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1. Introduction

To get to the overview, parts of the lecture were a bit telegraphic. There is some
additional detail in these notes. A short expository paper with basic definitions for
shifts of finite type and so on is my old paper “Symbolic dynamics and matrices”.
The Lind-Marcus book “Symbolic Dynamics” provides an excellent introduction
(with a caveat: there have been significant advances since its publication). My
expository-plus paper “Positive K-theory and symbolic dynamics” and the joint
paper with Jack Wagoner “Positive algebraic K-theory and shifts of finite type”
cover advances around polynomial matrix presentations and topological conjugacies
induced by multiplication by basic elementary polynomial matrices. My old papers
are generally available on my home page.

THIS IS A WRITEUP, WITH SOME ADDITIONAL MATERIAL, OF THE
FOURTH AND LAST LECTURE IN THE LECTURE SERIES “NONNEGATIVE MA-

TRICES: PERRON-FROBENIUS THEORY AND RELATED ALGEBRA” AS PART OF
THE SUMMER SCHOOL “NUMBER THEORY AND DYNAMICS” HELD IN JUNE
2013 AT INSTITUT FOURIER IN GRENOBLE.
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2. Definitions

Let S denote a semiring, always assumed to contain {0, 1}. Let A,B be square
matrices with entries in S. We give some definitions.

Definition 2.1. A and B are elementary strong shift equivalent over S (ESSE-S) if
there exist matrices U, V over S such that A = UV and B = V U .

Note: the matrices A and B do not have to be of the same size. In general, the
relation ESSE-S is reflexive and symmetric but not transitive.

SSE-S is the equivalence relation which is the transitive closure of ESSE-S.

Definition 2.2. A and B are strong shift equivalent over S (SSE-S) if there is a
finite chain of matrices A0, A1, . . . , A` such that A = A0, A` = B and for 0 ≤ i < `
the matrices Ai and Ai+1 are ESSE over S.

Definition 2.3. If S is a ring, with A and B n × n, then A and B are similar over
S (SIM-S) if there is U in GL(n, S) such that U−1AU = B.

Definition 2.4. A and B are shift equivalent over S (SE-S) if there are matrices
U, V over S and ` in N such that the following hold:

UV = A` V U = B` AU = UB BV = V A .

Although SE-S initially looks complicated and SSE-S initially looks simple, over-
all it is SE-S which is much more tractable.

If A and B are SSE over S, then A and B are SE over S. If {(Ui, Vi) : 0 ≤ i < `},
is a chain of ESSEs from A0 = A to A` = B, then the pair U = U0U1 · · ·U`−1,
V = V`−1 · · ·V1V0 gives an SE of A and B.

If S is a ring, and A and B are similar over S, then A and B are ESSE over S,
via the pair U,U−1A; and therefore A and B are also SE over S.

3. Three “eventual” algebraic invariants

Let A be a square matrix over a ring /S. Here are three properties of A which
I refer to as “eventual” algebraic invariants of A:

(1) det(I − tA)
(2) The SE-S class of A.
(3) The SSE-S class of A.

The first property, det(I − tA), is an encoding of the nonzero spectrum of A, as
we’ve seen. It is an “eventual” version of the spectrum in the sense that by ignoring
the multiplicity of zero in the spectrum, it is ignoring information that arises from
the nilpotent part of the action of A. The SE-S and SSE-S classes can be seen
analogously as “eventual” versions of SIM-S. We will see that when S is a field, the
analogy is precise: SE-S and SSE-S simply ignore the nilpotent part of the action.
For more general rings, the information in these invariants can be considerably
more subtle.

The initial motivation (and a continuing motivation) for considering these even-
tual invariants comes from symbolic dynamics. However, I argue that these are
natural algebraic invariants to consider, independent of the symbolic dynamics in-
terest.

The easiest case to argue is the case of det(I − tA) (the nonzero spectrum). For
example, the Spectral Conjecture (Lecture I) and its partial verifications show the
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value of approaching (even just) the classical problem of understanding the possible
spectra of nonnegative real matrices from the eventual viewpoint.

Before we turn to the other invariants, and the relation to nonnegative matrices,
we look at some of the motivation from symbolic dynamics.

4. Motivation from symbolic dynamics: S = Z and SFTs

The central example involves the ring S = Z. A square matrix A over Z+ defines
a shift of finite type σA : XA → XA, as follows.

Let A be the set of edges in the directed graph with adjacency matrix A. Let
XA be the set of doubly infinite sequences x = ...x−1x0x1 . . . of symbols from A
such that for all i, the terminal vertex of the edge xi equals the initial vertex of the
edge xi+1. (So, x is the itinerary of a biinfinite walk through the directed graph.)
A is given the discrete topology;

∏
AZ is given the product topology; XA is given

the relative topology. Now XA is a compact metrizable zero dimensional space.
One metric compatible with the topology is given by setting dist(x, y) = 1/(n+ 1)
when x 6= y and n is the largest nonnegative number such that xi = yi whenever
|i| < n.

Two shifts of finite type σA, σB are topologically conjugate (isomorphic) if there
exists a homeomorphism h : XA → XB such that σAh = hσB .

Williams (1973) proved that the following are equivalent for square matrices A,B
over Z+ :

• The SFTs σA and σB are topologically conjugate.
• A and B are SSE over Z+.

However, after forty years the problem of understanding SSE over Z+ remains very
open. We do not know (for example) for any primitive matrix A other than the
trivial example (1) whether there exists an algorithm which given B decides whether
A and B are SSE over Z+.

There is a more tractable invariant. If A and B are SSE over Z+, then in par-
ticular they are SSE over the ring Z. As a start on SSE-Z+, we should understand
SSE-Z.

The invariant det(I − zA) is motivated here because its reciprocal is the Artin-
Mazur zeta function of σA.

There are symbolic dynamical systems with a similar classification setup, over
another ring. We’ll look next at just one more example.

5. Motivation from symbolic dynamics: S = ZG and G-extensions

Here the ring is ZG, with G a finite group. A matrix A over Z+G defines a (skew
product) G-extension SA of an SFT. For this connection, let A1 be the matrix over
Z+ which is the image of A under the map defined entrywise by the augmentation
map

∑
ngg 7→

∑
ng. As in lecture III, we can view A as presenting a labeled graph,

for which the underlying labeled graph has adjacency matrix A1. The edge labeling
gives a continuous map τ : XA1

→ G defined simply by setting τ(x) to be the label
of the edge x0. This lets one define a homeomorphism S : XA1 × G → XA1 × G
by the rule (x, g) 7→ (σA1x, τ(x)g). There is then a free G action on X × G,
defined by h : (x, g) 7→ (x, gh), which commutes with the map S (and with the
projection (x, g) 7→ x which collapses the G-obrits). An isomorphisms of two such
skew products is a topological conjugacy of the two maps S which also interwines
the G-actions.
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Bill Parry proved that given matrices A,B over Z+G, the G-extensions they
define are isomorphic and only if A and B are SSE-Z+G. There is a detailed
exposition of this in my Proc. LMS paper with Michael Sullivan. SSE-Z+G is not
easier to understand than the relation SSE-Z+ which we do not understand. But
as with Z, we can look to see what the easier (but not so easy!) algebraic invariant
SSE-ZG can tell us with regard to understanding isomorphism of the skew products.

6. The meaning of SE-S for a ring S

Suppose A is n× n over S.
PROPOSITION: If A is nilpotent, then A is SE over S to the 1× 1 matrix (0).

(This works for S just a semiring.)
PROOF. Suppose A` = 0, with ` ∈ N. Let B = (0). Let the matrix U be the

n× 1 column vector with every entry zero. Let V the transpose of U . Then

A` = UV B` = V U AU = UB BV = V B

(each side of each equation is a zero matrix of appropriate size). QED
REMARK. This is a quick side remark contrasting SE and SSE. If A and B are

ESSE over a field F, and A has a nilpotent Jordan block of size k, then B must
have a nilpotent Jordan block of size j with |j − k| ≤ 1. In particular, if A is
nilpotent over F, with k the smallest positive integer such that Ak = 0 then a chain
of ESSEs from A to the 1× 1 matrix (0) must have length at least k − 1. (And in
fact, working over a field F, such a chain will exist).

Next consider the case that S is a field and A is not nilpotent. Then A is SIM

over S (hence SE over S) to a matrix with block form

(
X 0
0 N

)
in which N is

nilpotent and X is nonsingular. An argument similar to the last shows that this
matrix is SE over S to the nonsingular matrix X. Thus A and B are SE over S if
and only if their “nonsingular parts”are similar over S.

We can express the last condition in another way. Let VA be the eventual
image of A: the intersection of the (nested) images of Sn under Ak, k ∈ N (which
equals the image of Sn under multiplication by An). This is the maximum A-
invariant subspace on which the action of A is invertible (VA is not zero because
we are considering A not nilpotent). A is SE over the field S to B iff the linear
transformation A restricted to VA is isomorphic to the linear transformation B
restricted to VB .

In the case S = Z, the classification up to SE-Z is finer than the classification
up to SE-R; SIM-Z refines SE-Z which refines SE-R. A nice case constrasting SE-Z
and SIM-Z is described in an appendix.

7. A Pause for Realization Questions

Recall the Spectral Conjecture of Lecture I, of Handelman and myself (re-
copied in an Appendix). The conjecture states, given a subring S of R, that a
list Λ = (λ1, . . . , λk) of nonzero complex numbers is the nonzero spectrum of a
primitive matrix over S if and only if three necessary conditions hold (the Perron
condition; the condition that the polynomial

∏
i(t − λi) has all coefficients in S;

a more complicated condition involving nonnegativity of traces of powers). This
Spectral Conjecture has been proved in various cases (e.g. R and especially Z), and
surely must be true. It is then a protypical example in which the constraints of a
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nonnegativity condition on “eventual algebra”are characterized. Let’s consider the
following natural analogues.

(Weak) GENERALIZED SPECTRAL CONJECTURE (B-Handelman).
Suppose S is a subring of R, and A is a square matrix over S whose nonzero spec-
trum satisfies the necessary conditions of the Spectral Conjecture. Then A is SE
over S to a primitive matrix.

(Strong) GENERALIZED SPECTRAL CONJECTURE (B-Handelman).
Suppose S is a subring of R, and A is a square matrix over S whose nonzero spec-
trum satisfies the necessary conditions of the Spectral Conjecture. Then A is SSE
over S to a primitive matrix.

For the case S = R, each of these is a conjecture that the nonnilpotent part of
the Jordan form of a primitive real matrix can be anything compatible with the
spectral constraints. This is already a natural problem at the level of linear algebra.

8. A general description of SE-S for rings.

Suppose S is a ring. We’ll give a ”conceptual” description of SE-S, which will
also be useful later. Suppose A is n× n over S.

• Form the direct limit group, which I’ll denote MA:

Sn −→ Sn −→ Sn −→ · · ·

where an arrow represents the map v 7→ vA. (You could systematically
switch the roles of row and column vector if you prefer.)

Here are definitions for this step (one must check welldefinedness). For-
mally, an element of MA is a quotient of Sn×N by the relation (u, k) ∼ (v, `)
if there exists n ∈ N such that uA`+n = vAk+n. Addition of quotient
classes is induced by e.g. [(u, k)] + [(v, `)] = [(uA` + vAk, k + `]. The

rule [(u, k)] 7→ [uA, k] defines a group isomorphism Â : MA → MA, with

Â−1 : [(u, k)] 7→ [(u, k + 1)].
• MA is an S-module (where s from S acts by [(u, k)] 7→ (su, k)]. (If S is

not commutative, then S and A must act from opposite sides. Then, if we
want st to act as the action of s followed by the action of t, we would use
column vectors for Sn.) The maps Â and Â−1 are S-module isomorphisms.

• Finally, we regardMA an S[t]-module, extending the action of S by letting

t act by Â−1. (We’ll see later the reason for this choice, instead of the

choice that would let t act by Â.)

PROPOSITION (Wagoner) A and B are SE-S if and only if the S[t]-modules
MA and MB are isomorphic.

PROOF. Suppose U, V and ` give an SE over S between A and B. An isomor-
phism of S[t] modules fromMA toMB is given by the rule [(x,m)] 7→ [xU,m+ `];
its inverse is the map [(y, n)] 7→ [(yV, n)]. The converse I leave as an exercise. QED

If S is a subring of a field F, and A is n×n, then there is a very concrete version

(M̃A, say) of the moduleMA. Define as before VA to be the F-vector space which
is the eventual image of Fn under A. As a set,

M̃A = {x ∈ VA ∩ Fn : xAk ∈ Sn for some k ∈ N}.
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As a group and S-module, the operations of M̃A are just the restrictions of the

operations of Sn. The action of Â on M̃A is simply multiplication by the matrix
A.

For example, suppose A = (2) and S is Z and F is Q. Then M̃A is Z[1/2], the

dyadic rationals, and Â is multiplication by 2.

9. The meaning of SSE-S for a ring S

Let S be a ring. It is not hard to prove that SSE-Z is the smallest equivalence
relation ∼ on square matrices over S such that

• If A and B are SIM over S, then A ∼ B.

• If a matrix X over S has the same number of rows as A, then A ∼
(
A X
0 0

)
.

• If a matrix X over S has the same number of columns as A, then A ∼(
A 0
X 0

)
.

But what does this mean?
A natural starting point is the following question: for a given ring S, does SE

over S imply SSE over S ? Some answers:

• YES if S = Z (70’s Williams; published in 90s)
• YES if S = a principal ideal domain (80’s Effros)
• YES if S = a Dedekind domain (or more generally, S is Prufer)

That was it, and we had no counterexamples. Very embarassing.

10. The refinement of SE-S by SSE-S: an obstruction group from
algebraic K theory

Below, let SSEA denote the set of SSE-S classes of matrices which are SE over Z
to A. The particular choice of A in a given SE-S class doesn’t matter; this is just
a convenient notation to describe the refinement of an SE-S class into SSE-S classes.

REFINEMENT THEOREM (B-Schmieding, in progress)
Suppose A is a square matrix over S, B is SE over S to A and S is a ring.

(1) There exists a nilpotent matrix N over S such that

(
A 0
0 N

)
is SSE over S

to B.

(2) The map into GL(S[t]) defined by N 7→
(
I − tN 0

0 I

)
induces a bijection

SSEA → NK1(S)/HA

where NK1(S) is the kernel of the map K1(S[t]) → K1(S) which is induced by the
ring epimorphism S[t]→ S induced by t 7→ 0.

A number of definitions are in order to explain this statement.

For a ring R, GL(R) is the stabilized general linear group of R. An element of
GL(R) is an N × N matrix U such that such that for some n the principal sub-
matrix on indices {1, 2, . . . , n} (an upper left corner of the matrix) is a element
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of GL(n,R), and entries of U for all other indices agree with the infinite identity
matrix.

El(R) is the subgroup of Gl(R) generated by the basic elementary matrices. A
basic elementary matrix is one of the form Eij(r), with r ∈ R and i 6= j; this
matrix by definition has entry r at position (i, j) and otherwise equals the identity.
If M ∈ GL(R) and E = Eij(r), then EM is the matrix obtained by replacing row
i of M with the sum of row i and r times row j.

El(R) is the commutator subgroup of Gl(R) (this is the Whitehead Lemma).
Then K1(R) is defined to be the abelian group Gl(R)/El(R). These are groups
of fundamental importance in algebraic K-theory (which can be thought of as the
linear algebra theory for arbitrary rings). The group NK1(R) is also important in
algebraic K-theory. Finally, HA is the subset of elements [U ] in K1(S[t]) which
contain some V for which there exists E in El(S[t]) such that E(I− tA)V = I− tA.
HA is a subgroup of NK1(S), and does not depend on the choice of A in a SE-S
class.

11. Some implications

The group HA is trivial if A is nilpotent or if S is commutative. In these cases,
the refinement of SE-S by SSE-S is is given by NK1(S) (and therefore is the same
for every SE-S class).

The group NK1(S) is known to vanish if S is left regular Noetherian (the ”regular”
means that finitely projective modules have finite projective resolutions). This is a
huge class and contains for example rings over polynomials or Laurent polynomials
with coefficients in Z or a field. For such rings S, SE-S implies SSE-S.

ForG = Z/n, NK1(ZG) = 0 if and only n is squarefree.

If NK1(S) is not trivial, then it is not a finitely generated group. (Farrell 1977)

12. Some applications

(1) A working conjecture of Parry on the classification of G skew products for G a
finite abelian group fails when NK1(ZG) is nontrivial.

(2) The Weak Generalized Spectral Conjecture implies the Strong Generalized Spec-
tral Conjecture.
(This requires more argument.)

(3) For a subring S of R, TFAE.
(i) NK1(S) 6= 0 .
(ii) There are nilpotent matrices over S which are not SSE over S to nonnegative
matrices.

Ite (3) above shows that a nonzero spectral condition does not always charac-
terize whether a matrix over a ring S is SSE-S to a nonnegative matrix. So (even
though the GSC only concerns primitive matrices), item (3) is evidence against the
Generalized Spectral Conjecture. (There are subrings of R with NK1(S) 6= 0.) On
the other hand, item (2) is evidence in favor. For now the Generalized Spectral
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Conjecture is still standing.

(4) In the long paper ”Path methods for strong shift equivalence of positive matri-
ces”, a 3-part program was given for understanding when positive matrices over a
dense subring S of R are SSE over S+. One part was to understand SSE-S.

(5) A key proof in that ”Path methods ... ” paper depended on an assumption
of SSE-S (not just SE-S). The Refinement Theorem shows that this assumption
is necessary, not just an artifact of the proof. One plus from finding the deeper
structure of SSE is to learn that some proof schemes cannot possibly work.

13. The little miracle of Kim-Roush-Wagoner

There is a little miracle discovered by Kim-Roush-Wagoner which leads to the
strong connections to algebraic K-theory and more. The little miracle is that a
certain kind of multiplication of by elementary matrices over tZ+[t] produces a
topological conjugacy of SFTs. Let us see how that works by an example.

Define

A =

(
t t2 + t3

t4 t5

)
and B =

(
t t2 + t3

t4 t5

)
.

Here we can exhibit how B is obtained from A:

B =

(
t t2 + t3

t4 t5

)
−
(

0 t3

0 0

)
+

(
t3+4 t3+5

0 0

)
.

This can be described in terms of a multiplication by an elementary matrix over
Z[t], E(I −A) = I −B :(

1 t3

0 1

)(
1− t −t2 − t3
−t4 1− t5

)
=

(
1− t− t3+4 −t2 − t3+5

−t4 1− t5
)

Recall from Lecture III how the matrices A and B give rise to directed graphs, let
us say GA and GB , with adjacency matrices A] and B]. Let pk denote the path in
GA corresponding to the monomial tk in A. For example, p3 is a path from vertex
1 to vertex 2. The passage from A to B can be described in terms of the formation
of GB from GA by two steps:

(1) Take out of GA the path p3 corresponding to t3.
(2) For each pi in GA which can follow p3, put in a path matching the path

p3pi in initial vertex (1, here), terminal vertex and length; the new path is
a path whose interior vertices are isolated.

In our example, let us name these new paths q3+4 and q3+5.
Now there is an obvious topological conjugacy h between σA and σB . A point x

in XA looks like a concatenation of the paths pi. Define h(x) as follows:

(1) First replace the concatenations p3p4 and p3p5 occuring in x with q3+4 and
q3+5 respectively.

(2) Leave remaining segments unchanged.

This rule defines h as a shift-commuting homeomorphism.
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14. Positive K-theory

The little miracle of Kim-Roush-Wagoner gives rise to the following approach
to classification of SFTs (and other symbolic dynamical systems). In the following
theorem, matrices are N × N. A finite matrix is simply embedded into an infinite
matrix which is otherwise zero. I is the infinite identity matrix. An elementary
positive equivalence is an equivalence E(I −C) = I −D or (I −C)E = I −D such
that C and D have entries in tZ+[t] and have all but finitely many entries zero, and
E is a basic elementary matrix Eij(±tk), k ≥ 0.

THEOREM (B-Wagoner) For A,B over tZ+[t], the following are equivalent.

(1) σA and σB are topologically conjugate.
(2) There is a sequence of elementary positive equivalences taking I − A to

I −B.

Remarks (see B-Wagoner):
(1) The theorem statement is very slightly incorrect, to avoid a technical issue. To
be correct, the matrices C,D are allowed to be slightly more general (having entries
in Z+[t] and with “no zero cycles”), and one has to make sense of how an SFT is
defined from the more general matrices.
(2) This scheme generalizes to similarly translate the SSE-Z+G classification for
other groups G to the infinite polynomial matrix setting.

15. The central result

Here is the central result for connecting the SSE and K-theory. We are identifying
a finite matrix A and the N × N matrix which has A as upper left corner and is
otherwise zero.

THEOREM (B-Schmieding) For matrices A,B over a ring S, the following are
equivalent.

(1) A and B are SSE over S.
(2) There are matrice U, V in El(S[t]) such that U(I − tA)V = I − tB.

Strong influences on finding this theorem were the papers B-Sullivan and B-
Wagoner.

Note, in the last theorem we are consider S a ring, and there is not problem
with composing elementary positive equivalences. But for example with = Z+, if
we consider have a matrix E which is a composition of basic elementary matrices,
we cannot conclude that E is a composition of basic elementary matrices used in a
chain of elementary positive equivalences.

16. Appendix: A case of SE-Z vs. SIM-Z

The material below comes from the AMS Memoir “Resolving Maps and the
Dimension Group” by B. Marcus, P. Trow and myself.

Let p be a monic polynomial with coefficients in Z. Also suppose p is irreducible
and λ is a nonzero root of p in C. For a matrix A over Z with characteristic
polynomial p, let r be a right eigenvector of A with its entries in Z[λ]. (To find r,
solve for x in (A − λI)x = 0 over the field Q(λ). Then multiply x by a suitable
number (to clear denominators in the entries) and let the result be r. Let IA be
the Z[λ] ideal generated by the entries of r. This ideal depends on the choice of r,
but its ideal class in Z[λ], denoted here as (IA)Z[λ], does not.
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It is a classical result of Olga Taussky Todd that these matrices A,B over Z with
characteristic polynomial p are SIM over Z if and only if (IA)Z[λ] = (IB)Z[λ]. The
analogous fact is that A and B are SE-Z if and only if (IA)Z[1/λ] = (IB)1/Z[λ].

Any matrix over a principal ideal domain S (such as a field, or Z) is SE-S to
a nonsingular matrix. (For a Dedekind domain, this is no longer true in general.)
So, with p and λ as above, the same classification up to SE-Z of integer matri-
ces with characteristic polynomial of the form tkp(t), k ∈ Z+, is still given by a
correspondence to the ideal classes of Z[1/λ].

The class number (number of ideal classes) of the ring Z[λ] is finite (Z[λ] has
finite index in the ring of algebraic integers of Q[λ]).

The ring Z[1/λ] contains the ring Z[λ] (because λ is an algebraic integer). The
class number of Z[λ] is greater than or equal to that of Z[1/λ], and can be greater.
This corresponds to SE-Z being a coarser relation than SIM-Z.

For an example of a similar flavor involving 2 × 2 matrices with eigenvalues in
Z, see the paper ”Algebraic shift equivalence ... ” of David Handelman and myself.

The algebra of SE-Z gets much more complicated in general. However, Kim and
Roush proved there is a decision procedure to determine whether two matrices are
SE over Z.

17. Appendix: the Spectral Conjecture for primitive matrices

Spectral Conjecture (Boyle-Handelman, Annals of Math. 1991)
Let Λ = (λ1, . . . , λk) be a list of nonzero complex numbers. Let S be a unital
subring of R. Then the following are equivalent.

(1) There exists primitive matrix A of size n whose characteristic polynomial

is tn−k
∏k
i=1(t− λi) (i.e., Λ is the nonzero spectrum of A).

(2) The list Λ satisfies the following conditions:
(a) (Perron Condition)

There exists a unique index i such that λi is a positive real number
and λi > |λj | whenever j 6= i.

(b) (Coefficents Condition)

The polynomial
∏k
i=1(t− λi) has coefficients in S.

(c) (Trace Conditions)
(i) (In the case S 6= Z.)

(Let tr(Λn) denote
∑k
i=1(λi)

n.)
For all positive integers n, k the following hold:
(A) For all n, tr(Λn) ≥ 0.
(B) If tr(Λn) > 0, then tr(Λnk) > 0.

(ii) (In the case S = Z.)
(Let trn(Λ) denote

∑
k|n µ(n/k)tr(Λn).)

For all positive integers n, trn(Λ) ≥ 0

The three conditions are necessary conditions for existence of the primitive matrix
with nonzero spectrum Λ; this is explained below. Also, if a nonzero spectrum
can be realized at matrix size n × n, then it can be realized at all larger sizes. So
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the inverse spectral problem for primitive matrices given the Spectral Conjecture
reduces to finding the minimum dimension allowing a given nonzero spectrum.
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