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1. Introduction

A recurrent problem arising in mathematics is to decide if two given
mathematical structures defined over a field k are isomorphic. Quite
often, it is easier to deal with this problem after scalar extension to a
bigger field Ω containing k, for example an algebraic closure of k, or a
finite Galois extension. In the case where the two structures happen
to be isomorphic over Ω, this leads to the natural descent problem: if
two k-structures are isomorphic over Ω, are they isomorphic over k? Of
course, the answer is no in general. For example, consider the following
matrices M,M0 ∈ M2(R) :

M0 =

(
0 −2
1 0

)
,M =

(
0 2
−1 0

)
.

It is easy to see that they are conjugate by an element of GL2(C), since
they have same eigenvalues ±i

√
2, and therefore are both similar to
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i
√

2 0

0 −i
√

2

)
. In fact we have

(
i 0
0 −i

)
M

(
i 0
0 −i

)−1

= M0,

so M and M0 are even conjugate by an element of SL2(C).

A classical result in linear algebra says that M and M0 are already
conjugate by an element of GL2(R), but this is quite obvious here since
the equality above rewrites(

1 0
0 −1

)
M

(
1 0
0 −1

)−1

= M0.

However, they are not conjugate by an element of SL2(R). Indeed, it
is easy to check that a matrix P ∈ GL2(R) such that PM = M0P has
the form

P =

(
a 2c
c −a

)
.

Since det(P ) = −(a2+2c2) < 0, P cannot belong to SL2(R). Therefore,
M and M0 are conjugate by an element of SL2(C) but not by an element
of SL2(R).

Hence, the descent problem for conjugacy classes of matrices has a posi-
tive answer when we conjugate by elements of the general linear group,
but has a negative one when we conjugate by elements of the special
linear group. So, how could we explain the difference between these
two cases? This is where Galois cohomology comes into play, and we
would like now to give an insight of how this could be used to measure
the obstruction to descent problems on the previous example. If k is a
field, let us denote by G(k) the group GL2(k) or SL2(k) indifferently.

Assume thatQMQ−1 = M0 for someQ ∈ G(C). The idea is to measure
how far is Q to have real coefficients, so it is natural to consider the

difference QQ
−1

, where Q is the matrix obtained from Q by letting the
complex conjugation act coefficientwise. Indeed, we will haveQ ∈ G(R)

if and only Q = Q, that is if and only if QQ
−1

= I2. Of course, if

QQ
−1

= I2, then M and M0 are conjugate by an element of G(R),
but this is not the only case when this happens to be true. Indeed,
if we assume that PMP−1 = M0 for some P ∈ G(R), then we easily
get that QP−1 ∈ G(C) commutes with M0. Therefore, there exists
C ∈ ZG(M0)(C) = {C ∈ G(C) | CM0 = M0C} such that Q = CP . We
then easily have Q = C P = CP , and therefore

QQ
−1

= CC
−1

for some C ∈ ZG(M0)(C).
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Conversely, if the equality above holds then P = C−1Q is an element
of G(R) satisfying PMP−1 = M0 . Indeed, we have

P = C
−1
Q = C−1Q = P,

so P ∈ G(R), and

PMP−1 = C−1QMQ−1C = C−1M0C = M0C
−1C = M0.

Thus, M and M0 will be congugate by an element of G(R) if and only
if

QQ
−1

= CC
−1

for some C ∈ ZG(M0)(C).

Notice also for later use that QQ
−1 ∈ G(C) commutes with M0, as

we may check by applying complex conjugation on both sides of the
equality QMQ−1 = M0.

If we go back to our previous example, we have Q =

(
i 0
0 −i

)
, and

therefore QQ
−1

= −I2. Easy computations show that we have

ZG(M0)(C) = {C ∈ G(C) | C =

(
z −2z′

z′ z

)
for some z, z′ ∈ C}.

Therefore, we will have C ∈ ZG(M0)(C) and CC
−1

= QQ
−1

= −I2 if
and only if

C =

(
iu −2iv
iv iu

)
for some u, v ∈ R, (u, v) 6= (0, 0).

Notice that the determinant of the matrix above is −(u2 + 2v2) < 0.
Thus, if G(C) = GL2(C), one may take u = 1 and v = 0, but if

G(C) = SL2(C), the equation CC
−1

= −I2 = QQ
−1

has no solution
in ZG(M0)(C). This explains a bit more conceptually the difference
between the two descent problems. In some sense, if QMQ−1 = M0

for some Q ∈ G(C), the matrix QQ
−1

measures how far is M to be
conjugate to M0 over R.

Of course, all the results above remain valid ifM andM0 are square ma-
trices of size n, and if G(k) = GLn(k), SLn(k),On(k) or even Sp2n(k).
If we have a closer look to the previous computations, we see that the
reason why all this works is that C/R is a Galois extension, whose
Galois group is generated by complex conjugation.

Let us consider now a more general problem: let Ω/k be a finite Galois
extension, and let M,M0 ∈ Mn(k) two matrices such that

QMQ−1 = M0 for some Q ∈ G(Ω).

Does there exists P ∈ G(k) such that PMP−1 = M0 ?

Since Ω/k is a finite Galois extension, then for all x ∈ Ω, we have x ∈ k
if and only if σ(x) = x for all σ ∈ Gal(Ω/k). If now Q ∈ G(Ω), then
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let us denote by σ·Q ∈ G(Ω) the matrix obtained from Q by letting σ
act coefficientwise. Then we have

Q ∈ G(k) ⇐⇒ σ ·Q = Q for all σ ∈ Gal(Ω/k)
⇐⇒ Q(σ ·Q)−1 = I2 for all σ ∈ Gal(Ω/k).

As before, applying σ ∈ Gal(Ω/k) to the equality QMQ−1 = M0, we
see that Q(σ ·Q)−1 ∈ ZG(M0)(Ω). We therefore get a map

αQ : Gal(Ω/k)→ ZG(M0)(Ω), σ 7→ αQσ = Q(σ ·Q)−1.

Arguing as at the beginning of this introduction, one can show that M
and M0 will be conjugate by an element of G(k) if and only if there
exists C ∈ ZG(M0)(Ω) such that αQ = αC , that is if and only if there
exists C ∈ ZG(M0)(Ω) such that

Q(σ ·Q)−1 = C(σ ·C)−1 for all σ ∈ Gal(Ω/k).

To summarize, to any matrix M ∈ Mn(k) which is conjugate to M0

by an element of G(Ω), we may associate a map αQ : Gal(Ω/k) →
ZG(M0)(Ω), which measures how far is M to be conjugate to M0 by an
element of G(k).

This has a kind of a converse: for any map

α : Gal(Ω/k)→ ZG(M0)(Ω), σ 7→ ασ

such that α = αQ for some Q ∈ G(Ω), one may associate a matrix
of Mn(k) which is conjugate to M0 by an element of G(k) by setting
Mα = Q−1M0Q. To see that Mα is indeed an element of Mn(k), notice
first that we have

σ ·(C1C2) = (σ ·C1)(σ ·C2) for all C1, C2 ∈ G(Ω), σ ∈ Gal(Ω/k).

Thus, for all σ ∈ Gal(Ω/k), we have

σ ·Mα = (σ ·Q)−1M0(σ ·Q)
= Q−1Q(σ ·Q)−1M0(σ ·Q)
= Q−1M0Q(σ ·Q)−1(σ ·Q)
= Q−1M0Q
= Mα,

the third equality coming from the fact that ασ = Q(σ ·Q)−1 lies in
ZG(M0)(Ω).

Not all the maps α : Gal(Ω/k) → ZG(M0)(Ω), σ 7→ ασ may be writ-
ten αQ for some Q ∈ G(Ω). In fact, easy computations show that a
necessary condition for this to hold is that α is a cocycle, that is

αστ = ασ σ ·ατ for all σ, τ ∈ Gal(Ω/k).

This condition is not sufficient in general. However, it happens to be
the case if G(Ω) = GLn(Ω) or SLn(Ω) (this will follow from Hilbert
90).
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Notice that until now we picked a matrix Q ∈ G(Ω) which conju-
gates M into M0, but this matrix Q is certainly not unique. We
could therefore wonder what happens if we take another matrix Q′ ∈
G(Ω) which conjugates M into M0. Computations show that we have
Q′Q−1 ∈ ZG(M0)(Ω). Therefore, there exists C ∈ ZG(M0)(Ω) such
that Q′ = CQ, and we easily get that

αQ
′

σ = CαQσ (σ ·C)−1 for all σ ∈ Gal(Ω/k).

Two cocycles α, α′ : Gal(Ω/k)→ ZG(M0)(Ω) such that

α′σ = Cασ(σ ·C)−1 for all σ ∈ Gal(Ω/k)

for some C ∈ ZG(M0)(Ω) will be called cohomologous. Being coho-
mologous is an equivalence relation on the set of cocycles, and the set
of equivalence classes is denoted by H1(Gal(Ω/k), ZG(M0)(Ω)). If α is
a cocycle, we will denote by [α] the corresponding equivalence class.
Therefore, to any matrix M ∈ Mn(k) which is conjugate to M0 by an
element of G(Ω), one may associate a well-defined cohomology class
[αQ], where Q ∈ G(Ω) is any matrix satisfying QMQ−1 = M0.

It is important to notice that the class [αQ] does not characterize
M completely. Indeed, for every P ∈ G(k), it is easy to check that

αQP
−1

= αQ. In particular, the cohomology classes associated to the
matrices M and PMP−1 are equal, for all P ∈ G(k).

Conversely, if α = αQ and α′ = αQ
′

are cohomologous, it is not too
difficult to see that P = Q−1C−1Q′ ∈ G(k), and that the corresponding
matrices Mα and Mα′ satisfy PMα′P

−1 = Mα.

Thus the previous considerations then show that, in the case where
every cocycle α : Gal(Ω/k) → ZG(M0)(Ω), σ 7→ ασ may be written
α = αQ for some Q ∈ G(Ω), the set H1(Gal(Ω/k), ZG(M0)(Ω)) is in
one-to-one correspondence with the set of G(k)-conjugacy classes of
matrices M ∈ Mn(k) which are conjugate to M0 by an element of
G(Ω).

Many situations can be dealt with in a similar way. For example,
reasoning as above and using Hilbert 90, one can show that the set of
isomorphism classes of quadratic forms q which are isomorphic to the
quadratic form x2

1+· · ·+x2
n over Ω is in one-to-one correspondence with

H1(Gal(Ω/k),On(Ω)).The case of k-algebras is a little bit more subtle,
but one can show that the set of isomorphism classes of k-algebras
which are isomorphic to a given k-algebra A over Ω is in one-to-one
correspondence with H1(Gal(Ω/k),AutΩ−alg(A⊗k Ω)).

Quite often, algebraic structures can be well understood over a separa-
ble closure ks of k. In the best cases, they even become isomorphic over
ks, and Galois cohomology may be of great interest in this situation.
However, to avoid technicalities we will assume that Ω/k is finite, and
come back to the infinite case at the very end.
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2. Cohomology sets

Definition 2.1. Let G be a finite group. A set A is called a G-set if
G acts on A on the left. A group A is called a G-group if G acts on
A by group morphisms, i.e.

σ ·(a1a2) = (σ ·a1)(σ · a2) for σ ∈ G, a1, a2 ∈ A.

A G-group which is commutative is called a G-module.

A morphism of G-sets (resp.G-groups, G-modules) is a map (resp. a
group morphism) f : A→ A′ satisfying the following property:

f(σ ·a) = σ ·f(a) for all σ ∈ G and all a ∈ A.

Examples 2.2.

(1) Let Ω/k be a Galois extension of group GΩ. Then the map

GΩ × Ω→ Ω, (σ, x) 7→ σ ·x = σ(x)

endows Ω with the a structure of a GΩ-module.
(2) Let Ω/k be a Galois extension of group GΩ. Then GΩ acts

naturally on GLn(Ω) as follows: for σ ∈ GΩ and M = (mij) ∈
GLn(Ω), set

σ ·M = (σ(mij)).

Clearly, this is an action by group automorphisms. The same
is true for other matrix groups such as SLn(Ω) or On(Ω).

At this point, we may define the 0th-cohomology set H0(GΩ, A).

Definition 2.3. For any G-set A, we set

H0(G,A) = AG.

If A is a G-group, this is a subgroup of A. The set H0(G,A) is called
the 0th cohomology set of G with coefficients in A.

We will not really use this notation except once or twice, preferring
writing AG instead of H0(G,A). We now come to the main object of
these lectures:

Definition 2.4. Let A be a G-group. A 1-cocycle with values in A
is a map α : G→ A, σ 7→ ασ such that

αστ = ασ σ ·ατ for σ, τ ∈ G.
We denote by Z1(G,A) the set of all 1-cocycles of G with values in A.
The constant map ασ = 1 is an element of Z1(G,A), which is called
the trivial 1-cocycle. Notice also that for any 1-cocycle α, we have
α1 = 1.

Remark 2.5. If G acts trivially on A, a 1-cocycle is just a morphism
α : G→ A.
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In order to define the cohomology set H1(G,A), we need now an ap-
propriate notion of cohomologous cocycles, which coincide with the one
defined in the introduction in a particular case. This will be provided
by the following lemma:

Lemma 2.6. Let A be a G-group and let α : G → A be a 1-cocycle.
Then for all a ∈ A, the map

α′ : G→ A, σ 7→ aασ σ ·a−1

is again a 1-cocycle.

This leads to the following definition:

Definition 2.7. Two 1-cocycles α, α′ are said to be cohomologous if
there exists a ∈ A satisfying

α′σ = aασ σ ·a−1 for all σ ∈ G.
It is denoted by α ∼ α′.

Remark 2.8. The symbol ‘σ ·a−1’ may seem ambiguous at first sight,
since it could denote (σ ·a)−1 as well as σ ·(a−1). However, these two
elements are equal in our setting, since G acts on A by group automor-
phisms; we will keep this notation throughout.

Definition 2.9. Let A be a G-group. The relation ‘∼’ is easily checked
to be an equivalence relation on Z1(G,A). We denote by H1(G,A) the
quotient set

H1(G,A) = Z1(G,A)/ ∼ .

It is called the first cohomology set of G with coefficients in A.

The set H1(G,A) is not a group in general. However, it has a distin-
guished element, which is the class of the trivial cocycle. Therefore,
H1(G,A) is a pointed set in the following sense:

Definition 2.10. A pointed set is a pair (E, x), where E is a non-
empty set and x ∈ E. The element x is called the base point. A map
of pointed sets f : (E, x) → (F, y) is a set-theoretic map such that
f(x) = y. We will often forget to specify the base point when it is clear
from the context. The kernel of a map f : (E, x)→ (F, y) of pointed
sets is the preimage of y.

Example 2.11. The set H1(G,A) is a pointed set, and any abstract
group G may be considered as a pointed set, whose base point is the
neutral element.

Remark 2.12. If A is a G-module, the set Z1(G,A) is an abelian
group for the pointwise multiplication of functions. This operation is
compatible with the equivalence relation, hence it induces an abelian
group structure on H1(G,A).

We now look to the behaviour of these sets when G or A vary.
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Definition 2.13. Let G,G′ be two finite groups. Let A be a G-group
and A′ be a G′-group. Moreover, let ϕ : G′ → G and f : A → A′ be
two group morphisms.

We say that f and ϕ are compatible if

f(ϕ(σ′) · a) = σ′ · f(a) for σ′ ∈ G′, a ∈ A.

Notice that it follows from the very definition that if a is fixed by G,
then f(a) is fixed by G′. Hence f induces by restriction a map of
pointed sets

f∗ : H0(G,A)→ H0(G′, A′).

The following proposition shows that this is also true for H1.

Proposition 2.14. Let G,G′, A,A′ as above, and let ϕ : G′ → G
and f : A → A′ be two compatible group morphisms. For any cocycle
α ∈ Z1(G,A), the map

β : G′ → A′, σ′ 7→ f(αϕ(σ′))

is a cocycle.

Moreover, the assignment α ∈ Z1(G,A) 7→ β ∈ Z1(G′, A′) induces a
map of pointed sets (resp. a group morphism if A and A′ are abelian)

f∗ : H1(G,A)→ H1(G′, A′).

Proof. By definition, we have βσ′ = f(αϕ(σ′)). Hence, for all σ′, τ ′ ∈ G,
we have βσ′τ ′ = f(αϕ(σ′)ϕ(τ ′)), since ϕ is a group morphism. Since α is
a 1-cocycle, we get

βσ′τ ′ = f(αϕ(σ′) ϕ(σ′)·αϕ(τ ′)) = f(αϕ(σ′))f(ϕ(σ′)·αϕ(τ ′)).

By compatibility, we get that

βσ′τ ′ = f(αϕ(σ′))σ
′ · f(αϕ(τ ′)) = βσ′σ

′ ·βτ ′ .

Hence β is a 1-cocycle.

Now we have to show that if α and α′ are cohomologous, then the
corresponding β and β′ are also cohomologous, so assume that

α′σ = aασ σ ·a−1 for all σ ∈ G,

for some a ∈ A. Applying this relation to σ = ϕ(σ′) and taking f on
both sides gives

β′σ′ = f(aαϕ(σ′)ϕ(σ′)·a−1).

Since f is a group morphism which is compatible with ϕ, we get

β′σ′ = f(a)f(αϕ(σ′))σ
′ ·f(a)−1 = f(a)βσ′ σ

′ ·f(a)−1.

Hence β and β′ are cohomologous. Finally, it is clear from the definition
that f∗ maps the trivial class onto the trivial class. �
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Example 2.15. Assume that G = G′ and ϕ = IdG. Then a compatible
map f : A → A′ is just a morphism of G-groups, and the map f∗ just
sends the cohomology class of α to the cohomology class of f ◦ α.
Moreover, if g : A′ → A′′ is a morphism of G-sets (or G-groups, etc),
we have (g ◦ f)∗ = g∗ ◦ f∗.

In the sequel, f∗ will always denote the map induced by IdG and f . We
now provide one example of computation of a Galois cohomology set.

3. Hilbert’s 90th theorem

To prove the so-called Hilbert’s 90th theorem, we will need some preli-
minary results on semi-linear actions.

Definition 3.1. Let Ω/k be a Galois extension of Galois group GΩ,
and let U be a (right) vector space over Ω with an action ∗ of GΩ on
U . We will denote by ‘·’ the standard linear action of GΩ on Ω. We say
that GΩ acts by semi-linear automorphisms on U if we have for all
u, u′ ∈ U, λ ∈ Ω

σ ∗ (u+ u′) = σ ∗ u+ σ ∗ u′;
σ ∗ (uλ) = (σ ∗ u)(σ ·λ).

Examples 3.2.

(1) Let V be a k-vector space, and let U = V ⊗k Ω. The action of
GΩ on U defined on elementary tensors by

σ ∗ (v ⊗ λ) = v ⊗ (σ ·λ) for all v ∈ V, λ ∈ Ω

is an action by semi-linear automorphisms.
(2) Let U = Ωn, and let GΩ act in an obvious way on each coor-

dinate. We obtain that way an action by semi-linear automor-
phisms. Morever, UGΩ = kn, and we have a canonical isomor-
phism of Ω-vector spaces

UGΩ ⊗k Ω→ U, u⊗ λ 7→ uλ.

Notice that this isomorphism is also an isomorphism of GΩ-
modules.

The following lemma generalizes the previous example.

Lemma 3.3. [Galois descent of vector spaces] Let U be a vector space
over Ω. If GΩ acts on U by semi-linear automorphisms, then UGΩ =
{u ∈ U | σ ∗ u = u for all σ ∈ GΩ} is a k-vector space and the map

f : UGΩ ⊗k Ω→ U, u⊗ λ 7→ uλ

is an isomorphism of Ω-vector spaces.
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Proof. It is clear that UGΩ is a k-vector space, and that f is Ω-linear.
We first prove the surjectivity of f . Let u ∈ U , let λ1, . . . , λn be a
k-basis of Ω and let σ1 = IdΩ, σ2, . . . , σn be the elements of GΩ. Let

ui =
∑
j

σj ∗ (uλi).

For all k = 1, . . . , n, we have

σk ∗ ui =
∑
j

(σkσj)(uλi).

Hence the action of σk on
∑
j

σj ∗ (uλi) just permutes the terms of the

sum, so ui ∈ UGΩ .
Since σ1, . . . , σn are precisely the n k-automorphisms of Ω, they are
linearly independent over Ω in Endk(Ω) (this is Dedekind’s Lemma).
Hence the matrix M = (σj·λi)i,j lies in GLn(Ω). By definition of uj, we

have uj =
∑
k

(σk ∗ u)(σk ·λj). Now if M−1 = (m′ij), from the equation

M−1M = In, we get

(
∑
j

m′1j(σk ·λj) = δ1k for all k = 1, . . . n,

by comparing first rows. Hence we have∑
j

ujm
′
1j =

∑
j

∑
k

(σk ∗ u)(σk ·λj)m′1j =
∑
k

(σk ∗ u)δ1k = σ1 ∗ u = u,

the last equality coming from the fact that σ1 = IdΩ. Therefore, we
have

u =
∑
j

ujm
′
1j = f(

∑
j

uj ⊗m′1j),

which proves the surjectivity of f . To prove its injectivity, it is enough
to prove the following:

Claim: Any vectors u1, . . . , ur ∈ UGΩ which k-linearly independent
remain Ω-linearly independent in U .

Indeed, assume that the claim is proved, and let x ∈ ker(f). One may
write

x = u1 ⊗ µ1 + . . .+ ur ⊗ µr,
for some µ1, . . . , µr ∈ Ω and some u1, . . . , ur ∈ UGΩ which are linearly
independent. By assumption, f(x) = 0 = u1µ1 + . . . + urµr. Now the
claim implies that µ1 = . . . = µr = 0, and thus x = 0, proving the
injectivity of f .

It remains to prove the claim. We are going to do it by a way of
contradiction. Assume that we have k-linearly independent vectors
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u1, . . . , ur ∈ UGΩ for which there exists µ1, . . . , µr ∈ Ω, not all them
being zero, such that

u1µ1 + . . .+ urµr = 0.

We may assume that r is minimal, r > 1 and µ1 = 1. By assumption,
the µi’s are not all in k, so we may also assume that µ2 /∈ k. Choose
σ ∈ GΩ such that σ ·µ2 6= µ2. We have

σ ∗ (
∑
i

uiµi) =
∑
i

(σ ∗ ui)(σ ·µi) =
∑
i

ui(σ ·µi) = 0

and therefore we get
∑
i≥2

ui(σ ·µi − µi) = 0, a non-trivial relation with

fewer terms. This is a contradiction, and this concludes the proof. �

Remark 3.4. If we endow UGΩ⊗kΩ with the natural semi-linear action
as in Example 3.2 (1), we claim that the isomorphism f above is an
isomorphism of GΩ-modules, that is f is equivariant with respect to the
two semi-linear actions.

To check this, it is enough to do it on elementary tensors. Now for all
u ∈ UGΩ , λ ∈ Ω and σ ∈ GΩ, we have

f(σ ∗ (u⊗ λ)) = u(σ ·λ) = (σ ∗ u)(σ ·λ) = σ ∗ (uλ) = σ ∗ f(u⊗ λ),

hence the claim.

We are now ready for our first example.

Proposition 3.5 (Hilbert 90). For every Galois extension Ω/k, we
have H1(GΩ,GLn(Ω)) = 1.

Proof. Let α ∈ Z1(GΩ,GLn(Ω)). We twist the natural action of GΩ on
U = Ωn in an action by semi-linear automorphisms:

σ ∗ u = ασ(σ ·u) for all u ∈ U, σ ∈ GΩ.

We then get an isomorphism f : UGΩ ⊗k Ω
∼→ U from the previous

lemma. In particular, we have

dimk(U
GΩ) = dimΩ(UGΩ ⊗k Ω) = dimΩ(U) = n.

Let v1, . . . , vn be a k-basis of UGΩ (which is also an Ω-basis of U), and let
P ∈ GLn(Ω) be the matrix whose columns are v1, . . . , vn. Then for all
σ ∈ GΩ, the matrix σ·P is the matrix whose columns are σ·v1, . . . , σ·vn.
Now v1, . . . , vn ∈ UGΩ , and therefore we have

vi = σ ∗ vi = ασ(σ ·vi) for all i = 1, . . . , n.

Written in terms of matrices, this reads

P = ασ(σ ·P ) for all σ ∈ GΩ.

It readily follows that α is cohomologous to the trivial cocycle, and this
concludes the proof. �
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Remark 3.6. Assume that Ω/k is a finite cyclic extension of degree
n, and let γ be a generator of GΩ. If α ∈ Z1(GΩ,Ω

×) is a 1-cocycle, we
have

αγn = αγn−1γn−1 ·αγ = . . . = NΩ/k(αγ).

Since γn = 1, we get NΩ/k(αγ) = 1. Conversely, any element x ∈ Ω×

of norm 1 determines completely a cocycle with values in Ω× by the
formula

αγm =
∏

0≤i≤m−1

γi ·x for all 0 ≤ m ≤ n− 1.

Now let x ∈ Ω× satisfying NΩ/k(x) = 1, and let α be the corresponding
cocycle. By Hilbert 90, we know that α is cohomologous to the trivial

cocycle, so there exists z ∈ Ω× such that ασ =
σ(z)

z
for all σ ∈ GΩ.

Applying this equality to σ = γ, we get x =
γ(z)

z
, which is the classical

version of Hilbert 90.

4. Exact sequences in cohomology

Definition 4.1. Let f : A→ B be a map of pointed sets. Recall that
the kernel of f is the preimage of the base point of B.
A sequence of pointed sets

A
f // B

g // C

is called exact at B if imf = ker g.

A sequence of pointed sets

A0 → A1 → · · · → Ai−1 → Ai → Ai+1 → · · ·
is called exact if it is exact at Ai for all i ≥ 1.

An exact sequence of groups (resp. of G-groups, resp. of G-modules)
is an exact sequence of pointed sets such that all the maps involved are
group morphisms (resp. morphisms of G-groups, resp. of G-modules).

For example, the sequence

B
g // C // 1

is exact if and only if g is surjective, and the sequence

1 // A
f // B

is exact if and only if f has trivial kernel. This does not imply that f
is injective, unless A and B are groups and f is a group morphism.

Assume that we have an exact sequence

1 // A
f // B

g // C // 1
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of pointed G-sets. The goal of the next paragraphs is to derive some
exact sequences in cohomology, under some reasonable conditions on
A, B and C. We will keep this notation throughout.

Assume that A and B are G-groups, that f is a group morphism (hence
f is injective), and that g induces a bijection of G-sets B/f(A) ' C,
where B/f(A) is the set of right cosets modulo f(A). In other words,
g is surjective and for all b, b′ ∈ B we have

g(b) = g(b′) ⇐⇒ b′ = bf(a) for some a ∈ A.

For instance, these conditions are satisfied in the following cases:

(1) A is a G-subgroup of B, C = B/A, f is the inclusion and g is
the natural projection.

(2) C is a G-group and g is a group morphism (this will be the case
in the next subsection).

As pointed out previously in Example 2.15, f and g induce maps on
fixed points by restriction, namely f∗ : AG → BG and g∗ : BG → CG.
Our next goal is to define a map of pointed sets

δ0 : CG → H1(G,A).

Let c ∈ CG, and let b ∈ B any preimage of c under g, i.e. g(b) = c. By
assumption, we have c = σ ·c for all σ ∈ G. Therefore, we have

g(σ ·b) = σ ·g(b) = σ ·c = c = g(b).

By assumption on g, there exists a unique element ασ ∈ A such that
f(ασ) = b−1 σ ·b.

Lemma 4.2. The map α : G→ A, σ 7→ ασ is a 1-cocycle, and its class
in H1(G,A) does not depend on the choice of b ∈ B.

Proof. Let us prove that α is a cocycle. By definition of α, for all
σ, τ ∈ G, we have

f(αστ ) = b−1στ ·b = b−1 σ ·(bb−1τ ·b) = (b−1σ ·b)σ ·(b−1τ · b).
Hence we have

f(αστ ) = f(ασ)σ ·f(ατ ) = f(ασ)f(σ ·ατ ) = f(ασ σ ·ατ ).
By injectivity of f , we get αστ = ασ ·ατ .
Let us prove now that the cohomology class of α does not depends on
the choice of b. Let b′ ∈ B be another preimage of c under g. We then
have g(b′) = c = g(b), so b′ = bf(a−1) = bf(a)−1 for some a ∈ A by
assumption on g, and let α′ be the corresponding 1-cocycle. We then
have

f(α′σ) = f(a)b−1 σ ·(bf(a−1)) = f(a)f(ασ)σ ·f(a)−1 = f(aασ σ ·a−1),

so by injectivity of f , this implies that α and α′ are cohomologous.
This concludes the proof. �
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We then have constructed a map of pointed sets

δ0 : CG → H1(G,A), c 7→ [α],

where the cocycle α is defined by the relations

f(ασ) = b−1 σ ·b for all σ ∈ G,

for an arbitrary preimage b ∈ B of c.

Definition 4.3. The map δ0 : CG → H1(G,A) is called the 0th con-
necting map.

Proposition 4.4. The sequence of G-sets

1 // AG
f∗ // BG g∗ // CG δ0

// H1(G,A)
f∗ // H1(G,B)

is exact.

Proof. The fact that the sequence

1→ AG → BG → CG

is exact is left to the reader.

Exactness at CG: clearly if c = g(b) for some b ∈ BG, then its image
under δ0 is the trivial class. Conversely, assume that δ0(c) is trivial,
i.e. ασ = a σ ·a−1 for some a ∈ A. Let b ∈ B be a preimage of c under
g. We then have

f(a σ ·a−1) = b−1 σ ·b,
so f(a)σ·f(a)−1 = b−1σ·b. Hence bf(a) ∈ BG, and we have g(bf(a)) =
g(b) = c by assumption on g. Hence ker(δ0) = im(g∗), which is what
we wanted to prove.

Exactness at H1(G,A): Let c ∈ CG and let b ∈ B satisfying c = g(b).
Then by definition of f∗ and δ0(c), f∗(δ

0(c)) is the class of the 1-cocycle
G→ B, σ 7→ b−1 σ·b, which is cohomologous to the trivial cocycle. Now
if [α] ∈ H1(G,A) satisfies f∗([α]) = 1, then f(ασ) = b−1 σ ·b for some b
in B. Therefore, we have

σ ·g(b) = g(σ ·b) = g(bf(ασ)) = g(b) for all σ ∈ G.

Hence c = g(b) lies in CG. Thus b ∈ B is a preimage of c ∈ CG under
g and [α] = δ0(c) by definition of δ0. This concludes the proof. �

Example 4.5. We have an exact sequence of GΩ-groups

1 // SLn(Ω) // GLn(Ω) // Ω× // 1 ,

where the last map is the determinant. Hence we have an exact se-
quence in cohomology

GLn(k) // k×
δ0
// H1(GΩ, SLn(Ω)) // H1(GΩ,GLn(Ω))
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where the first map is the determinant. By Hilbert 90, we get an exact
sequence

GLn(k) // k×
δ0
// H1(GΩ, SLn(Ω)) // 1 .

Since the determinant map is surjective, and since the sequence above
is exact at k×, it follows that the 0th connecting map is trivial, hence
we get H1(GΩ, SLn(Ω)) = 1.

Before continuing, we need to define an action of BG in CG. Let β ∈ BG

and c ∈ CG. Let b ∈ B be a preimage of c under g, and set

β · c = g(βb) ∈ C.
Let us check that it does not depends on the choice of b. If b′ ∈ B is
another preimage of c under g, then b′ = bf(a) for some a ∈ A, hence
g(βb′) = g(βbf(a)) = g(βb) by assumption on g. Hence β · c does not
depend the choice of b.

We now show that β · c ∈ CG. For σ ∈ G, we have

σ ·(β ·c) = σ ·g(βb) = g(σ ·(βb)) = g((σ ·β)(σ ·b)).
Since β ∈ BG, we get σ · (β · c) = g(β(σ · b)) for all σ ∈ G. Now
g(σ ·b) = σ ·g(b) = σ ·c = c since c ∈ CG, so σ ·b is also a preimage
of c. Since β · c does not depend on the choice of a preimage of c, we
conclude that σ ·(β ·c) = β ·c for all σ ∈ G, so β ·c ∈ CG.

It is then clear that the map

BG × CG → CG, (β, c) 7→ β ·c
gives rise to an action of BG on CG. The next result identifies the
corresponding orbit set.

Corollary 4.6. There is a natural bijection between the orbit set of the
group BG in CG and ker(H1(G,A)→ H1(G,B)).

More precisely, the bijection sends the orbit of c ∈ CG onto δ0(c).

Proof. Let us denote by CG/BG the orbit set of BG in CG. By the
previous proposition, we have ker(H1(G,A) → H1(G,B)) = im(δ0).
Hence we have to construct a bijection between CG/BG and im(δ0).

Let c, c′ ∈ CG lying in the same orbit, that is c′ = β ·c for some β ∈ BG.
Then c′ = g(βb), for some preimage b ∈ B of c, and βb is a preimage
of c′. Since we have (βb)−1 σ ·(βb) = b−1β−1(σ ·β)(σ · b) = b−1 σ ·b, it
turns out that δ0(c′) = δ0(c). Therefore, the map

ϕ : CG/BG → im(δ0), BG · c 7→ δ0(c)

is a well-defined surjective map. It remains to prove its injectivity. Let
c, c′ ∈ CG such that δ0(c′) = δ0(c), and let α and α′ be the cocycles
representing δ0(c) and δ0(c′) respectively. By assumption, there exists
a ∈ A such that α′σ = aασ σ ·a−1 for all σ ∈ G. If b (resp. b′) is a
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preimage of c (resp. c′) in B, applying f to this last equality implies
that

b′−1 σ ·b′ = f(a)b−1(σ ·b)(σ · f(a))−1.

It easily turns out that b′f(a)b−1 ∈ BG, so b′f(a) = βb, for some
β ∈ BG. Hence c′ = g(b′) = g(b′f(a)) = g(βb) = β ·c. Therefore, c and
c′ lie in the same orbit, showing that ϕ is injective. This concludes the
proof. �

We now assume that we have an exact sequence of G-groups

1 // A
f // B

g // C // 1

so A can be identified with a normal subgroup of B.

Proposition 4.7. The sequence

1→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)

is exact.

Proof. By Proposition 4.4, only the exactness at H1(G,B) needs a
proof. If [β] = f∗([α]) for some [α] ∈ H1(G,A), the we have

g∗([β]) = g∗(f∗([α])) = (g ◦ f)∗([α]) = 1,

since g ◦ f is trivial by assumption. Hence im(f∗) ⊂ ker(g∗).

Conversely, let [β] ∈ H1(G,B) such that g∗([β]) = 1. Then there exists
c ∈ C such that g(βσ) = c−1 σ ·c for all σ ∈ G.
Write c = g(b). We then have g(βσ) = g(b−1 σ·b), so βσ = b−1(σ·b)f(aσ),
for some aσ ∈ A. Since f(A) is normal in B, ( σ·b)f(aσ)(σ·b)−1 ∈ f(A),
so βσ = b−1f(ασ)σ ·b for some ασ ∈ A, and thus

bβσ σ ·b−1 = f(ασ) for all σ ∈ G.

The fact that the map G → B, σ → bβσ σ · b−1 is a 1-cocycle and
the injectivity of f imply easily that α is a cocycle. Moreover, by
construction of α, we have [β] = f∗([α]) ∈ im(g∗). This concludes the
proof. �

We would like now to go back to the general Galois descent problem:
if two k-structures are isomorphic over Ω, are they isomorphic over k?
First we need an appropriate setting in order for all these words to
make sense. We therefore starting by examining carefully our solution
to the conjugacy problem for matrices.

5. (The) matrix (case) reloaded

In this paragraph, we would like to extract the essential arguments of
our solution to the conjugacy problem, and rewrite them in a more con-
cise and formal way, in order to find a general way to attack the general
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Galois descent problem. Let us first reformulate the result we obtai-
ned. In fact, we have proved in the introduction that the set of G(k)-
conjugacy classes of matrices M ∈ Mn(Ω) which are G(Ω)-conjugate
to a given matrix M0 ∈ Mn(k) is in one-to-one correspondence with
the set of cohomology classes [α] ∈ H1(GΩ, ZG(M0)(Ω)), which may be
written [α] = [αC ] for some C ∈ G(Ω), where αC is the cocycle

αC : GΩ → ZG(M0)(Ω), σ 7→ C(σ ·C)−1.

This set of cohomology classes is nothing but the kernel of the map

H1(GΩ, ZG(M0)(Ω))→ H1(GΩ, G(Ω))

induced by the inclusion ZG(M0)(Ω) ⊂ G(Ω).

This observation will allow us to give a more conceptual (and less
miraculous) explanation of our result. Notice first that the congugacy
class of a matrix may be reinterpreted as an orbit under the action of
G = GLn of SLn by conjugation. This action will be denoted by ∗ in
the sequel. The next crucial observation is then the following one: if
M0 ∈ Mn(k), we may rewrite ZG(M0)(Ω) as

ZG(M0)(Ω) = {C ∈ G(Ω) | C ∗M0 = M0}.
In other words, ZG(M0)(Ω) is nothing but the stabilizer of M0 (viewed
as an element of Mn(Ω)) with respect to the action of G(Ω) on Mn(Ω).

The second important point is that the action of GΩ on G(Ω) restricts
to an action on ZG(M0)(Ω). To see this, recall that the action of GΩ

on a matrix S = (sij) ∈ Mn(Ω) is given by

σ ·S = (σ(sij)).

In particular, the following properties hold:

(i) Mn(Ω)GΩ = Mn(k)

(ii) For all S ∈ Mn(Ω), C ∈ G(Ω) and σ ∈ GΩ, we have

σ ·(C ∗ S) = (σ ·C) ∗ (σ ·S).

We have in fact an even more general property. If ι : K → L is a
morphism of field extensions of k and S ∈ Mn(K), set

ι · S = (ι(sij)).

We then have

(ii′) For all morphism of extensions ι : K → L, S ∈ Mn(K) and C ∈
G(K), we have

ι · (C ∗ S) = (ι · C) ∗ (ι · S).

If now C ∈ ZG(M0)(Ω) and σ ∈ G(Ω), we have

(σ ·C) ∗M0 = (σ ·C) ∗ (σ ·M0)

by (i), since M0 ∈ Mn(k). Using (ii), we then get

(σ ·C) ∗M0 = σ ·(C ∗M0) = σ ·M0 = M0,
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the second equality coming from the fact that C ∈ ZG(M0)(Ω). Hence
the action of GΩ on G(Ω) restricts to an action on ZG(M0)(Ω) as clai-
med. Now it follows from elementary group theory that we have a
bijection

G(Ω)/ZG(M0)(Ω) ' G(Ω) ∗M0.

Equivalently, we have an exact sequence

1→ ZG(M0)(Ω)→ G(Ω)→ G(Ω) ∗M0 → 1,

which may be easily seen to be an exact sequence of pointed GΩ-sets
satisfying the conditions explained in § 4, the base point of G(Ω) ∗M0

being M0.

The apparition of ker[H1(GΩ, ZG(M0)(Ω)) → H1(GΩ, G(Ω))] is not a
real surprise then, in view of Corollary 4.6. The same corollary says
that this kernel is in one-to-one correspondence with the orbit set of
G(Ω)GΩ in (G(Ω) ∗M0)GΩ .

Let us now check that this orbit set is precisely the set of G(k)-
conjugacy classes of matrices which become G(Ω)-conjugate to M0.
Notice that since G = GLn or SLn, we have

(iii) G(Ω)GΩ = G(k).

Moreover, by definition of the action ofG(Ω) on Mn(Ω), G(Ω)∗M0 is the
set of matrices of Mn(Ω) which are G(Ω)-conjugate to M0. Therefore
by (i), (G(Ω) ∗M0)GΩ is the set of matrices of Mn(k) which are G(Ω)-
conjugate to M0.
Notice now that the action G(Ω)GΩ = G(k) on (G(Ω) ∗M0)GΩ defined
before Corollary 4.6 is simply the restriction of the action of G(k) on
Mn(k) by conjugation. Indeed, if M ∈ Mn(k) has the form M = Q∗M0

for some Q ∈ G(Ω), and if P ∈ G(k), Q is a preimage of M under the
map G(Ω)→ G(Ω) ∗M0, and therefore we have

P ·M = (PQ) ∗M0 = P ∗ (Q ∗M0) = P ∗M.

Thus the orbit set of G(Ω)GΩ in (G(Ω) ∗M0)GΩ is nothing but the set
of G(k)-conjugacy classes of matrices M ∈ Mn(k) which become G(Ω)-
conjugate to M0.

Therefore, we have proved that our solution the conjugacy problem for
matrices was nothing but an application of Corollary 4.6, and we have
identified three important properties which make this actually work.
Notice that (i) and (iii) may seem redundant a priori, but this is only
due to our specific example. In more abstract situations, both conditi-
ons may be of different nature. For example, one may replace matrices
by quadratic forms of dimension n and study the Galois descent pro-
blem for isomorphism classes of quadratic forms. In this case, we see
that properties (i) and (iii) do not concern the same objects.
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Our next goal is now to reformulate this new approach in a more ab-
stract context, and derive a solution for general Galois descent pro-
blems. In particular, we will need to find appropriate substitutes for
ZG(M0)(Ω) and properties (i) − (iii). Of course, Galois descent pro-
blems only makes sense if the algebraic objects may be ‘defined over
an arbitrary field’, and if we have a notion of ‘scalar extension’ of our
objects. For example, to each field extension K/k of a field k, we
can consider the set Mn(K) of matrices with coefficients in K, and if
K → L is a morphism of extensions of k, one can associate a map
Mn(K) → Mn(L),M = (mij) 7→ (ι(mij)). which is in fact the canoni-
cal inclusion. Another example may be obtained by considering the set
Algn(K) of K-algebras of dimension n over K. In this case, the map
Algn(K) → Algn(L) associated to a morphism K → L is given by
the tensor product ⊗KL. In both cases, scalar extension maps satisfy
some natural properties: the scalar extension map from K to itself is
the identity map, and extending scalars from K to L, then from L to
M is the same as extending scalars from K to M .

We now formalize this situation by introducing the concept of a functor.

6. Functors

Definition 6.1. Let k be a field. A functor defined over k is a rule F
which associates to every field extension K/k a set (a group, a ring...)
F(K), and to any morphism of field extensions ϕ : K → K ′ a map
(group morphism, ring morphism) F(ϕ) : F(K) → F(K ′) such that
the following properties hold:
(1) For all K/k, F(IdK) = IdF(K)

(2) For all ϕ1 : K1 → K2, ϕ2 : K2 → K3, we have

F(ϕ2 ◦ ϕ1) = F(ϕ2) ◦ F(ϕ1).

The maps F(ϕ) has to be understood as ‘scalar extension maps’. If
ϕ : K → L is a morphism of extensions, for all x ∈ F(K) we will
denote by xL the element F(ϕ)(x) if there is no ambiguity in the choice
of the map ϕ.

Examples 6.2.
(1) The rules

K → Mn(K), K → GLn(K), K → SLn(K)

are functors. If ι : K → L is a morphism of extensions, the induced
map is just

(mij) 7→ (ι(mij)).

(2) If A is a k-algebra, the rule

hA : K 7→ Homk−alg(A,K)

is a functor.
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Therefore, the algebraic objects we are going to work with are points
of a functor F. What we need now is an action of GΩ on F(Ω) for every
Galois extension Ω/k, playing the role of the action of GΩ on matrices.

Notice that if F is a functor, then for any Galois extension Ω/k and
every σ ∈ GΩ, we have an induced bijection

F(σ) : F(Ω)→ F(Ω).

For x ∈ F(Ω) and σ ∈ GΩ, we set

σ ·x = F(σ)(x).

Lemma 6.3. The map

GΩ × F(Ω)→ F(Ω), (σ, x) 7→ σ ·x = F(σ)(x)

gives rise to an action of GΩ on F(Ω).

If Ω/k and Ω′/k are two Galois extensions such that Ω ⊂ Ω′ , we have

σ′ · xΩ′ = (σ′|Ω ·x)Ω′ for all x ∈ F(Ω), σ′ ∈ GΩ′ .

Moreover, if F is a group-valued functor, the action above is an action
by group automorphisms, that is

σ ·(xy) = (σ ·x)(σ ·y) for all σ ∈ GΩ, x, y ∈ F(Ω).

Proof. Since F is a functor, we have F(IdΩ) = IdF(Ω). Therefore,

IdΩ · x = x for all x ∈ F(Ω).

Now let σ, τ ∈ GΩ. Since F is a functor, we have

F(σ ◦ τ) = F(σ) ◦ F(τ),

and thus (σ ◦ τ) ·x = σ ·(τ · x) for all x ∈ F(Ω). This proves the first
part of the lemma.

Let Ω/k and Ω′/k be two Galois extensions such that Ω ⊂ Ω′, and let
F(ι) : F(Ω) → F(Ω′) be the map induced by the inclusion ι : Ω ⊂ Ω′.
For all σ′ ∈ GΩ′ , the diagram

Ω
σ′|Ω //

ι
��

Ω

ι
��

Ω′
σ′ // Ω′

is commutative. Therefore, it induces a commutative diagram

F(Ω)
F(σ′|Ω

)
//

F(ι)

��

F(Ω′)

F(ι)
��

F(Ω′)
F(σ′)

// F(Ω)
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In other words, for all x ∈ F(Ω), we have

F(ι) ◦ F(σ′|Ω)(x) = F(σ′) ◦ F(ι)(x),

that is

(σ′|Ω · x)Ω′ = σ′ · xΩ′ .

Finally, if F is a group-valued functor, F(σ) is a group morphism and
the last part follows. This concludes the proof. �

Example 6.4. If F = Mn,GLn or SLn, this action of σ is nothing but

σ ·(mij) = (σ(mij)).

In particular, functors give a cheap way to produce GΩ-sets and GΩ-
groups.
Now that the decor is set and the actors are in place, we are ready look
at general Galois descent problems.

7. Functorial group actions

To setup the Galois descent problem for conjugacy classes of matrices,
we needed an action of some subfunctor of GLn on matrices. As we
have seen in a previous paragraph, this action has some nice functorial
properties. This leads to the following definition:

Definition 7.1. Let G be a group-valued functor, and let F any func-
tor. We say that G acts on F if the following conditions hold:

(1) For every field extension K/k, the group G(K) acts on the set
F(K). This action will be denoted by ∗.

(2) For every morphism ι : K → L of field extensions, the following
diagram is commutative:

G(K)× F(K) //

(G(ι),F(ι))

��

F(K)

F(ι)

��
G(L)× F(L) // F(L)

that is F(ι)(g ∗ a) = G(ι)(g) ∗ F(ι)(a) for all a ∈ F(K), g ∈
G(K).

In other words, for every field extension K/k, we have a group action
of G(K) on F(K) which is functorial in K.

Notice that the last condition rewrites

(g ∗ a)L = gL ∗ aL for all a ∈ F(K), g ∈ G(K)

for a given field extension L/K if we use the short notation introduced
at the beginning of the previous paragraph.

Examples 7.2.
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(1) Let G = GLn,SLn,On,Sp2n, . . . and let F be the functor defi-
ned by F(K) = Kn for every field extension K/k. Then G acts
by left multiplication on F.

(2) If G = GLn,SLn,On,Sp2n, . . . and F = Mn, then G acts on F
by conjugation.

Remark 7.3. Let Ω/k be Galois extension. Recall from Lemma 6.3
that, given a functor F, we have a natural action of GΩ on F(Ω) defined
by

GΩ × F(Ω)→ F(Ω), (σ, a) 7→ σ ·a = F(σ)(a).

If G is a group-scheme acting on F, we have by definition

F(σ)(g ∗ a) = G(σ)(g) ∗ F(σ)(a) for all a ∈ F(Ω), σ ∈ GΩ,

which rewrites as

σ ·(g ∗ a) = (σ ·g) ∗ (σ ·a) for all a ∈ F(Ω), σ ∈ GΩ.

We would like to continue by giving a reformulation of the general
Galois descent problem. For, we need to introduce the concept of a
twisted form.

8. Twisted forms

Let G be a group-valued functor acting on a functor F. This action
of G allows us to define an equivalence relation on the set F(K) for
every field extension K/k by identifying two elements which are in the
same G(K)-orbit. For example, in the case of matrices, two matrices
of Mn(K) will be equivalent if and only if they are G(K)-conjugate.
More precisely, we have the following definition:

Definition 8.1. Let G be a group-scheme defined over k acting on F.
For every field extension K/k we define an equivalence relation ∼K on
F(K) as follows: two elements b, b′ ∈ F(K) are equivalent over K if
there exists g ∈ G(K) such that b = g ∗ b′. We will denote by [b] the
corresponding equivalence class.

We may now formulate a general descent problem.

Galois descent problem: let F be a functor, and let G be a group-
valued functor acting on F. Finally, let Ω/k be a Galois extension and
let a, a′ ∈ F(k). Assume that aΩ ∼Ω a

′
Ω. Do we have a ∼k a′ ?

Notice that the answer to this question only depends on the G(k)-
equivalence class of a and a′. We now give a special name to elements
of F which become equivalent to a fixed element a ∈ F(k).

Definition 8.2. Let a ∈ F(k), and let Ω/k be a Galois extension. An
element a′ ∈ F(k) is called a twisted form of a if a′Ω ∼Ω aΩ.

Clearly, if a′ ∈ F(k) is a twisted form of a and a′ ∼k a′′, then a′′ is also
a twisted form of a, so the equivalence relation ∼k restricts to the set
of twisted forms of a.
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We denote by Fa(Ω/k) the set of k-equivalence classes of twisted forms
of a, that is

Fa(Ω/k) = {[a′] | a′ ∈ F(k), a′Ω ∼Ω aΩ}.

Notice that Fa(Ω/k) always contains the class of a, so it is natural to
consider Fa(Ω/k) as a pointed set, where the base point is [a].

Example 8.3. As pointed out before, if F = Mn, then G ⊂ GLn

acts on F by conjugation, and two matrices M,M ′ ∈ Mn(k) are then
equivalent if and only if they are conjugate by an element of G(k).
Moreover, if M0 ∈ Mn(k), then FM0(Ω/k) is the set of G(k)-conjugacy
classes of matrices M ∈ Mn(k) which are G(Ω)-conjugate to M0.

Using the notation introduced previously, the Galois descent problem
may be reinterpreted in terms of twisted forms. Given a ∈ F(k) and a
Galois extension Ω/k, do we have Fa(Ω/k) = {[a]} ?

We would like to describe Fa(Ω/k) in terms of Galois cohomology of a
suitable group-valued functor associated to a, under some reasonable
conditions on F and G. To do this, we will continue to try to generalize
the approach described in § 5.

9. The Galois descent condition

One of the crucial property we used to solve the conjugacy problem is
the equality

Mn(Ω)GΩ = Mn(k),

where we let GΩ act on S ∈ Mn(Ω) coefficientwise. This action is
nothing but the action of GΩ induced by the functorial properties of
Mn, as described in Lemma 6.3. Now let us go back to our more general
setting. For every Galois extension Ω/k, we have an action of GΩ on
the set F(Ω) given by

σ ·a = F(σ)(a) for σ ∈ GΩ and a ∈ F(Ω).

The second part of Lemma 6.3, applied to the Galois extensions k/k
and Ω/k, then yields

σ ·aΩ = aΩ for all σ ∈ GΩ, a ∈ F(k).

However, contrary to the case of matrices, an element of F(Ω) on which
GΩ acts trivially does not necessarily comes from an element of F(k).

Example 9.1. Let us consider the functor F defined as follows: for a
field extension K/k, set

F(K) =

{
{0} if [K : k] ≤ 1
{0, 1} if [K : k] ≥ 2

the map induced by a morphism K → K ′ being the inclusion of sets.
In particular, for every Galois extension Ω/k, the Galois group GΩ acts
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trivially on F(Ω). However, if [Ω : k] > 1, the element 1 ∈ F(Ω) does
not come from an element of F(k).

These considerations lead to the following definition:

Definition 9.2. We say that a functor F satisfies the Galois descent
condition if for every Galois extension Ω/k the map F(k)→ F(Ω) is
injective and induces a bijection

F(k) ' F(Ω)GΩ .

Example 9.3. The functor Mn satisfies the Galois descent condition.

Notice that this condition was also needed on the group-scheme G in
the final argument.

10. Stabilizers

It follows from the considerations of the previous paragraph that it
is reasonable to consider Galois descent problems for elements of a
functor satisfying the Galois descent condition. Now that we have set
a suitable framework for the general Galois descent problem, we need
an appropriate substitute for the set ZG(M0)(Ω). As noticed before,
denoting by ∗ the action of G ⊂ GLn on matrices by conjugation, the
subgroup ZG(M0)(Ω) may be reinterpreted as the stabilizer of M0 with
respect to the action of G(Ω) on Mn(Ω), that is

ZG(M0)(Ω) = StabG(M0)(Ω) = {C ∈ G(Ω) | C ∗M0 = M0}.
Since in our general setting we have a group-scheme acting on F, it
seems sensible to introduce the following definition:

Definition 10.1. Let G be a group-valued functor acting on F. For
a ∈ F(k), and every field extension K/k, we set

StabG(a)(K) = {g ∈ G(K) | g ∗ aK = aK} for all K/k.

If K → K ′ is a morphism of field extensions, the map G(K)→ G(K ′)
restricts to a map StabG(a)(K) → StabG(a)(K ′). Indeed, for every
g ∈ StabG(a)(K), we have

gK′ ∗ aK′ = (g ∗ aK)K′ = (aK)K′ = aK′ .

We then get a functor StabG(a), called the stabilizer of a.

Example 10.2. If F = Mn and M0 ∈ Mn(k), then

StabG(M0)(K) = ZG(M0)(K) for all K/k.

Remark 10.3. Let Ω/k be a Galois extension. By definition, the map
StabG(a)(σ) : StabG(a)(Ω)→ StabG(a)(Ω) is obtained by restriction
of the map G(Ω) → G(Ω). Hence, the natural action of GΩ on G(Ω)
restricts to an action on StabG(a)(Ω).

We then obtain a Galois cohomology set H1(GΩ,StabG(a)(Ω)) for any
Galois extension Ω/k.
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11. Galois descent lemma

We are now ready to state and prove the Galois descent lemma:

Theorem 11.1 (Galois Descent Lemma). Let F be a functor, let G
be a group-valued functor acting on F, and let a ∈ F(k). Assume that
F and G satisfy the Galois descent condition. Then for every Galois
extension Ω/k, we have a bijection of pointed sets

Fa(Ω/k)
∼→ ker[H1(GΩ,StabG(a)(Ω))→ H1(GΩ, G(Ω))].

In particular, if H1(GΩ, G(Ω)) = 1, we have a bijection

Fa(Ω/k)
∼→ H1(GΩ,StabG(a)(Ω)).

The bijection works as follows:

(1) If [a′] ∈ Fa(Ω/k) is the equivalence class of a twisted form
a′ ∈ F(k) of a, pick g ∈ G(Ω) such that g ∗ a′Ω = aΩ. The
corresponding cohomology class in the kernel of the map

H1(GΩ,StabG(a)(Ω))→ H1(GΩ, G(Ω))

is the class of the cocycle

α : GΩ → StabG(a)(Ω), ασ 7→ ασ = g σ ·g−1.

(2) If [α] ∈ ker[H1(GΩ,StabG(a)(Ω))) → H1(GΩ, G(Ω))], pick g ∈
G(Ω) such that ασ = g σ ·g−1 for all σ ∈ GΩ; the corresponding
class in Fa(Ω/k) is the equivalence class of the unique element
a′ ∈ F(k) satisfying a′Ω = g−1 ∗ aΩ.

Remark 11.2. Saying that we have a bijection of pointed sets means
that it preserves the base points. Hence the class of [a] corresponds to
the class of the trivial cocycle.

Proof. The key ingredient of the proof is Corollary 4.6. By Remark
10.3, the action of GΩ on G(Ω) restricts to an action on StabG(a)(Ω).
Moreover, we have an exact sequence

1→ StabG(a)(Ω)→ G(Ω)→ G(Ω) ∗ aΩ → 1

which satisfies the conditions of § 4. By Corollary 4.6, the kernel of
H1(GΩ,StabG(a)(Ω))→ H1(GΩ, G(Ω)) is in one-to-one correspondence
with the orbit set of G(Ω)GΩ in (G(Ω) ∗ aΩ)GΩ . Notice that G(Ω) ∗ aΩ

is simply the set of elements of F(Ω) which are equivalent to aΩ. Since
F satisfies the Galois descent condition, it implies that (G(Ω) ∗ aΩ)GΩ

is equal to the set

{a′Ω | a′ ∈ F(k), a′Ω ∼Ω aΩ}.
In other words, (G(Ω) ∗ a)GΩ is the image of the set of twisted forms of
a under the map F(k)→ F(Ω). Now since G is Galois functor, G(Ω)GΩ

is the image of G(k) under the map G(k)→ G(Ω).
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Now we claim that if gΩ ∈ G(Ω)GΩ and a′Ω ∈ (G(Ω) ∗ aΩ)GΩ , then we
have gΩ ·a′Ω = (g ∗a′)Ω, where ‘·’ denotes here the action defined before
Corollary 4.6.
Indeed, since a′ is a twisted form of a, we may write a′Ω = g′ ∗ aΩ

for some g′ ∈ G(Ω). Then g′ is a preimage of a′Ω under the map
G(Ω)→ G(Ω) ∗ aΩ and thus

gΩ · a′Ω = (gΩg
′) ∗ aΩ

= gΩ ∗ (g′ ∗ aΩ)
= gΩ ∗ a′Ω
= (g ∗ a′)Ω.

We then get the G(Ω)GΩ orbit of a′Ω in (G(Ω) ∗ aΩ)GΩ is the image of
G(k) ∗ a′ under the map F(k) → F(Ω). Hence the map F(k) → F(Ω)
induces a bijection between Fa(Ω/k) and the orbit set of G(Ω)GΩ in
(G(Ω) ∗ aΩ)GΩ . This proves the first part.

Let us now make the bijection a bit more explicit. If [a′] ∈ Fa(Ω/k),
the corresponding orbit of G(Ω)GΩ in (G(Ω) ∗ aΩ)GΩ is the orbit of
a′Ω. By a definition of a twisted form, we may write g ∗ a′Ω = aΩ

for some g ∈ G(Ω). Thus g−1 is a preimage of a′Ω under the map
G(Ω) → G(Ω) ∗ aΩ. By Corollary 4.6, the corresponding cohomology
class is δ0(g−1), that is the cohomology class represented by the cocycle

α : GΩ → StabG(a)(Ω), σ 7→ g σ ·g−1.

Conversely, if [α] ∈ ker[H1(GΩ,StabG(a)(Ω)) → H1(GΩ, G(Ω))], then
there exists g ∈ G(Ω) such that

ασ = g σ ·g−1 for all σ ∈ GΩ.

In other words, we have [α] = δ0(g−1), and the corresponding element
in Fa(Ω/k) is represented by the unique element a′ ∈ F(Ω) satisfying
a′Ω = g−1 ∗ aΩ. �

We now give several examples of use of Galois descent.

Example 11.3. Let F be the functor defined by

F(K) = { regular quadratic forms of dimension n over K},
the induced map being

F(K)→ F(L), q 7→ qL.

Then GLn(K) acts on F(K) by (f, q) 7→ q◦f−1, and this action is func-
torial. The corresponding equivalence relation is the usual ‘isometry
relation’. Moreover, the stabilizer of the unit form

kn → k, (x1, . . . , xn) 7→ x2
1 + . . .+ x2

n

is On.

It is not difficult to see that all the conditions of the Galois descent
lemma are satisfied. Hence, we have a bijection between the set of
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isometry classes of quadratic forms of dimension n which becomes iso-
metric to the unit form over Ω and H1(GΩ,On(Ω)).

Example 11.4. Let A be a finite dimensional k-vector space. For any
field extension K/k, let F(K) be the set of K-algebras with underlying
K-vector space AK = A ⊗k K. If ι : K → L is a morphism of field
extensions of k, we define the induced map by

F(ι) : F(K)→ F(L), A 7→ AL = A⊗k L.
We then obtain a functor F. Now let f ∈ GL(AK), and let A be a K-
algebra. We will write x ·A y for the product of two elements x, y ∈ A.
The map

AK × AK → AK , (x, y) 7→ f(f−1(x) ·A f−1(y))

endows AK with a structure of a K-algebra, that we will denote by
f · A. Straightforward computations show that this induces an action
of GL(A) on F. Notice that by definition, we have

f(x) ·f ·A f(y) = f(x ·A y) for all x, y ∈ A,
so that f is an isomorphism of K-algebras from A onto f ·A. It easily
follows that two K-algebras A and B are equivalent if and only if there
are isomorphic as K-algebras.

Now fix a K-algebra A ∈ F(k). Then StabGL(A)(A) is nothing but the
functor Autalg(A) defined by

Autalg(A)(K) = AutK−alg(A⊗k K).

It is easy to check that F and GL(A) satisfy the conditions of the
Galois descent lemma. Hence for any k-algebra A, the pointed set
H1(GΩ,Autalg(A)(Ω)) classifies the isomorphism classes of k-algebras
which become isomorphic to A over Ω. Moreover, the class of the trivial
cocycle corresponds to the isomorphism class of A.

Remark 11.5. Let A be a k-algebra and let Ω/k be a Galois extension.

If B is a k-algebra such that there exists an isomorphism f : BΩ
∼→ AΩ

of Ω-algebras, the corresponding cohomology class is represented by
the cocycle

α : GΩ → AutΩ(AΩ), σ 7→ f ◦ σ ·f−1.

Indeed, since f is a Ω-algebra isomorphism, we have

x ·f ·BΩ
y = f(f−1(x) ·AΩ

f−1(y)) = x ·AΩ
y for all x, y ∈ AΩ,

and therefore f · BΩ = AΩ. The description of the bijection in the
Galois descent lemma then yields the result.

Conversely, the k-algebra corresponding to a cohomology class [α] ∈
H1(GΩ,AutΩ−alg(AΩ)) is the isomorphism class of

B = {a ∈ AΩ | ασ(σ ·a) = a for all σ ∈ GΩ},
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where the k-algebra structure is given by restriction of the algebra
structure on AΩ.

To see this, notice first that the isomorphism of Ω-vectors spaces

f : BΩ
∼→ AΩ

given by Lemma 3.3 is in fact an isomorphism of Ω-algebras, so that
f · BΩ = AΩ. In view of the Galois descent lemma, it is therefore
enough to show that we have

ασ = f ◦ σ ·f−1 for all σ ∈ GΩ.

Since the elements of B⊗k 1 span AΩ as an Ω-vector space (this simply
comes from the fact that f is an isomorphism), it is enough to check
this equality on the elements of the form x ⊗ 1, x ∈ B. Now for all
x ∈ B and σ ∈ GΩ, we have

ασ((σ ·f)(x⊗ 1)) = ασ(σ ·(f(σ−1 · (x⊗ 1))))
= ασ(σ ·(f(x⊗ 1)))
= ασ(σ ·x)
= x
= f(x⊗ 1),

which is the result we were looking for.

Let us now consider the case of G-algebras.

Definition 11.6. Let k be a field and let G be an abstract group. A
G-algebra over k is a k-algebra on which G acts faithfully by k-algebra
automorphisms. Two G-algebras over k are isomorphic if there exists
an isomorphism of k-algebras which commutes with the actions of G.
It will be denoted by 'G.

Example 11.7. Let A be a finite dimensional k-vector space and let
G be an abstract finite group. For any field extension K/k, let F(K)
be the set of G-algebras over K with underlying vector space A.
If ι : K → L is a morphism of field extensions of k, we define the
induced map by

F(ι) : F(K)→ F(L), A 7→ AL,

where the structure of G-algebra on AL is given on elementary tensors
by

g · (a⊗ λ) = (g · a)⊗ λ for all g ∈ G, a ∈ A, λ ∈ L.
Now let f ∈ GL(A⊗k K), and let A be a G-algebra over K. Consider
the K-algebra f · A as defined above. The map

G× f · A→ f · A, (g, x) 7→ f(g · f−1(x))

endows f · A with a structure of a G-algebra over K.

We then get an action of GL(A) on F. Moreover, two G-algebras over
K are equivalent if and only if they are isomorphic as G-algebras. Once
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again, all the conditions of the Galois descent lemma are fulfilled, and
we get that for any G-algebra A and every Galois extension Ω/k, the
pointed set

H1(GΩ,AutG−alg(A)(Ω))

classifies the G-isomorphism classes of G-algebras over k which become
G-isomorphic to A over Ω. Moreover, the class of the trivial cocycle
corresponds to the G-isomorphism class of A.

12. The conjugacy problem again

Let G ⊂ GLn be a group-valued functor defined by polynomial equati-
ons. By Galois descent, the G(k)-conjugacy classes over k of matrices
M which are G(Ω)-conjugate to M0 are in one-to-one correspondence
with ker[H1(GΩ, ZG(M0)(Ω)) → H1(GΩ, G(Ω))]. Moreover, the G(k)-
conjugacy class of M0 corresponds to the trivial cocycle.

Therefore, the conjugacy problem has a positive answer for all matrices
M if and only if the map H1(GΩ, ZG(M0)(Ω)) → H1(GΩ, G(Ω)) has
trivial kernel. In particular, if H1(GΩ, G(Ω)) = 1, the total obstruction
to this problem is measured by H1(GΩ, ZG(M0)(Ω)).
Before examining the case of G = SLn, we need to generalize a bit
Hilbert 90:

Proposition 12.1. Let L = L1 × · · · × Lr, where L1, . . . , Lr are finite
field extensions of k. Then for every Galois extension Ω/k, we have

H1(GΩ, (L⊗k Ω)×) = 1.

Proof. Assume first that r = 1, that is L is a field. Set A = L ⊗k Ω.
We will use Galois descent for vector spaces, as for the proof of Hilbert
90. Let α : GΩ → A× be a cocycle. We twist the action of GΩ on A by
setting

σ ∗ x = ασ σ ·x for all σ ∈ GΩ, x ∈ A.
The action above is semi-linear and then we have an isomorphism of
Ω-vector spaces

f : V ⊗k Ω
∼→ A, v ⊗ λ 7→ v · λ = v(1⊗ λ),

where V = {x ∈ A | σ ∗ x = x for all x ∈ GΩ}.
It is easy to check that V is an L-vector space and that f is an iso-
morphism of A-modules (left as an exercice for the reader). Since
V ⊗k Ω ' A = L⊗k Ω, we have

dimk(V ) = dimΩ(V ⊗k Ω) = dimΩ(L⊗k Ω) = dimk(L),

and thus

dimL(V ) =
dimk(V )

dimk(L)
= 1.



30 GRÉGORY BERHUY

Hence V = e·L, for some e ∈ V . Now e⊗1 is an A-basis of V ⊗kΩ, so f
is just multiplication by f(e⊗1) ∈ A. Since f is bijective, f(e⊗1) ∈ A×.
Now f(e⊗ 1) = e ∈ V , and therefore

e = σ ∗ e = ασ σ ·e for all σ ∈ GΩ.

This implies that α = e σ·e−1 for all σ ∈ GΩ, meaning that α is trivial.

Let us go back to the general case. If L = L1 × · · · × Lr, then we have
an isomorphism of GΩ-modules,

(L⊗k Ω)× ' (L1 ⊗k Ω)× × · · · × (Lr ⊗k Ω)×.

We then have

H1(GΩ, L⊗k Ω) ' H1(GΩ, (L1 ⊗k Ω)×)× · · · ×H1(GΩ, (Lr ⊗k Ω)×),

and we use the previous case. �

If E is a finite dimensional algebra over a field F , we denote by NE/F (x)
the determinant of left multiplication by x (considered as an endomor-
phism of the F -vector space E).

Example 12.2. Let E = kn, n ≥ 1. If x = (x1, . . . , xn), then we have

NE/k(x) = x1 · · ·xn,
since the representative matrix of `x in the canonical basis of E is
simply the diagonal matrix whose diagonal entries are x1, . . . , xn.

Definition 12.3. If L/k is a finite dimensional commutative k-algebra,

we denote by G(1)
m,L the functor defined by

G(1)
m,L(K) = {x ∈ (L⊗k K)× | NL⊗kK/K(x) = 1},

for every field extension K/k.

We now compute H1(GΩ,G(1)
m,L(Ω)) in a special case.

Lemma 12.4. Let L be a finite dimensional commutative k-algebra,
and let Ω/k be a finite Galois extension. Assume that L⊗k Ω ' Ωn for
some n ≥ 1. Then we have

H1(GΩ,G(1)
m,L(Ω)) ' k×/NL/k(L

×).

Proof. The idea of course is to fit G(1)
m,L(Ω) into an exact sequence of

GΩ-modules. We first prove that the norm map

NL⊗kΩ/Ω : (L⊗k Ω)× → Ω×

is surjective. For, let ϕ : L ⊗k Ω
∼→ Ωn be an isomorphism of Ω-

algebras. We claim that we have NL⊗kΩ(x) = NΩn/k(ϕ(x)) for all x ∈
L⊗k Ω. Indeed, if e = (e1, . . . , en) is a Ω-basis of L⊗k Ω, then ϕ(e) =
(ϕ(e1), . . . , ϕ(en)) is a Ω-basis of Ωn, and we have easily

Mat(`ϕ(x), ϕ(e)) = Mat(`x, e).
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The desired equality then follows immediately. Now for λ ∈ Ω×, set
xλ = ϕ−1((λ, 1, . . . , 1)). The equality above and Example 12.2 then
yield

NL⊗kΩ/Ω(xλ) = NΩn/Ω((λ, 1, . . . , 1)) = λ.

Therefore NL⊗kΩ/Ω is surjective and we have an exact sequence of GΩ-
modules

1 // G(1)
m,L(Ω) // (L⊗k Ω)× // Ω× // 1 ,

where the last map is given by the norm NL⊗Ω/Ω. It is known that the
condition on L implies in particuliar that L is the direct product of
finitely many finite field extensions of k. Applying Galois cohomology
and using Proposition 12.1 yield the exact sequence

(L⊗k 1)× → k× → H1(GΩ,G(1)
m,L(Ω))→ 1,

the first map being NL⊗kΩ/Ω. Now it is obvious from the properties of
the determinant that we have

NL⊗kΩ/Ω(x⊗ 1) = NL/k(x) for all x ∈ L.
The exactness of the sequence above then gives the desired result. �

Remark 12.5. The isomorphim above works as follows:
If a ∈ k×/NL/k(L

×), pick z ∈ L ⊗k Ω such that a = NL⊗kΩ/Ω(z)
(this is possible since NL⊗kΩ/Ω is surjective). Then the corresponding
cohomology class is represented by the cocycle

α : GΩ → G(1)
m,L(Ω), σ 7→ z−1σ ·z.

Conversely, if [α] ∈ H1(GΩ,G(1)
m,L(Ω)), pick z ∈ (L⊗k Ω)× such that

ασ = z−1σ ·z for all σ ∈ GΩ.

Then a = NL⊗kΩ/(z) lies in fact in k×, and a ∈ k×/NL/k(L
×) is the

class corresponding to [α].

Now let us go back to the conjugacy problem of matrices.

Assume that M0 = Cχ ∈ Mn(k) is a companion matrix of some mo-
nic polynomial χ ∈ k[X] of degree n ≥ 1. In this case, it is known
that every matrix commuting with M0 is a polynomial in M0, so
ZG(M0)(Ω) = Ω[M0] ∩ G(Ω). Moreover, the minimal polynomial and
the characteristic polynomial are both equal to χ. Set L = k[X]/(χ),
so that we have an isomorphism of k-algebras

L→ k[M0], P → P (M0),

which induces in turn a Galois equivariant isomorphism of Ω-algebras

f : L⊗k Ω
∼→ Ω[M0], X ⊗ λ 7→ λM0.

In particular, f induces an isomorphism of GΩ-modules

(L⊗k Ω)× ' Ω[M0]×.
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Notice now that if C ∈ GLn(Ω) commutes with M0, then C−1 also
commutes with M0. Therefore, we have the equalities

ZGLn(M0)(Ω) = Ω[M0] ∩GLn(Ω) = Ω[M0]×,

so f induces an isomorphism of GΩ-modules

(L⊗k Ω)× ' ZGLn(M0)(Ω).

By Proposition 12.1, we then get H1(GΩ, ZGLn(M0)(Ω)) = 1, as ex-
pected.
Now let us identify ZSLn(M0)(Ω).
Claim: We have det(f(x)) = NL⊗kΩ/Ω(x) for all x ∈ L⊗k Ω.

To see this, set α = X ∈ L. Then e = (1⊗ 1, α⊗ 1, . . . , αn−1 ⊗ 1) is a

Ω-basis of L⊗k Ω. Let x =
n−1∑
i=0

αi⊗λi ∈ L⊗k Ω, and let P =
n−1∑
i=0

λiX
i.

Clearly, we have `x = P (`α⊗1). Now the matrix of `α⊗1 in the basis e
is easily seen to be Cχ = M0, and so the matrix of `x in the basis e is
P (M0) = f(x). Therefore det(`x) = det(f(x)), and we are done.

We then get ZSLn(M0)(Ω) ' G(1)
m,L(Ω) as a Galois module.

Assume now that χ is separable (i.e. χ has only simple roots in an
algebraic closure of k) and that Ω/k is a Galois extension containing
all the roots of χ. In this case, we have L ⊗k Ω ' Ωn, and by the
previous lemma, we have

H1(GΩ, ZSLn(M0)(Ω)) ' k×/NL/k(L
×),

which is not trivial in general.
For example, assume that char(k) 6= 2, let d ∈ k×, d /∈ k×2. Set M0 =(

0 1
d 0

)
and M =

(
0 −1
−d 0

)
.

Then M0 is the companion matrix of χ = X2− d and thus L = k(
√
d).

The field Ω = k(i,
√
d) (where i is a square root of −1) contains all the

roots of χ and Ω/k is Galois, with Galois group isomorphic to Z/2Z or
(Z/2Z)2 (depending on the fact that −d is whether or not a square in
k×).

Moreover, we have QMQ−1 = M0 ∈ M2(Ω), with Q =

(
i 0
0 −i

)
, so

M and M0 are conjugate by an element of SL2(Ω).
However, they are not conjugate by an element of SL2(k) in general.
To see this, let us compute the class in k×/NL/k(L

×) corresponding
to the conjugacy class of M . Notice first that Qσ ·Q−1 is the identity
matrix I2 if σ(i) = i and is -I2 otherwise. In other words, we have

αQσ = (iI2)−1σ ·(iI2) for all σ ∈ GΩ.



AN INTRODUCTION TO GALOIS COHOMOLOGY 33

Via the isomorphism H1(GΩ,G(1)
m,L(Ω)) ' H1(GΩ, ZSLn(M0)(Ω)) indu-

ced by f∗, the cohomology class [α(Q)] correspond to the cohomology
class of the cocycle

β(Q) : GΩ → G(1)
m,L(Ω), σ 7→ (1⊗ i)−1σ ·1⊗ i.

Now NL⊗Ω/Ω(1 ⊗ i) = (1 ⊗ i)2 = −1, and thus the conjugacy class of
M corresponds to the class of −1 in k×/NL/k(L

×). In particular, M
and M0 are conjugate over k if and only if −1 ∈ NL/k(L

×). Therefore,
to produce counterexamples, one may take for k any subfield of R and
d < 0, as we did in the introduction.

13. The case of infinite Galois extensions

In this ultimate paragraph, we would like to indicate quickly how to
generalize all this machinery to arbitrary Galois extensions, even in-
finite ones. I will be extremely vague here, since it can become very
quickly quite technical.

Let us come back to the conjugacy problem of matrices one last time,
but assuming that Ω/k is completely arbitrary, possibly of infinite de-
gree. The main idea is that the problem locally boils down to the
previous case. Let us fix M0 ∈ Mn(k) and let us consider a specific
matrix M ∈ Mn(k) such that

QMQ−1 = M0 for some Q ∈ SLn(Ω).

If L/k is any finite Galois subextension of Ω/k with Galois group GL
containing all the entries of Q, then Q ∈ SLn(L) and the equality
above may be read in Mn(L). Therefore, for this particular matrix M ,
the descent problem may be solved by examining the corresponding
element [α(L)] ∈ H1(GL, ZSLn(M0)(L)). Now if we take another finite
Galois subextension L′/k such that M ∈ Mn(L′) and Q ∈ SL(L′), we
obtain an obstruction [α(L′)] ∈ H1(GL′ , ZSLn(M0)(L′)). But the fact
that M is conjugate or not to M0 by an element of SLn(k) is an intrisic
property of M and of the field k, and should certainly not depend on
the chosen Galois extension L/k. Therefore, we need to find a way to
patch these local obstructions together.

There are two ways to proceed. First of all, notice that if L1/k and
L2/k are two finite Galois extensions such that L1 ⊂ L2, then the maps

GL2 → GL1 , σ2 7→ (σ2)|L1
and ZSLn(M0)(L1) ↪→ ZSLn(M0)(L2)

are compatible, so we have a well-defined map

infL1,L2 : H1(GL1 , ZSLn(M0)(L1))→ H1(GL2 , ZSLn(M0)(L2)),

which sends [α] to the class of the cocycle

GL2 → ZSLn(M0)(L2), σ2 7→ α(σ2)|L1
.
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If we examine the classes [α(L)] and [α(L′)] above, one can check that
they are both equal to [α(LL′)] when we ”push them to LL′”. More
precisely, we have

infL,LL′([α
(L)]) = [α(LL′)] = infL′,LL′([α

(L′)]),

so we have a whole collection of cohomology classes which coincide
when seen ”high enough”. The idea is then to force all of these classes
to be equal by factoring by an appropriate equivalence relation. Of
course, there is no particular reason to limit ourselves to ZG(M0). If G
is a group-valued functor, we may consider the disjoint union∐

L

H1(GL, G(L)),

where L/k runs over all finite Galois subextensions of Ω. We now
put the following equivalence relation on this set: we say that [α] ∈
H1(GL, G(L)) and [α′] ∈ H1(GL′ , G(L′)) are equivalent if there exists a
finite Galois extension L′′, L′′ ⊃ L,L′′ ⊃ L′ such that

infL,L′′([α]) = infL′,L′′([α
′]).

We denote the quotient set by

H1
ind(GΩ, G(Ω)).

We then see that our collection of classes [α(L)] define the same element
in this set. However, this might be a bit difficult to handle in the
applications, so we propose now an alternative.

First of all, we introduce a topology on GΩ. The Krull topology is the
topology generated by the subsets

σGal(Ω/K), σ ∈ GΩ, K ⊂ Ω, [K : k] < +∞.
We now consider a group-valued functor G such that:

(1) For all finite Galois subextension L/k, the map G(L) → G(Ω) is
injective and induces a group isomorphism

G(L) ' G(Ω)Gal(Ω/L)

(2) For all g ∈ G(Ω), the subgroup {σ ∈ GΩ | σ ·g = g} is open.

These two conditions say that an element g ∈ G(Ω) ‘comes from’ an
element of G(L) for some finite Galois subextension L/k of Ω/k, and
that the action of GΩ is in fact the same as the action of GL on g
when viewed as an element of G(L). One can show that any functor
G defined by a finite set of polynomial equations with coefficients in k
satisfy these assumptions. For example, this is exactly what happens
in the case of matrices.

We may then define a cohomology set H1
cont(GΩ, G(Ω)) as in the finite

case, but we ask for continuous cocycles, where GΩ is endowed with
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the Krull topology and G(Ω) is endowed with the discrete topology.
The nice thing is that we have

H1
cont(GΩ, G(Ω)) ' H1

ind(GΩ, G(Ω)).

Therefore, we have achieved what we wanted, that is finding a way to
patch a family of cohomology classes together. Moreover, as long as
(1) and (2) are satisfied, all the previous results generalize to arbitrary
Galois extensions.

As a final remark, we should point out that we could define the pointed
set H1(GΩ, G(Ω)) dropping the continuity condition, but the equality
above does not hold anymore, and therefore one cannot always do
patching, so this definition is not really suitable.
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