MAT303

CC2. Mardi 7 décembre. Durée de l'épreuve : 1h.

Documents et téléphones portables interdits. La rédaction et la précision des arguments seront des critères importantes d'évaluation

Question 1: autour du cours.

- 1. Soit U un ouvert dans \mathbb{R}^d , $f:U\to\mathbb{R}$ une fonction, $v\in U$ et $w\in\mathbb{R}^d$. On suppose que la dérivée partielle de f au point v et en direction de w, que l'ont note $\frac{\partial f}{\partial w}(v)$, existe. Donner sa définition.
- 2. Soit $L: \mathbb{R}^d \to \mathbb{R}$ une application linéaire. Donner la définition de "f est différentiable en ν , et sa différentielle en ce point est L.
- 3. On considère la fonction $g: \mathbb{R}^2 \to \mathbb{R}$ donnée par $g(x,y) = \frac{x^2 + y^2}{y}$ si $y \neq 0$ et g(x,y) = 0 sinon.
 - (a) Montrer que pour tout vecteur w = (a, b) la dérivée directionnelle $\frac{\partial f}{\partial w}(0, 0)$ existe. (On pourra considérer séparément les cas b = 0 et $b \neq 0$).
 - (b) Montrer que g n'est pas continue en (0,0).

Exercice 1.

On considère les deux fonctions définies sur $\mathbb{R}^2 \setminus (0,0)$ par

$$f_1(x,y) = \frac{|x|}{x^2 + y^2}$$

$$f_2(x,y) = \frac{x^2}{|x| + |y|}.$$

- 1. Justifier que f_1 est continue sur $\mathbb{R}^2 \setminus (0,0)$
- 2. Est ce que f_1 est prolongeable par continuité en (0,0)?
- 3. On admet que f_2 est continue sur $\mathbb{R}^2 \setminus (0,0)$. Est ce que f_2 est prolongeable par continuité en (0,0)?

Exercice 2.

On considère la fonction définie sur \mathbb{R}^2 par

$$f(x,y) = x^2 + 3y^2x - y^5.$$

- 1. Donner le gradient ∇_f en un point (x, y).
- 2. Justifier *en détail* que f est une fonction \mathscr{C}^1 .
- 3. Calculer la dérivée directionnelle $\frac{\partial f}{\partial w}(v)$ au point v = (1, 1) et dans la direction w = (1, -3).