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Asymptotic Results For Hermitian
Line Bundles Over Complex

Manifolds: The Heat Kernel Approach

Thierry BOUCHE

Abstract. This paper is intended to be an introduction to a heat kernel approach to some

problems in complex geometry. We recall and generalize many results from a previous

paper. We demonstrate their strength by giving very simple proofs of nontrivial results

of global analysis on complex manifolds. Some of the new results here will be used in a

joint work with A. Abbes in order to give a simple direct proof in the case of varieties

over number fields of the arithmetic Hilbert-Samuel theorem due to Gillet and Soulé.

Introduction

This paper is a continuation of [B1] where we computed the zeroth order asymp-
totic expansion of the heat kernel associated to high tensor powers of a hermitian
line bundle over a complex manifold. Our aim is to indicate an entirely new method
of constructing holomorphic (or more generally harmonic) sections of vector bun-
dles over complex manifolds by using heat kernel estimates. This will range from
bounds on cohomology groups (as it is known, these can imply lower bounds on
the dimension of the space of holomorphic sections under suitable hypothesis),
vanishing theorems, to an explicit construction of sections of some vector bundle
twisted by high powers of a positive line bundle such that their norm converges to
a Dirac mass at some point on the manifold. This construction produces holomor-
phic sections satisfying arbitrary conditions at some point. As an application, we
will derive very simple proofs of well known theorems such as Kodaira vanishing or
Kodaira embedding. Our hope is to convince complex geometers that these tech-
niques lead to a partial alternative to Hörmander’s L2 estimates. We also include
some generalizations of previous results in [B1], with applications to arithmetic
geometry in mind (c.f. [A-B]).

Now, we introduce our notations: X is a compact complex analytic manifold of
dimension n, endowed with a hermitian metric ω and associated volume element

A.M.S. Class.:32L05; 53P10,51N15
Key Words: heat kernel, positive line bundle, Kodaira theorems, distortion function.
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dV = ωn/n!. E (resp. L) is a hermitian holomorphic vector bundle of rank r
(resp. 1). For a global C∞ (0, q)-form σ of E(k) = E ⊗ L⊗k, |σ(x)|2 denotes
the pointwise length induced by the given metrics and ‖σ‖2 =

(∫
X
|σ|2dV

)1/2

(resp. ‖σ‖∞ = supX |σ|) the L2 norm (resp. the sup norm). We will be primarily
concerned with the spectral distribution of the operator £

q
k = (∂̄∗ + ∂̄)2 which

is the ∂̄-laplacian (with respect to the given metrics) acting on (0, q)-forms with
values in E(k) (the exponent q will be omitted when we deal with sections (i.e.
q = 0)). As £

q

k is elliptic and X is compact it has a discrete spectrum which can
be recovered from the heat kernel Kq

k(t, x, y) which is the smooth kernel of the
operator e−

2t
k £

q

k . It enjoys the following expansion: for j = 0, 1, . . ., let µk
j be the

eigenvalues of £
q
k (counted with multiplicities), and (ψ j)j be an orthonormal L2

basis of eigen-forms associated to the µk
j ’s, then

Kq
k(t, x, y) =

∑
j≥0

e−
2t
k µk

j ψ j(x)⊗ ψ ∗j (y),

and is characterized by the following properties:

(1i) Kq
k ∈ C∞

(
]0,+∞[×X ×X, Hom(

∧0,q
T ∗X ⊗ E(k),

∧0,q
T ∗X ⊗ E(k))

)
;

(1ii)
(

∂
∂t + £

q
k

)
Kq

k = 0 where £
q
k acts on the first variable;

(1iii) Kq
k(t, x, y) → δy (Dirac δ-function at point y) if t → 0;

(1iv) Kq
k(t, x, y) = (Kq

k)∗(t, y, x).

If Ω is an open set of X, and £
q
k,Ω is the operator defined by £

q
k on Ω, with

Dirichlet condition at the boundary, we get in the same way the associated heat
kernel Kq

k,Ω satisfying:

(2i) Kq
k,Ω ∈ C∞

(
]0,+∞[×Ω× Ω,Hom(

∧0,q
T ∗X ⊗ E(k),

∧0,q
T ∗X ⊗ E(k))

)
;

(2ii)
(

∂
∂t + £

q

k

)
Kq

k,Ω = 0 inside Ω;

(2iii) Kq
k,Ω(t, ∂Ω, y) = {0};

(2iv) Kq
k,Ω −→t→0

δy.

For the sake of convenience, we also introduce the following notations: eq
k(t, x)

(resp. eq
k,Ω(t, x)) is the fiberwise trace of Kq

k(t, x, x) (resp. Kq
k,Ω(t, x, x)) considered

as an endomorphism of the fiber E(k)x. We shall often call abusively eq
k the heat

kernel of £
q
k . From the formula above we get:

(∗) eq
k(t, x) =

∑
j≥0

e−
2t
k µk

j |ψ j(x)|2.

Our point here is to illustrate how this “heat kernel” technique works out in a
number of classical theorems of complex geometry, and even allows to refine them
by a more local control on the holomorphic (resp. harmonic) objects they deal
with. The present paper is thus both of an expository and research nature, the
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new results discussed in sections 2 or 3 being slight extensions of known results;
however, the point of view, and most of our proofs, are new. Further developments
of the theory are to be found in the papers [A-B] and [B4], the underlying Rieman-
nian situation is made explicit in [B5]. In the first section of this paper, we state
the main theorem from [B1] giving an asymptotic estimation for eq

k when k → +∞
and show how it yields fine control on the cohomology groups of E(k). The second
section is devoted to estimates and applications of the so-called envelope and dis-
tortion functions which give some taste of how the global sections of E(k) behave
at a given point of X. Most of the results there are new for r ≥ 2, q > 0. The third
section illustrates our strategy of producing holomorphic sections with heat kernel
estimates, and includes a self-contained proof of the Kodaira embedding theorem.
Throughout the paper, the letter C will denote any constant not depending on x,
t nor k.

1. Asymptotic bounds on cohomology

We denote by α1, . . . , αn the eigenvalues of the curvature of L with respect to the
metric ω. For a multi-index J , we put ᾱJ =

∑
j /∈J αj −

∑
j∈J αj . We set also the

function α
sinh αt to be 1

t when α = 0. Let us call

eq
∞(t, x) = r(4π)−n(

∑
|J|=q

etᾱJ )
n∏

j=1

αj(x)
sinhαj(x)t

.

Then we get from [B1] the

Theorem 1.1.

(1a) When k → +∞, the function k−neq
k(t, x) converges to eq

∞(t, x) uniformly with
respect to x ∈ X and t ∈]0, kε] for a given ε > 0, not depending on k.

(1b) More precisely, if we fix x0 ∈ X and some η ∈]0, 1
6 [, for any sequence of real

numbers rk such that rkk−
1
2+η is bounded above and below by positive constants,

and for a sequence of open subsets Ωk of X containing for all k the geodesic
ball of center x0 and radius rk, the following convergence occurs

k−neq
k,Ωk

(t, x0) → eq
∞(t, x0)

uniformly with respect to t ∈]0, kε] for any ε < η.

Remarks. Notice that the rank r of E was omitted in Theorems 1 and 2 of [B1],
which was a typo. The precise sense of uniformity here is stated as Theorem 2 in
[B1]: it means that the function denoted by the Landau symbol o(kn) is bounded
independently of x and t in the given domain. (1a) is thus only the reformulation
of Theorems 1 and 2 (using the remark before Corollary 1). Although (1b) does
not appear there, it is also a direct consequence of the whole method of the paper,
because (1a) is proven by localizing the estimates of eq

k at x0 to those of eq
k,Bk
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where Bk is a geodesic ball of center x0 and whose radius satisfies conditions
weaker than those on rk. Since this paper was written, his author has improved
some of the results it presents by using Eq. (1b) in full details (see [B4]).

Theorem 1.1 (1a) has first been proven by J.-M. Bismut [Bi] by using proba-
bilistic methods, then generalized by E. Getzler to Heisenberg manifolds. There
exists also a simple analytic approach of Demailly [D2] (all these without unifor-
mity with respect to t outside bounded intervals). The original motivation for this
theorem is that it implies Demailly’s holomorphic strong Morse inequalities [D1].
In fact, it can be viewed as a local version of them (by analogy to the expression
“local index theorems”: it is a pointwise asymptotic estimation of the functions
that give, after integration, the inequalities of Demailly). We shall be a little more
precise: it is immediate from the infinite sum expansion of the heat kernel (∗)
given in the introduction (and the Hodge identification between cohomology and
harmonic forms) that

dim Hi(X, E(k)) ≤
∫

X

ei
k(kε, x) dV.

According to theorem 1.1 Eq. (1a), eq
∞ is the uniform limit on X of k−neq

k(t, x).
If we divide the inequality above by kn and let k tend to +∞, we obtain as limit
of the right hand side the integral of eq

∞. As the left hand side does not depend on
t, we can bound it by taking the right hand side’s limit when t goes to infinity. It
is then only a matter of simple computations to get the “weak Morse inequalities”
of Demailly [D1] (see [B2] for the detailed derivation of the strong form):

Theorem 1.2. For any q = 0, . . . , n

dim Hq(X, E(k)) ≤ (−1)qr
kn

n!

∫
X(q)

( i

2π
c(L)

)n

+ o(kn).

Unfortunately, these inequalities fail to be sharp when the order of growth of
the cohomology groups is not maximum (a polynomial expansion would be much
better although it seems quite out of reach by now: we only have been able to
bound the heat kernel to a lower order in k in the case of degenerate curvature,
under some additional assumptions, c.f. section 3 of [B3]). The point we want to
stress now is that Theorem 1.1 can be much sharper in such a situation. In fact,
we are able to prove the

Theorem 1.3 (generalized Kodaira vanishing). If the curvature of L has at
least n− q + 1 positive eigenvalues everywhere on X, then

Hi(X, E(k)) = 0 for i ≥ q

as soon as k is sufficiently large.

Proof. In our setting, the strategy of the proof is quite simple: we are going to
show that the integral over X of the heat kernel ei

k(kε, x) tends to zero. Therefore
it must be less than 1 for k large, but this integral bounds the dimension of
Hi(X, E(k)), and we are done. We shall now suppose that the eigenvalues of ic(L)
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are ordered (i.e. α1 ≤ . . . ≤ αn) and denote α0 = infX αq which is positive by
our hypothesis on L and X. With our notations, we have, for |J | = i, ᾱJ ≤
−α1 − · · · −αi + αi+1 + · · ·+ αn. For any j, according to the discussion which led
to theorem 1.2, αje

kεαj / sinh kεαj is a bounded function whatever the sign of αj is.
Especially, if αj > 0, αje

−kεαj / sinh kεαj ≤ Ce−2kεαj for some constant C. But the
point is that, if i ≥ q, αi ≥ α0 > 0; thus eᾱJ t/

∏n
j=1 sinhαjt ≤ Ce−kεα0 . Now we

use the strong uniformity of (1a) to see that ei
k(kε, x) ≤ Cknei

∞(kε, x). Integrating
this last inequality over X yields dim Hi(X, E(k)) ≤ C Vol(X)kne−kεα0 thanks to
the previous one. This proves the theorem.

Remarks. The note [B4] presents an enhanced version of this result, which does
not require strict positivity. The same proof yields the vanishing in degree less or
equal to q if ic(L) has at least q + 1 negative eigenvalues, which also follows from
Serre duality. This remark will be used in theorem 2.1. The Bochner technique
proof of theorem 1.3 involves a careful construction of an adapted metric ω for
which the control of the curvature eigenvalues is possible. What is remarkable in
our heat equation proof is that we just don’t have to care about ω. Before ending
this section, we would like to ask:

Question. Can one prove precise vanishing theorems by a heat equation me-
thod?

For instance, it is clear that one should be able to prove Andreotti-Grauert
vanishing for vector bundles on q-complete manifolds. See [B4] for another answer
to this question, which is however not specific to the heat equation approach.

2. The envelope and distortion functions

We now turn our attention to generalizations and applications of the “main theo-
rem” in [B1]. We first make the following general observation: the spaces Hq(X,
E(k)) are finite dimensional vector spaces, thus any two norms on it must be equiv-
alent. When identified with the space Hq(X, E(k)) of harmonic (0, q)-forms, it is
naturally endowed with the L2 and sup norms. The first inequality between these
two norms: ‖σ‖22 ≤ Vol(X)‖σ‖2∞ is obvious and does not depend on k. The second
one is more subtle, and must depend on k, for reasons which will soon be clear.
Notice that it is quite unnatural to bound the sup norm by an integrated one,
except when, for instance, the function |σ|2 is plurisubharmonic, but this would
mean that L has negative curvature and so no cohomology (at least for q < n)!
Anyway, one can look for the constant Ck giving the other inequality, one can
even be more optimistic and seek a description of what we shall call the envelope
function for the L2 norm.
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Definition. Let the family h1, . . . , hm be an L2 orthonormal basis of
Hq(X, E(k)), then the distortion function is defined by:

bq
k(x) =

m∑
j=1

|hj(x)|2.

The envelope function is:

sq
k(x) = sup

‖h‖2=1

|h(x)|2.

It is clear that the constant Ck is simply the supremum of the envelope function
whereas the distortion function is exactly the zero-eigenvalue part of the expansion
of the heat kernel (notice also that the distortion function does not depend on the
choice of the orthonormal basis (hj)). The terminology for b0

k has the following
geometrical interpretation generalizing the one given in [B1] following G. Kempf,
when E is the trivial line bundle. When k is large, the global sections of the bundle
E(k) define an embedding in a Grassmannian such that E(k) is the pull-back of
the universal quotient bundle Q. As Q is a quotient bundle of a trivial one, it has
a natural metric whose pull-back on E(k) is proportional to the initial metric. The
function b0

k is precisely the pointwise ratio (or “distortion”) between the initial
metric and the pulled-back one. The connection between these two functions is
made precise in the

Proposition 2.1. We have the two inequalities

(2a) bq
k(x) ≤ eq

k(t, x) for any t > 0

(2b) sq
k ≤ bq

k ≤ M(x)sq
k

where M(x) is the maximum rank of the subspace of the fiber
∧0,q

T ∗X ⊗E(k) ¶x

generated by the global harmonic (0, q)-forms.

Proof. (2a) needs no proof. The first inequality in (2b) follows simply from the
fact that for any global form h of unit L2 norm you can find an orthonormal
basis containing it, then compute bq

k with this basis. To prove the second inequal-
ity, we construct a L2 orthonormal basis of Hq(X, E(k)) h1, . . . , hm such that
h1(x), . . . , hM (x) form an orthogonal basis of the fiber

∧0,q
T ∗X ⊗ E(k)) ¶x, and

hj(x) = 0 for j > M(x). This is easily done by induction: we first define the
hj ’s for j > M as an orthonormal basis of the space of global harmonic forms
vanishing at x, then we pick one unit norm element hM of the orthogonal (which
is precisely of dimension M), then choose hM−1 in the same space such that its
value at x is orthogonal (in the fiber) to that of hM , and so on. Now, if we take
any h of unit norm, it can be written h =

∑m
j=1 γjhj with

∑
|γj |2 = 1, thus

|h(x)|2 =
∑M

j=1 |γj |2|hj(x)|2 ≤ max1≤j≤M |hj(x)|2. This proves that, up to some
reordering, sq

k(x) = |h1(x)|2. The proof is complete.
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Proposition (2b) is completely satisfactory in case r = 1, q = 0 because it
asserts that the two functions are the same. Nevertheless, the case q = 0 only
has important geometric sense. In fact, the second inequality in (2b) should be an
equality in many cases (e. g. if Aut(E) is transitive on the fibers): we shall show
that it is the limiting case when L is positive (for q = 0). We now turn to answer
(asymptotically) the question we raised at the beginning of this section.

Corollary 2.1. Let Ck = sup‖h‖2=1 ‖h‖2∞ for h ∈ Hq(X, E(k)) then

Ck ≤ r sup
X

∣∣detω
i

2π
c(L)

∣∣kn + o(kn).

Proof. In fact, using (2a) and the estimates of eq
∞, we get:

sq
k(x) ≤ eq

k(kε, x) ≤ r
∣∣detω

i

2π
c(L)x

∣∣kn + o(kn).

This proves that, if the determinant is nonzero somewhere on X, we can choose a
point on X and k sufficiently large in order that the corresponding term of order
kn dominates eq

k everywhere on X, whence the result. Here, however, o(kn) is
definitely not under control.

Corollary 2.1 is an improvement of an earlier result of Gromov, Gillet and
Soulé [G-S] which only asserted the order of growth of Ck for q = 0 under the
unnecessary hypothesis that L should be positive. If we require some positivity,
we can obtain a much more precise statement generalizing the main theorem of
[B1]:

Theorem 2.1. If the curvature of L has constant signature q (i.e. X(q) = X)
then the following asymptotic estimation holds:

bq
k(x) ∼ r(−1)qdetω

i

2π
c(L)x(kn + o(kn))

uniformly over X.

Remarks. Notice that we know by theorem 1.3 and Serre duality that the coho-
mology in all other degrees vanish. Of course, by integrating the above relation,
one obtains an estimation for the dimension of the only nonvanishing group, which
already follows from the Riemann-Roch theorem in this context. The case q = 0 (L
positive) is specially interesting because it allows to construct many holomorphic
sections of E(k), as will be seen in the next section. The theorem of [B1] treats the
case q = 0, and E trivial. In this case, there is another approach by Tian [T] based
on L2 estimates. We also point out that, according to proposition 2.1, corollary 2.1
is sharp in degree 0 when L is positive and r = 1.

Proof. Under our hypothesis, the estimate of theorem 2.1 is the limit of the one for
eq
k when k goes to infinity. The only thing we have to check is that the part of the

expansion of eq
k(kε, x) corresponding to nonzero eigenvalues converges uniformly to
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zero when k → +∞. This is done by observing that this part injects via ∂̄ (resp. ∂̄∗)
in the corresponding part of eq+1

k (resp. eq−1
k ). But, after the proof of theorem 1.3,

these two heat kernels tend uniformly to zero at (kε, x, x) when k → +∞. In fact,
if α0 = infX(|αq|, αq+1), we have eq+1

k (kε, x) ≤ Ckne−2α0t and the same bound
applies for eq−1

k . On the other hand, the eigen-forms in degree q are controlled by
the convergence of their heat kernel, namely: |ψ j(x)|2 ≤ e

2t
k µk

j eq
k(t, x) ≤ Ckne

2t
k µk

j .
Using this last inequality for a t strictly smaller than kε and combining it with the
previous one finishes the proof (which is entirely similar to the one of [B1] except
for invoking ∂̄∗).

If X is a submanifold in a manifold Y of dimension m, there is another norm
comparison similar to the one we outlined at the beginning of this section: suppose
L is defined and positive on the whole of Y , then you would like to compare the L2

norm on H0(X, E(k)) with the quotient L2 norm inherited from H0(Y, E(k)) when
k is sufficiently large (which yields the surjectivity of the restriction map). When
X is the zero locus of a section of a vector bundle on Y , such results are well-known
[O], [M], but do not lead to optimal constants (with respect to the k-dependency).
However, once again, there must be some constant for linear algebraic reasons in
any case, and we can hope to have the following asymptotic answer:

Conjecture 2.1. Let Y (resp. X) be a complex-analytic manifold (resp. sub-
manifold of Y ) of dimension m (resp. n), E and L as above (L positive). Let
s ∈ H0(X, E(k)), and ‖s‖2,X (resp. ‖s‖2,Y ) denote the L2 norm (resp. quotient
L2 norm) of s. Put c1

k = inf‖s‖2,Y =1 ‖s‖22,X and c2
k = sup‖s‖2,Y =1 ‖s‖22,X , then there

exists positive constants c1, c2 such that

c1k
n−m ≤ c1

k ≤ c2
k ≤ c2k

n−m.

More precisely, we conjecture that km−nci
k converge to the same limit for i = 1, 2,

and that this limit only depends on the metric on Y and the curvature of L.

A solution to this conjecture could lead to a drastic improvement in the paper
[A-B]. Some evidence for it can be found in the study of the case Y = P

m and
L = O(1) where the expected limiting constant is the degree of the projective
manifold X (i.e. its volume with respect to the ic(L)n volume element). The results
of section 3 also lead to its complete verification in the case n = 0 (X a point).

3. Construction of peak
sections when L is positive

We conclude this paper by results of existence of sections of E(k) using the main
theorems of sections 1 and 2. We suppose from now on that L is positive and X
is endowed with the Kähler metric ω = ic(L).

Theorem 3.1. Fix x0 ∈ X. Then, for any k ≥ 0 there exists a global section
σk of E(k) of unit L2 norm such that for any geodesic ball of radius rk such that
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rk

√
k → +∞, the following bound holds

(3)
∫

B(x0,rk)

|σk|2dV ≥ 1− o(1).

Where o(1) means some quantity tending to zero when k → +∞. Moreover,
|σk(x)|2 = o(kn) uniformly on compact subsets of X \ {x0}.

Remarks. Theorem 3.1 generalizes slightly Lemma 2.1 of [T] which was proven by
using L2 methods. In fact, his lemma produces sections of Lk with prescribed Tay-
lor expansion of order p and mass almost concentrated at x0, called peak sections.
This is the same as producing sections of a power of the line bundle over a blown-
up manifold we shall construct in the proof of the Kodaira embedding theorem,
where we will see that it is positive. The first proof of theorem 3.1 we shall give
is in some sense the converse to the one of the lemma of Tian. The reason is that
Tian obtains as a consequence of his lemma a special case of our theorem 2.1 (see
lemma 3.2 of [T]). Here, we use theorem 2.1 to prove theorem 3.1. In both cases,
the heart of the proof is the computation of the same integral.

Proof. Let U be a small open subset of X containing x0 on which there exist
holomorphic coordinates (z1, . . . , zn) centered at x0, and a local frame ` (resp.
(e1, . . . , er)) of L (resp. E) such that

< eλ(z), eµ(z) >=δλµ + O(|z|)
|`(z)|2 =1− |z|2 + O(|z|4)

ωz =i∂∂̄|z|2 + O(|z|2)

where |z| denotes the Euclidean norm in C
n. Now, we define σk to be one unit

norm generator of the orthogonal to the space of global sections vanishing at x0

such that |σk(x0)|2 = sk(x0) (this was shown to be possible during the proof of
proposition 2.1). Then we know that |σk(x0)|2 = sk(x0) =

(
k
2π

)n
+ o(kn). Define

fk = (f1
k , . . . , fr

k ) to be the holomorphic function on U representing σk, namely
σk =

∑
λ fλ

k eλ ⊗ `k. Because of the mean inequality for holomorphic functions in
C

n we have:

(4) |fk(0)|2 ≤ 1
Vol(S(0, t))

∫
S(0,t)

|fk(z)|2dσ(z)

where dσ is the canonical volume element of the Euclidean sphere of radius t in
C

n. We denote a(n) = Vol(S(0, 1)) = 2πn/(n − 1)!. Multiplying (4) by (1 − t2)k

and integrating with respect to t over ]0, rk] we get

(5)
|fk(0)|2a(n)

∫ rk

0

t2n−1(1− t2)kdt ≤
∫ rk

0

dt

∫
S(0,t)

|fk(z)|2(1− |z|2)kdσ(z)

=
∫

B(0,rk)

|fk(z)|2(1− |z|2)kdλ(z).
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Here dλ is the Lebesgue measure on C
n hence dV = ωn

n! = 2ndλ + O(|z|2). The
real integral on the left of (5) is easily computed:

∫ rk

0
t2n−1(1 − t2)kdt ∼ (n−1)!k!

2(n+k)!

because the assumption rkk1/2 → +∞ insures us that terms of the form (1−r2
k)k =

ek log(1−r2
k) ≤ e−kr2

k tend to zero. This implies that the left hand side of (5) has
limit 2−n when k → +∞. But this concludes the argument because the right
hand side is asymptotically equal to the integral of |σk|2 over B(x0, rk) up to the
constant factor 2−n as soon as we choose rk → 0.

From now on, we omit q in the notation as it is always zero.

Lemma 3.1. If L is positive

(6) sk(x) ∼
(

k

2π

)n

uniformly over X.

Proof. Theorem 2.1 and the inequality rsk ≥ bk due to (2b) in proposition 2.1
yield the lower bound. Now, suppose we have at some point x0 limsup k−nsk(x0) >
(2π)−n. For any k we can choose again σk to be a unit norm element of the L2

orthogonal to the space of sections of E(k) vanishing at x0 such that |σk(x0)|2 =
sk(x0). By the argument above this would imply for a k large enough:∫

B(x0,rk)

|σk|2dV > 1,

a contradiction. The uniformity comes from the fact that all estimates which lead
to the contradiction are uniform.

The last statement of theorem 3.1 comes from the same analysis. If

limsup k−nσk(x) > 0

there would be a non-negligible contribution of neighborhoods of x to the global
norm of σk, which contradicts the previous statement. Now, we derive the

Corollary 3.1 (Kodaira embedding theorem). If L is positive, the map
ΦkL : X → P

(
H0(X, Lk)∗

)
defined by the linear system

∣∣kL
∣∣ is a projective em-

bedding for k sufficiently large.

Proof. The first observation is that theorem 2.1 implies that |kL| is base point free
when k is large because the nonzero limit of bk at any point forces some section
to be nonzero at this point. Thus ΦkL is a well-defined map on X. Moreover, it is
injective because, if two points were not separated by sections of Lk, the orthogonal
of the space of sections vanishing at both points would be one dimensional. But
then, the proof of theorem 3.1 shows that the unit norm generator of this space
should have its mass concentrated near each one of the two points, thus a total
norm greater than 2−ε. What remains to check is that the sections of Lk separate
infinitely near points. The derivation of this result from a precise vanishing theorem
goes back to Kodaira himself who proved his embedding theorem as a consequence
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of his precise vanishing for positive line bundles together with the “quadratic
transform” technique (blow-up of a point). If we restrict ourselves to the heat
kernel method, thus to Theorem 1.3, the same technique applies and leads in turn
to prove m-jet ampleness rather than very ampleness. We sketch hereafter this
standard argument. Let us choose a point x on X and call X̃

π→ X the blow-up
of X at x. Let us also call D the exceptional divisor, and O(D) the associated line
bundle, whose restriction to D ' P(T ∗x X) is isomorphic to O(−1), thus negative.
Using the fact that π∗L is positive on any tangent vector to X̃ except those tangent
to D, it is easy to check that the line bundle L̃ = π∗Lk0 ⊗O(−D) is positive for
some k0 ≥ 0. Theorem 1.3 yields H1(X̃, L̃m) = 0 for some large m ≥ 2. If we call
Ix the maximal ideal sheaf associated to x, the space of m-jets of Lmk0 at x is
H0(X, Lmk0 ⊗OX/Im

x ). Using the exact sequence

0 → Im
x → OX → OX/Im

x → 0,

and blowing it up at x, we obtain the diagram

H0(X̃, π∗Lmk0) → H0(D,π∗Lmk0 ⊗O
X̃

/O
X̃

(−mD)) → H1(X̃, L̃m) = 0
π∗ ↑ π∗ ↑

H0(X, Lmk0) → H0(X, Lmk0 ⊗OX/Im
x )

where vertical arrows are isomorphisms. This yields the result. ut

Remarks. After corollary 3.1 we know that X is an algebraic projective manifold.
Thus, any coherent sheaf on X admits a global syzygy. A simple induction on the
length of the syzygy shows that the vanishing theorem 1.3 is valid for any coherent
sheaf E. This is known as theorem A (see for instance [G-H]). Our results of the
previous section also lead to an easy direct proof of the so-called theorem B in the
case of vector bundles (twisted by ideal sheaves of zero-dimensional subschemes):

Corollary 3.2. If L is positive and E is any vector bundle of rank r, let
Z ⊂ X be a finite set, and x ∈ X \ Z. Then the fiber E(k)x is generated by global
sections of E(k) vanishing on Z for k sufficiently large (k uniform with respect to
x in compact subsets of X \ Z).

Proof. We treat the case Z = {x0} for simplicity, the general case being similar.
The pointwise norm at x 6= x0 of the peak section σk associated to x0 is negligible
relatively to k

n
2 , and thus does not alter the estimate for bk nor sk at x (This

statement is uniform for x outside any ball B of center x0). Therefore, if we call
b′k(x) = bk(x) − |σk(x)|2 we have b′k ∼ bk uniformly outside B. But b′k is the
sum of the squares of the pointwise norms of an orthonormal basis of the space of
sections of E(k) vanishing at x0 (because σk is orthogonal to this space). Denote by
M ′(x) the dimension of the linear subspace of E(k)x generated by global section
vanishing at x0. The above remark, lemma 3.1 and (an obvious adaptation of)
proposition 2.1 imply: rsk ∼ b′k ≤ M ′(x)sk ≤ rsk. As M ′(x) and r are integers, it
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is clear that they must be equal for k large, which precisely means the announced
property.

An alternative proof of Theorem 3.1. We would like to finish this paper with a
second proof of theorem 3.1 which illustrates a possible use of (1b) in theorem 1.1.
It can also be seen as an introduction to the delicate localization procedure we
use in our joint paper [A-B]. Let us first introduce some notations: given an open
subset Ω of X and some µ > 0, we shall denote Hk(Ω, µ) the direct sum of the
eigen-spaces of £k,Ω corresponding to eigenvalues µk

j (Ω) ≤ kµ. Now, if we denote
(somewhat abusively) µk

1 the first nonzero eigenvalue of £k on X, we have the well
known

Lemma 3.2. If α0 is the infimum of the curvature eigenvalues on X, we have
the lower bound:

liminf k−1µk
1 ≥ α0.

Proof. This fact follows immediately from the proof of theorem 2.1 because we
showed there that ∑

j≥1

e−
2µk

j
k t ≤

∫
X

e1
k(t, x)dV ≤ Ckne−2α0t

if t ≤ kε. e−
2µk

1
k t has thus the same upper bound. Take the Log of this inequality

and let t tend slowly to infinity. ut
Now, we claim that

Lemma 3.3. For µ < α0 and k ½ 0, the map

Ψk,µ : Hk(Ω, µ) → H0(X, Lk)

which is simply the orthogonal projection is injective. Moreover, it is not far from
being an isometry: For u ∈ Hk(Ω, µ) one has the estimate

‖Ψk,µ(u)− u‖22 ≤ (kµ/µk
1)‖u‖22.

Proof. Define HΩ(u) =
∫
Ω

< 1
k £k u, u > dV (resp. H(u) =

∫
X

< 1
k £k u, u > dV ).

For u ∈ Hk(Ω, µ) we have H(u) = HΩ(u) ≤ µ‖u‖22 thus, if u 6= 0 Ψ(u) cannot be
zero because this would imply H(u) ≥ (µk

1/k)‖u‖22 ≥ (α0 − o(1))‖u‖22 > µ‖u‖22.
This proves the first assertion while the second boils down to the Pythagorean
theorem: if u = Ψ(u) + u1 is the orthogonal decomposition, we have ‖u‖22 =
‖Ψ(u)‖22 + ‖u1‖22 with H(u1) = H(u) ≤ µ‖u‖22 and H(u1) ≥ (µk

1/k)‖u1‖22. ut
Now, our construction goes like this: for any ε > 0 choose a µ < α0ε and

any unit norm section τk of Hk(Bk, µ) where Bk = B(x0, rk). This is possible
because theorem 1.1 (1b) implies that the first eigenvalue of 1

k £k,Bk
tends to

zero. In fact, if it was not the case, one can find a subsequence kν such that
ekν ,Bkν

(kε
ν , x0, x0) → 0, which contradicts (1b) (the estimates are the same as for
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the proof of theorem 2.1). Thus, for any µ > 0 the space Hk(Bk, µ) is not trivial
when k is large. We put σ̂k = Ψ(τk) and we obtain σ̂k + σ̃k = τk with ‖σ̃k‖22 ≤ ε.
Whence ‖σ̂k‖22 = ‖τk‖22−‖σ̃k‖22 ≥ 1− ε and ε ≥

∫
X
|σ̂k − τk|2dV ≥

∫
X\Bk

|σk|2dV.

So the section σk = σ̂k

‖σ̂k‖22
is the global holomorphic section we are looking for.

Concluding remarks. It has been shown that many important results in analytic
geometry can be derived from Eq. (1a). One can even improve some of these results
by giving them some flavor of what they should mean at a point or, to say it in
another manner, what is their local analogue. Anyway, the global results we have
been able to prove in this paper are somewhat outdated. This is because strict
positivity was a necessary condition in order to get rid of the non-harmonic part
in the heat kernel (because strict positivity forces the first eigenvalue of £k to go to
infinity with k). There are thus two possible ways of development for this theory.
One should be able, following a conjecture of Siu [S], to find estimates for the
first eigenvalue of £k under weaker conditions than positivity. (We shall discuss
in the forthcoming paper [B4] what we can do in this direction with the tools
developed here: this is quite far from what could be expected!) For instance, if L
has semi-positive curvature everywhere, and positive definite at some point, many
of the results we discussed have weaker analogues (e.g. Grauert-Riemenschneider
theorems). More generally (and we come to the second point), the same question
holds for nef and big line bundles: the overlap of L2 methods in this case is due
to the use of singular metrics. It would be quite marvelous to obtain Shokurov’s
base point freeness via an analogue of theorem 2.1. The other point is thus: is it
possible to develop these devices for singular metrics?

The last remark we would like to write is due to Y.-T. Siu. Since our main
interest is in holomorphic (or harmonic) objects, why should we work with the
whole spectrum of £

q
k, and then try to get rid of its greater part rather than work

directly with holomorphic objects like the Bergman kernel? For instance, if you
develop in a power series along the fibers the Bergman kernel of the unit ball in
the total space L∗, the value along the diagonal of the coefficient of the kth power
should look much like our distortion function bk. The (technical) reason for which
we worked with the heat kernel is that it is a very supple function, which allows
lots of manipulations (among which the localization properties as in (1b) is not the
least): it is less rigid than the Bergman kernel. Moreover, results like theorem 1.2 or
the second proof of theorem 3.1 show that a little walk outside holomorphy can lead
to powerful controls of holomorphic objects. Anyway, a vector-bundle approach to
the Bergman kernel is certainly a worthy direction for future research.
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(Grenoble), 12 (1993-94), 41–49.

[D1] Demailly J.-P. Champs magnétiques et inégalités de Morse pour la d′′-coho-
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