Réduction des endomorphismes

Notations : K désigne un corps, et \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . On note u un endomorphisme d'un K-espace vectoriel E de dimension **finie** $n \geq 1$; et on note μ_u son polynôme minimal et χ_u son polynôme caractéristique.

- **1.** SUITE RÉCURRENTE LINÉAIRE On considère la suite de Fibonacci $(F_n)_{n\in\mathbb{N}}$ définie par $F_0=0,\ F_1=1$ et par la relation de récurrence $F_{n+1}=F_n+F_{n-1}\ (n\geq 1)$.
- a) Déterminer une matrice $A \in M_2(\mathbb{R})$ telle que pour tout $n \geq 1$, $\begin{pmatrix} F_{n+1} \\ F_n \end{pmatrix} = A^n \begin{pmatrix} F_1 \\ F_0 \end{pmatrix}$.
- b) Montrer que A admet deux valeurs propres réelles distinctes $\lambda_1 < \lambda_2$.
- c) Diagonaliser A et donner les coordonnées du vecteur (F_1, F_0) dans la base de vecteurs propres considérée.
- **d)** Déduire de ce qui précède que $F_n = \frac{\lambda_2^n \lambda_1^n}{\lambda_2 \lambda_1}$ $(n \in \mathbb{N})$.
- e) Donner un équivalent de F_n lorsque n tend vers $+\infty$.

Polynômes d'endomorphismes

- **2.** ENDOMORPHISMES NILPOTENTS On suppose en a),b),c) qu'il existe un entier $p \ge 2$ tel que $u^{p-1} \ne 0$ et $u^p = 0$ (on dit que u est nilpotent d'indice p).
- a) Pour tout j entre 0 et p-1, montrer que $\operatorname{Ker}(u^j) \subsetneq \operatorname{Ker}(u^{j+1})$.
- b) En déduire que $p \leq n$ et qu'il existe une base de E dans laquelle la matrice de u est triangulaire supérieure, avec des zéros sur la diagonale.
- c) Montrer que l'endomorphisme $id_E u$ est inversible et exprimer son inverse comme polynôme en u.
- d) On suppose le corps K de caractéristique nulle. Montrer que u est nilpotent si, et seulement si, on a $tr(u^k) = 0$ pour tout k entre 1 et n.
- 3. Quelques propriétés
- a) Montrer (sans utiliser χ_u) que les racines de μ_u sont exactement les valeurs propres de u.
- b) Soit $Q \in K[X]$. Montrer que l'endomorphisme Q(u) est inversible si et seulement si Q et μ_u sont premiers entre eux. Montrer qu'alors l'inverse de Q(u) est un polynôme en u. À quelle condition l'algèbre K[u] est-elle un corps?
- c) Soit $P \in \mathbb{K}[X]$ tel que P(0) = 0, $P'(0) \neq 0$, et P(u) = 0. Montrer que Ker $u = \text{Ker}(u^2)$. En déduire que $E = \text{Ker } u \oplus \text{Im } u$. Quel lien avec les s.e. caractéristiques?

- d) On prend $K = \mathbb{Z}/p\mathbb{Z}$ (p premier). Montrer que u est diagonalisable si et seulement si $u^p = u$. Généraliser au cas où K est un corps fini quelconque (NB : en notant $q = \operatorname{card} K$, on a $q = p^r$, où p est la caractéristique de K).
- 4. Un polynôme annulateur On suppose ici que $u^2 3u + 2id_E = 0$.
- a) Montrer que u est un automorphisme, exprimer u^{-1} dans K[u].
- b) Montrer que $E = \text{Ker}(u id) \oplus \text{Ker}(u 2id)$ et déterminer les projecteurs associés à cette décomposition, sous forme de polynômes en u. Que peut-on dire de u?
- c) Expliciter u^k comme combinaison linéaire de u et id_E $(k \ge 2)$.
- **5.** DÉCOMPOSITION DE DUNFORD Pour $a, b \in \mathbb{R}$ on note $A = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & b \\ 0 & 0 & 2 \end{pmatrix} \in M_3(\mathbb{R}).$
- a) On suppose que a=0. Donner la décomposition de Dunford de A (c.a.d. écrire A=D+N, avec DN=ND, D diagonalisable et N nilpotente).
- **b)** Donner les valeurs de a et de b pour lesquelles la décomposition de Dunford de A est $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & a & 0 \\ 0 & 0 & b \\ 0 & 0 & 0 \end{pmatrix}$.
- c) On suppose dans la suite que b=1 et $a\neq 0$. Déterminer les sous-espaces propres et les sous-espaces caractéristiques de A.
- d) Déterminer la décomposition de Dunford de A et calculer A^k pour tout $k \ge 1$.
- **6.** Cayley-Hamilton sur K algébriquement clos En utilisant alors le théorème de trigonalisation sur K et une suite croissante de diviseurs de χ_u , montrer que $\chi_u(u) = 0$.
- 7. Endomorphismes de carré $-id_E$ On suppose ici que $K=\mathbb{R}$ et $u^2=-id_E$.
- a) Montrer que u est inversible et que la dimension de E est paire, donc n=2p.
- b) Soit $x \neq 0$ dans E. Montrer que x et u(x) sont linéairement indépendants, et qu'ils engendrent un sous-espace stable de E.
- c) Montrer que E est la somme directe $E = \bigoplus_{i=1}^{p} E_i$ de p plans E_i stables par u.
- d) Pour tout i entre 1 et p, on choisit e_i non nul dans E_i , et on pose $f_i = u(e_i)$. Justifier que $\mathcal{B} = (e_1, \ldots, e_p, f_1, \ldots, f_p)$ est une base de E et écrire la matrice de u dans cette base.

Diagonalisabilité via les polynômes annulateurs

8. Déterminant circulant

Dans
$$M_n(\mathbb{C})$$
 on considère les matrices $A = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_n & a_1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & a_2 \\ a_2 & \dots & a_n & a_1 \end{pmatrix}$ et $J = \begin{pmatrix} 0 & 1 & \dots & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & & \ddots & 1 \\ 1 & 0 & \dots & 0 \end{pmatrix}$.

- a) Exprimer A comme un polynôme en J. En déduire le degré du polynôme minimal μ_J de J.
- b) Donner μ_J . Quelles sont les valeurs propres de J?
- c) Montrer avec ce qui précède que A est diagonalisable et calculer det A.
- **9.** MATRICES DE PERMUTATION Soit $\sigma \in S_n$ le n-cycle $(1 \dots n)$, et $C_n \in M_n(\mathbb{C})$ la matrice de permutation associée, c.a.d. la matrice de l'endomorphisme $(e_i \mapsto e_{i+1})_i$ de E, où $(e_i)_{1 \leq i \leq n}$ est une base de E sur $\mathbb{K} = \mathbb{C}$ et où on considère les indices modulo n.
- a) Déterminer le polynôme caractéristique et le polynôme minimal de C_n .
- b) La matrice C_n est-elle diagonalisable? Donner ses valeurs propres et la dimension de chaque sous-espace propre.
- c) Mêmes questions en prenant n=5 et la permutation $\sigma=(1\ 2\ 3)\circ(4\ 5)$.

10. Diagonalisabilité d'une puissance

On suppose K algébriquement clos de caractéristique nulle. Soit $r \geq 2$ un entier.

- a) On suppose u inversible. Montrer que u est diagonalisable si et seulement si u^r est diagonalisable.
- **b)** Est-ce encore vrai si u n'est pas inversible?
- **11.** Matrices par blocs Pour $A \in M_n(\mathbb{K})$, on pose $B = \begin{pmatrix} 0 & 2A \\ 3A & -A \end{pmatrix}$ et $C = \begin{pmatrix} A & A \\ 0 & A \end{pmatrix}$, matrices par blocs dans $M_{2n}(\mathbb{K})$.
- 1. (étude à la main) Étudier la diagonalisabilité de la matrice $\begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}$ et en déduire une condition nécessaire et suffisante sur A pour que B soit diagonalisable.
- **2.a)** Calculer les matrices C^k , $k \ge 1$, puis P(C), $P \in \mathbb{K}[X]$.
- b) Donner une condition nécessaire et suffisante sur A pour que C soit diagonalisable.

Famille d'endomorphismes

12. Commutant d'un endomorphisme, exemples

On appelle commutant de u, noté C_u , l'ensemble des endomorphismes v de E tels que $u \circ v = v \circ u$. On rappelle que K[u] désigne la sous-algèbre de $\operatorname{End}(E)$ constituée des polynômes en u.

- a) Préciser la structure de C_u . Pour quels u a-t-on $C_u = \text{End}(E)$?
- b) Donner la dimension de K[u] et montrer que \mathcal{C}_u contient K[u].
- c) On suppose que la matrice de u dans une certaine base \mathcal{B} est la matrice diagonale $\begin{pmatrix} aI_r & 0 \\ 0 & bI_{n-r} \end{pmatrix}$, où 1 < r < n et $a \neq b$. Déterminer \mathcal{C}_u et le comparer à K[u].
- d) On suppose $K = \mathbb{R}$, n = 2 et $u^2 = -id_E$ (cf. 7.b)). Déterminer \mathcal{C}_u ; montrer $\mathcal{C}_u \simeq \mathbb{C}$.
- e) On suppose ici que χ_u est scindé à racines simples. Montrer que $\mathcal{C}_u = K[u]$ (on pourra raisonner sur la restriction à chaque sous-espace propre de u, puis se placer dans une base associée).
- f) Même question en supposant cette fois que E possède une base \mathcal{B} de la forme $(x, u(x), \ldots, u^{n-1}(x))$. (Indication : que vaut alors μ_u ? On pourra conclure en considérant l'application $v \mapsto v(x)$ de \mathcal{C}_u dans E).

13. DIAGONALISATION, TRIGONALISATION SIMULTANÉES

Soit $(u_i)_{i\in I}$ une famille d'endomorphismes de E qui commutent deux à deux.

- a) Montrer que tout sous-espace propre de l'un des u_i est stable par chaque u_i .
- **b)** On suppose chaque u_i diagonalisable. Montrer qu'il existe une base de E faite de vecteurs propres communs à tous les u_i (on pourra raisonner par récurrence sur $n = \dim E$).
- c) Dans la suite on suppose chaque u_i trigonalisable.
- **c-i)** Montrer, par récurrence sur n, que les $(u_i)_{i\in I}$ ont un vecteur propre commun e_1 . On complète e_1 en une base $\mathcal{B} = (e_1, \ldots, e_n)$ de E et on note $F = \text{Vect}(e_2, \ldots, e_n)$, p la projection sur F parallèlement à $\text{Vect}(e_1)$, et u'_i l'endomorphisme $p \circ u_{i|F}$ de F.
- **c-ii)** Relier la matrice A'_i de u'_i dans la base $\mathcal{B}' = (e_2, \ldots, e_n)$ avec $A_i = \operatorname{mat}_{\mathcal{B}}(u_i)$. Montrer que les endomorphismes $(u'_i)_{i \in I}$ de F commutent deux à deux et sont trigonalisables.
- **c-iii)** Conclure, par récurrence sur n, que les $(u_i)_{i\in I}$ sont cotrigonalisables.
- **c-iv)** Donner deux matrices triangulaires qui ne commutent pas.