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A Pisot number is an algebraic integer > 1 such that all

conjugates other than itself has modulus strictly less than 1.

A well known property: if β is a Pisot number, then

d(βn,Z) → 0 as n → ∞.

A partial converse is shown by Hardy:

Let β > 1 be an algebraic number and x ̸= 0 is a real

number. If d(xβn,Z) → 0 then β is a Pisot number.



Let (X,B, µ) be a probability space and T : X → X

be a measure preserving transformation. Then (X,B, µ, T )
forms a measure theoretical dynamical system. By Poincaré’s

recurrence theorem, for a set Y ∈ B with µ(Y ) > 0, almost

all T -orbit from Y is recurrent. The first return map on Y is

defined by:

T̂ = Tm(x)(x)

where m(x) = min{m ∈ Z>0 | Tm(x) ∈ Y }. This gives the

induced system:

(Y,B ∩ Y,
1

µ(Y )
µ, T̂ ).



From now on let X ⊂ Rd. The system (X,B, µ, T ) is

self-inducing if there is a Y such that (Y,B ∩ Y, 1
µ(Y )µ, T̂ ) is

isomorphic to the original dynamics by the affine isomorphism

map ϕ:

X
T−→ X

ϕ

y yϕ

Y −→̂
T

Y



Motivation:

The self-inducing structure corresponds to pure periodic

expansion in arithmetic algorithms. The scaling constant (the
maximal eigenvalue of the matrix of ϕ−1) often becomes a

Pisot number, moreover a Pisot unit.

Many examples: irrational rotation and continued fraction,

interval exchange, piecewise isometry, outer billiard, etc.

We wish to know why the Pisot number plays the role.

Self-inducing structure is modeled by Substitutive dynamical
system.

Another motivation comes from the study of quasi-crystal.



Mathematics of Aperiodic Order
is continuously motivated by the

quasi-crystals found by Shechtman

[8] in 1984. Diffraction pattern is

considered as an image of Fourier

transform of the correlation of point

sets. As a primitive model of

quasicrystal configuration, Penrose

tilings attracted great interest of

researchers. Spectrum of translation

dynamics of substitutive point sets

and self-similar tilings are studied in

detail along with this study.



Diffractive Point Set

A point set showing Bragg peaks must

include a lot of repetitions of local

patterns. It is well known that cut

and projection gives a model set
which shows pure point diffraction.

In this talk, we focus on less known

constructions.



Rep-tiles

Let us start with an easy example of substitution tiling. A

rep-tile is a tile composed of similar copies of itself which used

to appear in elementary puzzles. Iterating this we have





We can confirm a set equation:

QTj =
3∪

i=0

Ti +Dij

with a matrix is Q =

(
2 0

0 2

)
. Dij is equal to


{(0, 0), (1, 1)} {(−4, 0)} ∅ {(0,−4)}

{(4, 0)} {(0, 0), (−1, 1)} {(0,−4)} ∅
∅ {(0, 4)} {(0, 0), (−1,−1)} {(4, 0)}

{(0, 4)} ∅ {(−4, 0)} {(0, 0), (1,−1)}





Try several examples:







Delone sets and Meyer sets

Substitutive Delone sets give an easy way to model point

configurations in quasi-crystals.

In this talk, X will be a Euclidean space Rd or positive real

numbers R+.

A subset Y of a space X is called relatively dense if there

exists r > 0 that any ball B(x, r) must intersects Y .

A subset Y of a space X is called uniformly discrete if

there exists R > 0 that any ball B(x,R) contains at most one



point in Y .

A set Y is aDelone set if both relatively dense and uniformly

discrete in X.

A set Y is a Meyer set if Y is a Delone set and there exists

a finite set F ⊂ X such that Y − Y ⊂ Y + F .

Lagarias [4] showed that this condition is equivalent to that

fact that both Y and Y − Y are Delone sets.



• WLOG, we assume 0 ∈ Y .

• For a pair (x, y) ∈ Y 2, we prepare a step-stone sequence

(xi, yi) to (v, 0) with v = x − y of bounded distance R,

where R is a relatively dense constant of Y .

• Approximate (xi, yi) by (pi, qi) ∈ Y 2. Then (pi, qi)’s are in

B(v, 2R). There are finitely many ways of steps.

• We need a ‘uniform’ bound of the number of steps. We use

the criterion: given a connected graph of size m, any path

can be chosen to be less than m in length.



The definition of Meyer set suggests that the set has a

structure like an additive group.

Meyer set provides a good framework for quasi-crystal

structure. It is also intimately related to the model set

generated by cut and project scheme. In this lecture, I wish

to talk on Meyer sets which have self-similar structure, which

allows handy construction.

Let Q be a d × d expanding real matrix. Λi ∈ Rd (i =

0, 1, . . . ,m − 1) are substitutive Delone sets if each Λi is



Delone and satisfies a set equation:

Λi =
m−1∪
j=0

QΛj +Dij

for some translation sets Dij ⊂ Rd and the right sides are

disjoint. If each Λi is Meyer, we call it substitutive Meyer
set. Substitutive Meyer set is a nice quasi-periodic structure.

The matrix M = (#Dij) is called the substitution matrix.
Throughout this talk we assume that M is primitive, i.e., there
is n > 0 that all the entries of Mn is positive.



Self-affine tiling

Self-affine tiling is a dual object of substitutive Delone set.

A tile is a compact set in Rd which coincides with the closure

of its interior. A tiling T is a collection of tiles which covers

Rd without overlaps of interior points. A patch is a finite

subset of T . We assume that T has finite local complexity
(FLC), that is, there are only finitely many patches up to

translation. Under FLC, there are only finitely many tiles up to

translation. The representative of tiles A = {T0, T1, . . . , Tm}
is called alphabets. T is repetitive if any patch P must

reappear in a sufficiently large ball regardless of its location.



We assume that A satisfies a set equation:

QTj =

m−1∪
i=0

Ti +Dij

This gives rise to a substitution rule ω of the alphabet by

inflation subdivision:

ω(Tj) = {Ti + di |di ∈ Dij}

The substitution rule ω is primitive if the substitution matrix

(#Dij) is primitive. This means for any i, j, the tile Ti must

appear in ωk(Tj) for some k. A patch P is legal if there exist



i, k ∈ N, t ∈ Rd and P + t appears in ωk(Ti). A repetitive tiling

T with FLC is called self-affine if every patch P of T is legal.



Duality

Lagarias-Wang [3] discussed the duality of point sets and

tilings. An important necessary condition for the duality is

Max eigen value of(#Dij) = |det(Q)|

which is called Lagarias-Wang condition.



• Max eigen value of(#Dij) < | det(Q)|, then Tiles can not

have d-dim Lebesgue measure.

• Max eigen value of(#Dij) > det(Q)|, then we have

‘overlaps’ caused too many digits. Uniformly discreteness

of point sets is impossible.

A cluster is a subset of substitutive Delone set. One can

define legality of the cluster as well. It is legal if its translation

appears as an image of iterated substitution of one point.

Under this, it is shown that substitution Delone set is realized

as a reference point set of a self-affine tiling if and only if all

the cluster is legal (c.f. Lee-Moody-Solomyak [6]).



Dynamical Spectrum

Primitivity of ω ensures that the self-affine tiling is repetitive.

Tiling dynamical system is a topological dynamical system

generated as the orbit closure by translation of T under natural

local topology: two tilings are close if big patches around the

origin agree up to a small translation. Primitivity of ω also

guarantees that this translation dynamics of T is minimal and

uniquely ergodic. So we can discuss spectral properties of this

system. The spectrum of tiling dynamical system is intimately

related to the diffraction pattern generated by point sets in Rd,

representing atomic configuration. Especially it is known that



pure discreteness of the tiling dynamics is equivalent to pure

pointedness of the diffraction in a pretty general setting (e.g.

Baake-Lenz [7], Lee-Moody-Solomyak).



Several methods to construct self-affine tilings:

1. Rep-tiles

2. Number system and related tilings.

3. Boundary endomorphism.

4. Substitutive dynamical system and its geometric realizations.

The advantage of these constructions is that they have self-

similar structures from the beginning. However unlike usual

cut and projection scheme, it remains to discuss whether this

system shows purely discrete spectrum.



β-expansion and β-integers

Fix β > 1 and consider a map Tβ from [0, 1) to itself:

Tβ : x 7→ βx− ⌊βx⌋.

Record the trajectory:

x = x1
a−1−→ x2

a−2−→ x3
a−3−→ x4

a−4−→ . . .

by symbols a−i = ⌊βxi⌋ in [0, β) ∩ Z. This is a generalization



of decimal expansion and gives an expansion:

x =
a−1

β
+

a−2

β2
+

a−3

β3
+ · · · = •a−1a−2a−3a−4 . . .

For any positive x, there is an integer N such that x/βN ∈
[0, 1). Therefore there is a way to expand into:

x =
N∑

i=−∞
aiβ

i = aNaN−1 . . . a1a0 • a−1a−2a−3 . . .

which is called the β-expansion of x. The β-integer part of

x is
∑N

i=0 aiβ
i = aNaN−1 . . . a1a0• and the β-fractional part

is
∑−1

i=−∞ aiβ
i = •a−1a−2a−3 . . . .



A β-integer is a positive number whose β-fractional part is

zero. Denote by Zβ the set of β-integers. Then Zβ is relatively

dense in R+.

An algebraic integer β > 1 is a Pisot number if all other

conjugates of β is smaller than one in modulus.

If β is a Pisot number, then Zβ is a Meyer set. Conversely if

Zβ is a Meyer set then β is a Pisot number or a Salem number

(c.f. Lagarias [5]).



The most famous example: Fibonacci chain is viewed

as number system. Let τ = (1 +
√
5)/2, a root of the

polynomial x2−x− 1. τ is a Pisot number since the conjugate

τ ′ = (1−
√
5)/2 is less than one in modulus.

Exercise

The number system in base τ expresses numbers by 0 and 1.

By the greedy property, we can not have 11 in its expression.

It is convenient to think that 11 = 100.



1 = 1

2 = 10.01

3 = ?

4 = ?

5 = ?

6 = ?

7 = ?

8 = ?



1 = 1

2 = 10.01

3 = 100.01

4 = 101.01

5 = 1000.1001

6 = 1010.0001

7 = 10000.0001

8 = 10001.0001



Zτ is a Meyer set of R+.

Zτ ∪ (−Zτ) is a Meyer set of R.

Zτ has a Fibonacci expression:

∑
i≥0

aiτ
i

∣∣∣∣∣∣ ai ∈ {0, 1}, aiai+1 = 0





Let us try to see why Zτ is uniformly discrete. The product:∑
i≥0

(ai − bi)τ
i

∑
i≥0

(ai − bi)τ
′i


is a symmetric polynomial of τ + τ ′(= 1), ττ ′(= −1). Thus

it must be an integer. Because it is non-zero, we have an

inequality: ∣∣∣∣∣∣
∑
i≥0

(ai − bi)τ
i

∣∣∣∣∣∣ > 1/

(
2

1− |τ ′|

)
which gives a minimum separation of adjacent points. The



proof readily applies to all Pisot numbers.

One can see that Zτ forms a self-similar tiling of R+.

Let

A =

{ ∞∑
i=1

ciτ
−i

∣∣∣∣∣ ci ∈ {0, 1}, cici+1 = 0

}

and

B = {x ∈ A |c1 = 0}
Then we see

τA = A
∪

B + 1 τB = A



Forgetting translation, it is produced by a substitution rule:

A → AB, B → A

The fixed point is

ABAABABAABAA . . .

and regard A a tile of length 1 and B of length 1/τ . Then we

have:

[0, 1] ∪ [1, τ ] ∪ [τ, τ2] ∪ [τ2, 1 + τ2] ∪ [1 + τ2, τ3] ∪ . . . . . .



Rewritten in a form

[0, 1] ∪ [1, 10] ∪ [10, 100] ∪ [100, 101] ∪ [101, 1000] ∪ . . .

Therefore the end points of this tiling is nothing but Zτ .

Probably the second simplest example is the Tribonacci
Pisot number, a positive root of x3 − x2 − x− 1. Then

Zθ is a Meyer set of R+.

Zθ ∪ (−Zθ) is a Meyer set of R.



Zθ has a tribonacci expression:∑
i≥0

aiθ
i

∣∣∣∣∣∣ ai ∈ {0, 1}, aiai+1ai+2 = 0


The corresponding tiling of R+ is

[0, 1]∪[1, 10]∪[10, 11]∪[11, 100]∪[100, 101]∪[101, 110]∪[110, 1000]∪. . . . . .



Dual tiling due to Thurston

Let β-expansion by a Pisot number β of degree d which has

r1 real conjugates and 2r2 complex conjugates. We assume

that β is a unit, which means that 1/β is also an algebraic

integer. Consider a canonical embedding

Φ : Q(β) → Rr1−1 × Cr2 ≃ Rd−1

defined by x 7→ (x(2), . . . , x(r1), x(r1+1), . . . , x(r1+r2)) where

x(i) are the non trivial Galois conjugates of x. As β is Pisot,

the set Φ(Zβ) is compact, which is called the central tile.



Example: Denote by τ ′ = (1−
√
5)/2 = −1/τ .

Φ(Zτ) =

{ ∞∑
i=0

ai(τ
′)i

∣∣∣∣∣ ai ∈ {0, 1}, aiai+1 = 0

}
= [−1, τ ] := A

gives an interval of length τ2. Dividing by τ ′, we have

β′−1A =
[
−τ2,−1

]
∪ [−1, τ ]

= BA

with B, an interval of length τ . This growing rule naturally

leads us to define an anti homomorphism on the word monoid



generated by A,B:

σ(A) = BA, σ(B) = A

with σ(xy) = σ(y)σ(x) for any words x, y.



B A

B AA

BAB AA

BAB AABAA

BABAABAB AABAA

BABAABAB AABAABABAABAA

We see σ∞(A) gives a tiling of R.



Let us do the same game with A = Φ(Zθ), that is,

{ ∞∑
i=0

ai(θ
′)i

∣∣∣∣∣ ai ∈ {0, 1}, aiai+1ai+2 = 0

}
.

which is a central tile. In this case, it is a compact set in C.
The substitution rule becomes two dimensional.



A

-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

β′−1A

-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

β′−2A

-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

β′−3A

-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3



-4 -2 2 4 6 8

-6

-4

-2

2

4

6

8



Each tile corresponds to the subset of beta expansions of

Z[β] ∩ R+ having a fixed β-fractional part.



Substitution Tiling

A substitution σ is a non-erasing homomorphism of word

monoid generated by finite letters, say {0, 1, 2}:

σ : 0 → 01, 1 → 02, 2 → 0

with σ(xy) = σ(x)σ(y) for any words x, y ∈ {0, 1, 2}∗.

Substitutions provide us the simplest examples of dynamical

systems with self-inducing structures.



One can associate a matrix Lσ:

Lσ =

1 1 1

1 0 0

0 1 0


which counts the number of occurrence of letters after

substituted.

If this matrix is primitive, then σ is a primitive substitution.
The substitution is called unimodular, if detLσ = ±1.

We may assume that σ has a fixed point, a right infinite

word fixed by σ which is successively approximated by σi(0):



σ(0102010010201010201 . . . ) = 0102010010201010201 . . .

Primitive substitution is called a Pisot substitution if the

Perron-Frobenius root of Lσ is a Pisot number.



Geometric realization of a fixed point: 1-st

Let v = (v0, v1, v2) be the left eigenvector of Lσ. Identify

{0, 1, 2} with intervals of length v0, v1, v2 respectively.

010201 · · · = [0, v0] ∪ [v0, v0 + v1] ∪ [v0 + v1, 2v0 + v1] ∪ . . .

gives a self similar tiling of R+ which is invariant under

multiplication of the Perron-Frobenius root β of Lσ. The

end points forms a Delone set provided that σ is a primitive

substitution. If β is a Pisot number, then it forms a Meyer set

(c.f. Bombieri-Taylor [2]).



Geometric realization of a fixed point: 2-nd

P.Arnoux and Sh.Ito [1] gave a nicer way to realize

unimodular Pisot substitutions, extending the idea of G.Rauzy.

Regard {0, 1, 2} as unit line segments parallel to the coordinate

axis. We realize the action of substitution to give an infinite

broken line in Rd whose broken end points are in Zd:

010201 · · · = e⃗0 + e⃗1 + e⃗0 + e⃗2 + e⃗0 + e⃗1 + . . .

where each e⃗i is a unit coordinate arrow whose right end is

connected to the left end of the next arrow.



By Pisot property, this broken line gives a good

approximation of the 1-dimensional expanding eigen line of

Lσ.



Two projections of broken end points

The end points of the broken line are projected along the

contractive eigenspace to the expanding line. This gives a tiling

of R+, which is the same as the 1-st construction.

We have a different way. The end points of the broken line

can be projected along the expanding line to the contractive

plane. Then we have a compact set which is our atomic
surface X:



-3 -2 -1 1 2 3 4

-3

-2

-1

1

2

3

In this case, the figure is essentially the same as the central tile

of θ up to some affine transformation.

The atomic surface X is subdivided into cylinder sets in two



different ways:

X = X0 ∪X1 ∪X2 = Y0 ∪ Y1 ∪ Y2

where Xi corresponds to the left end points of the broken

arrows start with the letter i and Yi corresponds to the right
end points of the broken arrow followed by the letter i. The

odometer which sends each end point to the next one, is

realized as a domain exchange.



→
. . . a2a1a0 → . . . a3a2a1

This means that the ‘shift’ is realized as a domain

exchange. This fact has important applications in number

theory: construction of low discrepancy sequences.

Arnoux-Ito also defined the dual map of above geometric



substitution in a natural way under the duality of the Euclidean

norm. This dual substitution completes the whole picture like

the one for β-expansion. They showed that under a certain

coincidence condition, the domain exchange is measure

theoretically isomorphic to the substitutive dynamical system,

and moreover it is semi-conjugate to the rotation of the torus.
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