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A Pisot number is an algebraic integer > 1 such that all
conjugates other than itself has modulus strictly less than 1.

A well known property: if 8 is a Pisot number, then
d(B",7Z) — 0 as n — oc.

A partial converse is shown by Hardy:

Let 5 > 1 be an algebraic number and x # 0 is a real
number. If d(x8",Z) — 0 then 3 is a Pisot number.



Let (X,B,u) be a probability space and T : X — X
be a measure preserving transformation. Then (X, B, u,T)
forms a measure theoretical dynamical system. By Poincaré’s
recurrence theorem, for a set Y € B with u(Y) > 0, almost
all T-orbit from Y is recurrent. The first return map on Y is

defined by:
T = Tm(“”)(a:)

where m(x) = min{m € Z<o | T™(x) € Y}. This gives the
induced system:

1 A
Y.BNY,——u,T).



From now on let X C RY The system (X,B,u,T) is
self-inducing if there is a Y such that (Y,5NY, ﬁ,u,T) IS
iIsomorphic to the original dynamics by the affine isomorphism

map o¢:



Motivation:

The self-inducing structure corresponds to pure periodic
expansion in arithmetic algorithms. The scaling constant (the
maximal eigenvalue of the matrix of ¢~ 1) often becomes a
Pisot number, moreover a Pisot unit.

Many examples: irrational rotation and continued fraction,
iInterval exchange, piecewise isometry, outer billiard, etc.

We wish to know why the Pisot number plays the role.
Self-inducing structure is modeled by Substitutive dynamical
system.

Another motivation comes from the study of quasi-crystal.



Mathematics of Aperiodic Order
is continuously motivated by the
quasi-crystals found by Shechtman
[8] in 1984. Diffraction pattern is
considered as an image of Fourier
transform of the correlation of point
sets. As a primitive model of
quasicrystal configuration, Penrose
tilings attracted great interest of
researchers. Spectrum of translation
dynamics of substitutive point sets
and self-similar tilings are studied in
detail along with this study.




Diffractive Point Set

A point set showing Bragg peaks must
include a lot of repetitions of local
patterns. It is well known that cut
and projection gives a model set
which shows pure point diffraction.
In this talk, we focus on less known
constructions.




Rep-tiles

Let us start with an easy example of substitution tiling. A
rep-tile is a tile composed of similar copies of itself which used
to appear in elementary puzzles. lterating this we have
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We can confirm a set equation:

3
QT; = U Ti + D
i=0

). D;; 1s equal to



Try several examples:
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Delone sets and Meyer sets

Substitutive Delone sets give an easy way to model point
configurations in quasi-crystals.

In this talk, X will be a Euclidean space R? or positive real
numbers R .

A subset Y of a space X is called relatively dense if there
exists r > 0 that any ball B(x,r) must intersects Y.

A subset Y of a space X is called uniformly discrete if
there exists R > 0 that any ball B(x, R) contains at most one



point in Y.

A set Y is a Delone set if both relatively dense and uniformly
discrete in X.

A set Y is a Meyer set if Y is a Delone set and there exists
a finiteset F C X suchthatY —Y CY + F.

Lagarias [4] showed that this condition is equivalent to that
fact that both Y and Y — Y are Delone sets.



e WLOG, we assume 0 €Y.

e For a pair (z,y) € Y?, we prepare a step-stone sequence
(xi,yi) to (v,0) with v = & — y of bounded distance R,
where R is a relatively dense constant of Y.

e Approximate (x;,y;) by (p;,q;) € Y2. Then (p;,q;)’s are in
B(v,2R). There are finitely many ways of steps.

e We need a ‘uniform’ bound of the number of steps. We use
the criterion: given a connected graph of size m, any path
can be chosen to be less than m in length.



The definition of Meyer set suggests that the set has a
structure like an additive group.

Meyer set provides a good framework for quasi-crystal
structure. It is also intimately related to the model set
generated by cut and project scheme. In this lecture, | wish
to talk on Meyer sets which have self-similar structure, which
allows handy construction.

Let Q be a d x d expanding real matrix. A; € RY (i =
0,1,...,m — 1) are substitutive Delone sets if each A; is



Delone and satisfies a set equation:
m—1
A= | ) QA+ D
§=0

for some translation sets D,;; C R? and the right sides are
disjoint. If each A; is Meyer, we call it substitutive Meyer
set. Substitutive Meyer set is a nice quasi-periodic structure.
The matrix M = (#D,;) is called the substitution matrix.
Throughout this talk we assume that M is primitive, i.e., there
Is n > 0 that all the entries of M™ is positive.



Self-affine tiling

Self-affine tiling is a dual object of substitutive Delone set.
A tile is a compact set in R? which coincides with the closure
of its interior. A tiling 7 is a collection of tiles which covers
RY without overlaps of interior points. A patch is a finite
subset of 7. We assume that 7 has finite local complexity
(FLC), that is, there are only finitely many patches up to
translation. Under FLC, there are only finitely many tiles up to
translation. The representative of tiles A = {1y, T1,..., T}
is called alphabets. 7 is repetitive if any patch P must
reappear in a sufficiently large ball regardless of its location.



We assume that A satisfies a set equation:

m—1

QT = U T; + D,
i=0

This gives rise to a substitution rule w of the alphabet by
inflation subdivision:

The substitution rule w is primitive if the substitution matrix
(#D;;) is primitive. This means for any ¢, j, the tile T; must
appear in w”(T}) for some k. A patch P is legal if there exist



i,k € N,t € R% and P+t appears in w”(T}). A repetitive tiling
T with FLC is called self-affine if every patch P of T is legal.



Duality

Lagarias-Wang [3] discussed the duality of point sets and
tilings. An important necessary condition for the duality is

Max eigen value of(#D;;) = | det(Q)|

which is called Lagarias-Wang condition.



e Max eigen value of(#D;;) < |det(Q)|, then Tiles can not

have d-dim Lebesgue measure.

e Max eigen value of(#D;;) > det(Q)|, then we have
‘overlaps’ caused too many digits. Uniformly discreteness

of point sets is impossible.

A cluster is a subset of substitutive Delone set. One can
define legality of the cluster as well. It is legal if its translation
appears as an image of iterated substitution of one point.
Under this, it is shown that substitution Delone set is realized
as a reference point set of a self-affine tiling if and only if all
the cluster is legal (c.f. Lee-Moody-Solomyak [6]).



Dynamical Spectrum

Primitivity of w ensures that the self-affine tiling is repetitive.
Tiling dynamical system is a topological dynamical system
generated as the orbit closure by translation of 7 under natural
local topology: two tilings are close if big patches around the
origin agree up to a small translation. Primitivity of w also
guarantees that this translation dynamics of 7 is minimal and
uniquely ergodic. So we can discuss spectral properties of this
system. The spectrum of tiling dynamical system is intimately
related to the diffraction pattern generated by point sets in R?,
representing atomic configuration. Especially it is known that



pure discreteness of the tiling dynamics is equivalent to pure

pointedness of the diffraction in a pretty general setting (e.g.
Baake-Lenz [7], Lee-Moody-Solomyak).



Several methods to construct self-affine tilings:

1. Rep-tiles
2. Number system and related tilings.
3. Boundary endomorphism.

4. Substitutive dynamical system and its geometric realizations.

The advantage of these constructions is that they have self-
similar structures from the beginning. However unlike usual
cut and projection scheme, it remains to discuss whether this
system shows purely discrete spectrum.



p-expansion and [S-integers

Fix 8 > 1 and consider a map 1 from [0, 1) to itself:

Ts:x+— fx— |Bx|.

Record the trajectory:
a_1 a_o a_s a_4
X =x1 —>Tog —>T3 —>T4 —> ...

by symbols a_; = |Bx;] in [0,3) NZ. This is a generalization



of decimal expansion and gives an expansion:

a_1 X a_2 1 a_3 X
X = — — — e =00_10_2A_3Q_4 . ..
g B B
For any positive z, there is an integer N such that /8" ¢
[0,1). Therefore there is a way to expand into:

N
I — E Cbiﬁz =anNanN—-1...-Q1Qp®a_1a_2Q_3 ...

1= — 00

which is called the S-expansion of x. The S-integer part of
T 1S fo\io a;3" =anan_1...aiap® and the 3-fractional part

IS Z;:l_oo azﬂi — eoa_1a4_2a_3....



A [-integer is a positive number whose (S-fractional part is
zero. Denote by Zg the set of S-integers. Then Zg is relatively
dense in R

An algebraic integer 8 > 1 is a Pisot number if all other
conjugates of 3 is smaller than one in modulus.

If 3 1s a Pisot number, then Zg is a Meyer set. Conversely if
Zg is a Meyer set then (3 is a Pisot number or a Salem number
(c.f. Lagarias [B]).



The most famous example: Fibonacci chain is viewed
as number system. Let 7 = (14 1/5)/2, a root of the
polynomial 2 —x — 1. 7 is a Pisot number since the conjugate
7 = (1 —+/5)/2 is less than one in modulus.

Exercise

The number system in base 7 expresses numbers by 0 and 1.
By the greedy property, we can not have 11 in its expression.
It is convenient to think that 11 = 100.
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10.01
100.01
101.01
1000.1001
1010.0001
10000.0001
10001.0001



Z.; is a Meyer set of R,..

Z.\J(—=Z;) is a Meyer set of R.

Z.; has a Fibonacci expression:

E a;T'

i>0

a; € {07 1}7

a;iaiy1 =0

\

/

-~




Let us try to see why Z. is uniformly discrete. The product:

Z(CL@ — bZ)TZ Z(Cl/@ — bi)T/i

i>0 i>0

is a symmetric polynomial of 7+ 7/(= 1),77'(= —1). Thus
it must be an integer. Because it Is non-zero, we have an
inequality:

S (as — b)r| > 1 (1 _QM)

1 >0

which gives a minimum separation of adjacent points. The



proof readily applies to all Pisot numbers.
One can see that Z, forms a self-similar tiling of R .
Let

A= {Zcm‘i C; € {0, 1},cf,;cz-+1 — O}

1=1

and
B={x¢e€ Alc; =0}

Then we see

TA:AUB+1 rB=A



Forgetting translation, it is produced by a substitution rule:
A—-AB, B— A
The fixed point is
ABAABABAABAA...

and regard A a tile of length 1 and B of length 1/7. Then we
have:

0, 1JU[L,7]U[r, 7 |U[r 1+ 72Ul + 72,79 U......



Rewritten in a form
0,1] U [1,10] U [10,100] U [100,101] U [101, 1000] U ...

Therefore the end points of this tiling is nothing but Z...

Probably the second simplest example is the Tribonacci
Pisot number, a positive root of 22 — 22 — z — 1. Then

Zg is a Meyer set of R

Zg U (—Zg) is a Meyer set of R.



Zg has a tribonacci expression:

/

/"

Z aiﬁi a; € {O, 1}, AiQi41Q;42 = 0

\ 1 >0

The corresponding tiling of R is

0, 1]U[1, 10]U[10, 11]U[11, 100]U[100, 101]U[101, 110]U[110, 1000]U. .



Dual tiling due to Thurston

Let B-expansion by a Pisot number 3 of degree d which has
r1 real conjugates and 2r5 complex conjugates. We assume
that § is a unit, which means that 1/5 is also an algebraic
integer. Consider a canonical embedding

:Q(B) » R x C2 R

defined by =z +— (z®),... z(r) g+ (m+r2)) where
z(") are the non trivial Galois conjugates of z. As 3 is Pisot,
the set ®(Zg3) is compact, which is called the central tile.




Example: Denote by 7/ = (1 —+/5)/2 = —1/7.

(I)(ZT) = {Zai(T/)i a; € {O, 1},aiai+1 — O}

1=0

= |[-1,7]:=A

gives an interval of length 72. Dividing by 7/, we have

plA = [—7‘2,—1}U[—1,T]
= BA

with B, an interval of length 7. This growing rule naturally
leads us to define an anti homomorphism on the word monoid



generated by A, B:
oc(A)=BA, o(B)=A

with o(zy) = o(y)o(x) for any words x, y.



B A
B AA
BAB AA
BAB AABAA
BABAABAB AABAA
BABAABAB AABAABABAABAA

We see 0°°(A) gives a tiling of R.



Let us do the same game with A = ®(Zy), that is,

{Z ai(ﬁ’)i a; © {O, 1}, A;Ai4 10542 = 0} :

which is a central tile. In this case, it is a compact set in C.
The substitution rule becomes two dimensional.









Each tile corresponds to the subset of beta expansions of
Z|B) N Ry having a fixed S-fractional part.



Substitution Tiling

A substitution o is a non-erasing homomorphism of word
monoid generated by finite letters, say {0, 1, 2}:

c:0—01, 1—-02, 2—0
with o(xy) = o(x)o(y) for any words x,y € {0,1,2}*.

Substitutions provide us the simplest examples of dynamical
systems with self-inducing structures.



One can associate a matrix L,:

I 1 1
Lo,=11 00
0 1 0

which counts the number of occurrence of letters after
substituted.

If this matrix is primitive, then o is a primitive substitution.
The substitution is called unimodular, if det L, = £1.

We may assume that o has a fixed point, a right infinite
word fixed by o which is successively approximated by ¢*(0):



0(0102010010201010201 ...) = 0102010010201010201 . ...

Primitive substitution is called a Pisot substitution if the
Perron-Frobenius root of L, is a Pisot number.



Geometric realization of a fixed point: 1-st

Let v = (vg,v1,v2) be the left eigenvector of L,. Identify
{0,1,2} with intervals of length vy, v1, vo respectively.

010201 --- = [O,UO] U [UO,UQ -+ ’Ul] U [UQ -+ ?}1,21}0 + ’Ul] ...

gives a self similar tiling of R, which is invariant under
multiplication of the Perron-Frobenius root 5 of L,. The
end points forms a Delone set provided that o is a primitive
substitution. If 8 is a Pisot number, then it forms a Meyer set
(c.f. Bombieri-Taylor [2]).



Geometric realization of a fixed point: 2-nd

P.Arnoux and Sh.lto [I] gave a nicer way to realize
unimodular Pisot substitutions, extending the idea of G.Rauzy.
Regard {0, 1,2} as unit line segments parallel to the coordinate
axis. We realize the action of substitution to give an infinite
broken line in R? whose broken end points are in Z%:

where each €; is a unit coordinate arrow whose right end is
connected to the left end of the next arrow.



By Pisot property, this broken line gives a good

approximation of the 1-dimensional expanding eigen line of
L.



Two projections of broken end points

The end points of the broken line are projected along the
contractive eigenspace to the expanding line. This gives a tiling
of R., which is the same as the 1-st construction.

We have a different way. The end points of the broken line
can be projected along the expanding line to the contractive
plane. Then we have a compact set which is our atomic
surface X:
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different ways:

X=XoUX1UXo=YyUY UY5

where X, corresponds to the left end points of the broken
arrows start with the letter 7 and Y; corresponds to the right
end points of the broken arrow followed by the letter 7. The
odometer which sends each end point to the next one, is
realized as a domain exchange.
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substitution in a natural way under the duality of the Euclidean
norm. This dual substitution completes the whole picture like
the one for (3-expansion. They showed that under a certain
coincidence condition, the domain exchange is measure
theoretically isomorphic to the substitutive dynamical system,
and moreover it is semi-conjugate to the rotation of the torus.
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