NOTATIONS ET RAPPELS

Pour tout corps k, on note $M_2(k)$ l'ensemble des matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ à coefficients $a,b,c,d \in k$ et pour tout $M \in M_2(k)$, on note $\det(M)$ son déterminant et $\operatorname{tr}(M)$ sa trace. Ainsi, pour $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ on a $\det(M) = ad - bc$ et $\operatorname{tr}(M) = a + d$.

Dans tout le problème I et O désignent respectivement la matrice Identité et la matrice nulle de $M_2(k)$.

Soit
$$a \in k$$
; on pose $B = \begin{pmatrix} 0 & a \\ 1 & 0 \end{pmatrix}$, $A = 2I + B$, et $\mathcal{A}_a = \{M \in M_2(k); \exists x, y \in k, M = xI + yB\}$.

Si p est un nombre premier, on note \mathbb{F}_p le corps fini $\mathbb{Z}/p\mathbb{Z}$. Pour tout $n \in \mathbb{Z}$, on note \overline{n} la classe modulo p de l'entier n. Si E est un ensemble fini, on note CardE le nombre de ses éléments.

Si R est un anneau unitaire, on note U(R) le groupe multiplicatif des éléments inversibles de R. Soit $x \in R$; on dit que x est un carré dans R s'il existe $y \in R$ tel que $x = y^2$.

Partie I.

1. Soit G un groupe fini, et $f: G \to G$ un morphisme de groupes; montrer que, pour tout $y \in G$, $Card(\{x \in G; f(x) = y\}) \leq Card(\ker f)$.

En déduire que, si $g: G \to G$ est aussi un morphisme de groupes, on a

$$Card(ker(g \circ f)) \leq Card(ker f) Card(ker g).$$

- 2. Soit k un corps fini, et $q = \operatorname{Card} k$; pour tout diviseur d de q 1, on note $f_d : k^* \to k^*$ le morphisme de groupes défini par $f_d(x) = x^d$.
 - (a) Montrer que Card ker $f_d \leq d$.
 - **(b)** Soit d' = (q-1)/d. Montrer que, pour tout $x \in k^*$, $f_d \circ f_{d'}(x) = f_{d'} \circ f_d(x) = 1$.
 - (c) En déduire que Card ker $f_d = d$, puis que ker $f_d = \text{Im } f_{d'}$.
 - (d) On suppose q impair. En déduire que

$$\{x^{\frac{q-1}{2}}; x \in k^*\} = \{\pm 1\}$$

et que

$$\{x \in k^*, \ x^{\frac{q-1}{2}} = 1\} = \{x \in k^*; \ \exists y \in k^*, \ x = y^2\}.$$

- 3. Soit *k* un corps.
 - (a) Montrer que pour tout $M \in M_2(k)$ on a $M^2 = tr(M)M det(M)I$.
 - **(b)** Exprimer, pour tout $M \in M_2(k)$, $tr(M^2)$ en fonction de $(tr(M))^2$ et det(M).
 - (c) Soit $M \in GL_2(k)$, telle que det M = 1.
 - i. Montrer que $M + M^{-1} = tr(M)I$.

- ii. Montrer que $M^2 M^{-2} = O$ si et seulement si tr(M) = 0 ou si $M^2 = I$.
- iii. On suppose ici que k est de caractéristique \neq 2. Montrer que M est d'ordre 4 si et seulement si $\operatorname{tr}(M) = 0$.

Partie II.

- **4.** Montrer que \mathcal{A}_a est un sous-anneau commutatif de $M_2(k)$, et en est un sous-k-espace vectoriel dont on donnera une base.
- 5. Si p est un nombre premier et $k = \mathbb{F}_p$, en déduire que Card $\mathcal{A}_a = p^2$.
- 6. Soit $\varphi: \mathcal{A}_a \to \mathcal{A}_a$ la symétrie par rapport à la droite de vecteur directeur I parallèlement à la droite de vecteur directeur B. Montrer que φ est un morphisme d'anneaux.
- 7. Soit M = xI + yB un élément de \mathcal{A}_a .
 - (a) Calculer $M\varphi(M)$ en fonction de x et y.
 - **(b)** Montrer que det $M = x^2 ay^2$.
 - (c) Démontrer qu'une matrice M de \mathcal{A}_a appartient à $U(\mathcal{A}_a)$ si et seulement si $\det(M) \neq 0$.
- 8. Montrer que \mathcal{A}_a est un corps si et seulement si a n'est pas un carré dans k.
- 9. On suppose que $k = \mathbb{R}$. Montrer que, si a < 0, \mathcal{A}_a est isomorphe au corps \mathbb{C} des nombres complexes.
- 10. On suppose que k n'est pas de caractéristique 2, et qu'il existe $b \in k^*$ tel que $a = b^2$.
 - (a) Montrer qu'il existe $P \in GL_2(k)$ tel que $PBP^{-1} = \begin{pmatrix} b & 0 \\ 0 & -b \end{pmatrix}$.
 - (b) En déduire que \mathcal{A}_a est isomorphe à l'anneau produit $k \times k$.
 - (c) Lorsque $k = \mathbb{F}_p$, $p \ge 3$, calculer le cardinal de $U(\mathcal{A}_a)$.
- 11. On suppose que a = 0.
 - (a) Montrer que l'anneau \mathcal{A}_a n'est pas isomorphe à $k \times k$.
 - **(b)** Lorsque $k = \mathbb{F}_p$, calculer le cardinal de $U(\mathcal{A}_a)$.
- 12. On suppose que $k = \mathbb{F}_2$. Montrer que les anneaux $\mathcal{A}_{\overline{0}}$ et $\mathcal{A}_{\overline{1}}$ sont isomorphes.
- 13. On suppose ici que $a = \overline{3}$ et que $k = \mathbb{F}_p$, où p est un nombre premier ≥ 5 . On considère la suite des entiers $(T_n)_{n\geq 0}$ définie par

$$\begin{cases} T_0 &= 2 \\ T_{n+1} &= 2T_n^2 - 1 \quad \text{pour tout} \quad n \ge 0. \end{cases}$$

- (a) Montrer que A est un élément de $U(\mathcal{A}_a)$.
- **(b)** Montrer que pour tout $n \in \mathbb{N}$ on a $\operatorname{tr}(A^{2^n}) = \overline{2}\overline{T_n}$.
- (c) Montrer que p divise T_{n-2} $(n \ge 2)$ si et seulement si $A^{2^{n-2}}$ est d'ordre 4 dans $U(\mathcal{R}_a)$.
- (d) Déduire que p divise T_{n-2} $(n \ge 2)$ si et seulement si A est d'ordre 2^n dans $U(\mathcal{A}_a)$, et qu'alors $2^n \le p^2 1$.