de la dimension de l'espace des solutions de (\mathcal{H}) sur \mathbb{R} ?
- 2. Soit l'équation différentielle (\mathcal{H}) : $x \cdot y''(x) + 2y'(x) xy(x) = 0$.
 - a) Déterminer les solutions de (\mathcal{H}) développables en séries entières.
 - b) Résoudre (\mathcal{H}) .
- 3. Soit l'équation différentielle (\mathcal{H}) : $x^2y''(x) 4xy'(x) + (x^2 + 6)y(x) = 0$.
 - a) Déterminer les solutions de (\mathcal{H}) développables en séries entières.
 - b) Quelle est la dimension de l'espace des solutions de (\mathcal{H}) sur \mathbb{R} ?

Exercice 3

- 1. Résoudre sur $]0;\pi[$ l'équation différentielle $(E): x''(t) + x(t) = \cot x(t)$.
- 2. Soit $(a, b) \in \mathbb{R}^* \times \mathbb{R}$, et soit l'équation (E): y''(x) 4y(x) = a|x| + b. Montrer que l'équation (E) possède une unique solution sur \mathbb{R} qui admet des asymptotes en $+\infty$ et en $-\infty$.
- 3. Soit $f \in \mathcal{C}^1(\mathbb{R}_+; \mathbb{R})$ monotone, admettant une limite finie en $+\infty$. Montrer que toutes les solutions de l'équation différentielle (E): y'' + y = f, sont bornées.

4. Soit $f \in \mathcal{C}^2(\mathbb{R}; \mathbb{R})$ vérifiant : $f''(t) + f(t) \ge 0$ pour tout $t \in \mathbb{R}$.

Montrer que : $f(t) + f(t + \pi) \ge 0$ pour tout $t \in \mathbb{R}$.

Exercice 4

- 1. Soit $(a, \ell) \in \mathbb{C}^2$ tel que : $\operatorname{Re}(a) > 0$ et $f \in \mathcal{C}^1(\mathbb{R}_+; \mathbb{C})$ vérifie $\left(f'(t) + af(t)\right) \xrightarrow[t \to +\infty]{} \ell$.

 Montrer que $f(t) \xrightarrow[t \to +\infty]{} \ell$.
- 2. Soit $g \in \mathcal{C}^2(\mathbb{R}_+; \mathbb{R})$ vérifiant $\left(g''(t) + g'(t) + g(t)\right) \xrightarrow[t \to +\infty]{} \ell$. Montrer que $g(t) \xrightarrow[t \to +\infty]{} \ell$.
- 3. Généraliser.

Exercice 5

Soit l'équation différentielle (\mathcal{H}) : $3(x^2+x)y''(x)+(8x+3)y'(x)+2y(x)=0$.

1. Rechercher pour (\mathcal{H}) une solution développable en série entière autour de 0 et vérifiant la condition y(0) = 1.

On précisera l'intervalle I sur lequel la fonction obtenue est solution de (\mathcal{H}) .

- 2. Exprimer f à l'aide des fonctions usuelles. On remarquera que f est la restriction à I d'une fonction $x \mapsto (1+x)^{\alpha}$ pour un choix convenable de α .
- 3. En exploitant les résultats précédents, déterminer toutes les solutions de (\mathcal{H}) . On en donnera les expressions au moyen des fonctions usuelles.

Exercice 6

Soit $p,q:~[a;b] \to \mathbb{R}$ deux fonctions continues, et l'équation :

$$(S.L.): y'' + py' + qy = 0$$

- 1. Soit y une solution non nulle de (S.L.).
 - a) Montrer que les fonctions y et y' ne s'annulent pas simultanément.
 - b) Montrer que les zéros de y sont en nombre fini.
- 2. Soit y_1 et y_2 deux solutions linéairement indépendantes de (S.L.). On suppose que y_1 admet au moins deux zéros : soit α et β deux zéros consécutifs de y_1 .
 - a) Montrer que y_2 admet au moins un zéro dans l'intervalle ouvert $\alpha; \beta[$.
 - b) La fonction y_2 peut-elle avoir plusieurs zéros dans $\alpha; \beta$?

Exercice 7

Soit l'équation (S.L.): y''(x) + q(x).y(x) = 0 où $q: \mathbb{R} \to \mathbb{R}$ est une fonction continue, négative et non nulle sur \mathbb{R} .

- 1. a) Montrer que si y est une solution réelle de (S.L.), alors la fonction y^2 est convexe.
 - b) Montrer que si y est une solution réelle positive de (S.L.) sur un intervalle I, alors y est convexe sur I.
 - c) Montrer que la fonction nulle est l'unique solution réelle bornée de (S.L.).
- 2. Soit φ la solution réelle de (S.L.) telle que $\varphi(0) = 1$ et $\varphi'(0) = 0$.
 - a) Montrer que $\forall x \in \mathbb{R}, |\varphi(x)| \ge 1$, puis que $\forall x \in \mathbb{R}, |\varphi(x)| \ge 1$ et que φ est convexe sur \mathbb{R} .
 - b) On suppose qu'il existe w > 0 tel que $q(x) \leqslant -w^2$ pour tout $x \in \mathbb{R}$. Montrer que $\varphi(x) \geqslant \operatorname{ch}(wx)$ pour tout $x \in \mathbb{R}$.

Indication: écrire $\varphi'' - w^2 \varphi = f$ avec $f(x) = -(q(x) + w^2)\varphi(x)$, et utiliser la méthode de variation des constantes.

Exercice 8

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice diagonalisable, et soit $\lambda_1, \lambda_2, \ldots, \lambda_r$ ses valeurs propres deux à deux distinctes.

1. a) Déterminer un polynôme Q de degré inférieur ou égal à r-1 tel que :

$$\forall i \in \{1, 2, \dots, r\}, \ Q(\lambda_i) = e^{\lambda_i}$$

- b) En déduire que $\exp(A) = Q(A)$.
- 2. a) Résoudre le système différentiel : $X'(t) = AX(t) \quad \text{où} \quad A = \begin{pmatrix} a & & & \\ & a & & (b) \\ & & \ddots & \\ & & (b) & & \ddots \end{pmatrix} \text{ avec } (a,b) \in \mathbb{R} \times \mathbb{R}^*$

b) Résoudre
$$X'(t) = AX(t) + B(t)$$
 où $B(t) = nbe^{t(b-a)}$. $\begin{pmatrix} 1\\1\\\vdots\\1 \end{pmatrix}$

Exercice 9

 $(\mathcal{H}: y^{(n)}(t) + a_{n-1}.y^{(n-1)}(t) + \ldots + a_1.y'(t) + a_0.y(t) = 0$ Soit l'équation différentielle :

On suppose que le polynôme $P = X^n + a_{n-1}X^{n-1} + \ldots + a_1X + a_0$ est scindé et que $P = \prod_{i=1}^n (X - \lambda_i)^{\alpha_i}$ avec $\lambda_1, \ldots, \lambda_r \in \mathbb{C}$ sont deux à deux distincts et $\alpha_1, \alpha_2, \ldots, \alpha_r \in \mathbb{N}^*$.

On définit l'endomorphisme $D: \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C}) \to \mathcal{C}^{\infty}(\mathbb{R}, \mathbb{C})$ et l'application $I: \mathbb{R} \to \mathbb{R}$ $f \mapsto f'$

On note aussi $\mathcal{S}_{\mathcal{H}}$ l'espace des solutions de (\mathcal{H}) sur \mathbb{R} .

- 1. Montrer que $\mathcal{S}_{\mathcal{H}} = \bigoplus_{1 \leq i \leq r} \operatorname{Ker}((D \lambda_i . I)^{\alpha_i}).$
- 2. En déduire que : $\mathcal{S}_{\mathcal{H}} = \left\{ y : t \mapsto \sum_{i=1}^{r} P_i(t) . e^{\lambda_i . t} \middle| P_i \in \mathbb{R}_{\alpha_i 1}[X] \right\}.$
- 3. Application : résoudre les équations différentielles suivantes :
 - y'''(t) 3y''(t) + 3y'(t) y(t) = t 3a)
 - $y^{(4)}(t) 2y''(t) + y(t) = 0.$ b)

Exercice 10

1. Calculer
$$\sum_{n=0}^{+\infty} \frac{1}{(3n)!}$$
. Indication: poser $f(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!}$ et calculer $f'''(x)$.

2. Calcul de la transformée de Fourier de la Gaussienne.

Calculer pour tout réel
$$x: F(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-ixt} e^{-t^2} dt.$$

3. Calculer pour tout réel
$$x: \quad \varphi(x) = \int_{\mathbb{R}} e^{tx-t^2} dt$$
.

4. Soit
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \int_0^{+\infty} \frac{\mathbb{R}}{1+t^2} dt$$

a) Montrer que f est continue sur \mathbb{R} , et de classe \mathcal{C}^1 sur \mathbb{R}^* .

b) Calculer xf'(x) - f(x) pour tout $x \in \mathbb{R}^*$.

c) Exprimer f à l'aide de fonctions usuelles.

5. Calculer:

$$I(x) = \int_0^{+\infty} e^{-t} \frac{\cos(tx)}{\sqrt{t}} dt \quad \text{et} \quad J(x) = \int_0^{+\infty} e^{-t} \frac{\sin(tx)}{\sqrt{t}} dt$$

Exercice 11

Soit y la solution maximale de l'équation différentielle (\mathcal{H}) : $y''(t) - t^2y(t) = 0$ avec les conditions y(0) = 1 et y'(0) = 0.

Montrer que y est définie sur \mathbb{R} , strictement positive et paire.