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Act 1. The Artin-Mazur zeta function, for

unlabeled graphs and their Z+ adjacency

matrices.

This is a warmup act for the main event:
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MARK

POLLICOTT

!!
who will tell you a lot about a variety of zeta

functions.

I will do more slowly some elementary formal

aspects of the Artin-Mazur zeta function, and

appy it to just one case, in which we use the

function to encode the number of length n

loops in a directed graph (with their weights,

if the graph is a labeled graph).

This kind of “zeta function for a directed graph”

will also be a step to connecting to more re-

fined “away from zero” algebra for a matrix
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(more refined than the nonzero spectrum –

eventiually, much more refined). That is one

reason why I will be emphasizing this zeta func-

tion as a formal power series regardless of con-

vergence. For a matrix over a more exotic ring

it is good to begin with something that makes

sense independent of ideas of convergence.

But, if you do not share this fetish for alge-

bra, and prefer honest functions of a complex

variable, worry not. Help is on the way.



Pollicott is coming !
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Some formal power series nonsense

For a formal power series with zero constant
term,

α(z) = α1z + α2z
2 + α3z

3 + · · · ,

the formal power series

exp(α(z)) =
∞∑
n=0

(α(z))n

n!
zn

is well defined, because for every k its coeffi-
cient for zk is the coefficient of zk in the poly-
nomial p determined by truncating the two se-
ries α(z) and exp(z) to degree k:

p(z) =
k∑

n=0

(α1z + · · ·+ αkz
k)n

n!
zn .

Likewise, if we write exp(α(z)) as 1+w, where
w = w(z), then using the familar series for
log(1 + w) we have

log(exp(α(z)) = w −
w2

2
+
w3

3
− · · · = α(z) .
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This familiar equation is true for any poly-

nomial w within some radius of convergence.

But this implies the combinatorial identities of

power series coeffiecents which gives equality

for formal power series independent of conver-

gence issues. (Or, if you prefer, you can find

and prove those identities directly.)

Consequently we can think of the series exp(α(z))

as a way of encoding the series α(z) (each se-

ries determines the other). The combinato-

rial identities which are the equations of for-

mal power series then show that this encoding

works equally well for series α with coefficients

in any commutative ring containing Q, as long

as α has zero constant term.

Why might one be interested in this encoding?



The Artin-Mazur zeta function

Suppose T is a map T : X → X. For n ∈ N,

Tn is defined by T1 = T , and recursively Tn =

T ◦ Tn−1 if n > 1. Suppose for every n that Tn

has only a finite number of fixed points. The

Artin-Mazur zeta function of T is

ζT (z) := exp
∞∑
n=1

|Fix(Tn)|
n

zn .

From what we’ve said before, this series en-

codes the whole sequence (|Fix(Tn)|)/n and

therefore the whole sequence (|Fix(Tn)|) (and

without regard to issues of convergence).

At first glance, this encoding might seem an

unnecessary complication. Let’s prepare to see

some rationale.

5



The zeta function of a fixed point

Suppose T : X → X is the system consisting of

a single fixed point. Then

ζT (z) := exp
∞∑
n=1

zn

n

and

exp
∞∑
n=1

zn

n
=

1

1− z
.

To check the last equation, take log to get

∞∑
n=1

zn

n
= − log(1− z)

then differentiate to get

∞∑
n=0

zn =
1

1− z
.

These steps reverse.
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The zeta function of a finite orbit

Next we compute the zeta function when T

is a cyclic permutation of k points.

Here |Fix(Tn)| = 0 if k does not divide n, and

|Fix(T kn)| = k . So,

ζT (z) := exp
∞∑
n=1

k

kn
zkn

= exp
∞∑
n=1

(zk)n

n

=
1

1− zk
.
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The product formula

Suppose T : X → X with |Fix(Tn)| < ∞ for

all n.

The fixed points of powers of T are the pe-

riodic points of T . Every periodic point of T

has a least period, which is the cardinality of

its orbit, {Tn(x) : n ∈ N} .

Let π(k) denote the number of T -orbits of car-

dinality k. A point is a fixed point of Tn if and

only if it lies in an orbit of size k such that k

divides n. So,

|Fix(Tn)| =
∑

k: k|n
kπ(k) .

Conversely, the sequence (|Fix(Tn)|) determines

the sequence (π(n)), by the Mobius inversion

formula:

π(n) =
∑
k:k|n

µ

(
n

k

)
|Fix(T k)| .
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From the dynamical point of view, it is the se-

quence (π(n)) which is more fundamental. But

typically it is the sequence (|Fix(Tn)|) which

has a much more pleasant, tractable and even

algebraic formulation.

The product formula for the Artin-Mazur zeta

function is one facet of the way this zeta func-

tion relates the dynamical sequence (π(n)) and

the sequence (|Fix(Tn)|). Here is the product

formula:

exp
∞∑
n=1

|Fix(Tn)|
n

zn =
∏
n

1

(1− zn)π(n)

Why does the product formula hold? We know

it holds if T is TO, the restriction of T to a fi-

nite orbit O. If T has just finitely many orbits,

then the formula holds because eaeb = ea+b.

Then it holds in general, since for every n the

coefficient of zn on both sides above depends

only depends on finitely many orbits (those of



size at most n).

The same logic shows that if S : X → X

and T : Y → Y with X and Y disjoint, and

if R : X ∪ Y → X ∪ Y is the union of these

functions, then

ζR(z) = ζS(z) ζT (z) .

Next we prepare to consider an example for

which the zeta function can be nicely com-

puted.



Adjacency matrix of a graph.

Unless specified otherwise, by “graph” we al-

ways mean finite “directed graph”.

N is the set of positive integers.

Z+ is the set of nonnegative integers.

Suppose G is an unlabeled graph, with vertex

set {1, . . . , n}. Then the adjacency matrix of G
is the n × n matrix A with entries defined by

setting A(i, j) to be the number of edges from

vertex i to vertex j.

Choosing another naming of vertices in G by

{1, . . . , n} produces a matrix B such that there

is a permutation matrix P such that B = PAP−1.

The distinction between A and B won’t matter

to us, so we usually ignore it.
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Counting paths in graphs.

Let GA be the unlabeled graph with adjacency

matrix A.

CLAIM: for any vertices i, j and n ∈ N, the

number of paths of length n from i to j is

An(i, j).

PROOF BY INDUCTION:

For n = 1, trivially true.

For n > 1: an n-path from i to j is an (n− 1)

path from i to some k followed by edge from

k to j. Using the induction hypotheses, then,

the number of n-paths from i to j is∑
k

An−1(i, k)A(k, j)

which is simply An(i, j).
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A path in GA is a loop if it begins and ends at

the same vertex. So, the number of loops of

length n is the sum over vertices i of An(i, i);

i.e., it is tr(An).

A loop is minimal if it is not a concatenation

of a smaller loop. (A minimal loop is allowed

to be a concatenation ab of distinct smaller

loops.)
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The zeta function of a directed graph

There is an important class of dynamical sys-

tems, shifts of finite type, which are presented

by unlabeled graphs (or equivalently, by their

adjacency matrices).

Let GA be the unlabeled graph with adjacency

matrix A. Let T be the corresponding shift of

finite type. All we need to know at this mo-

ment is that the number of fixed points of Tn

is equal to the number of loops of length n in

GA. But for more ...
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Pollicott is coming !
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Meanwhile, we want to compute the Artin-

Mazur zeta function ζT for the shift of finite

type T associated to A.

You can also thing of this ζT as simply a zeta

function associated to the undirected graph

GA, since |Fix(Tn)| is simply the number of

loops of length n in GA (which is tr(An)) .

(Caveat: this zeta function is NOT the Ihara

zeta function of an undirected graph.)

We compute:

ζT (z) = exp
∞∑
n=1

tr(An)

n
zn

= exp
∞∑
n=1

∑
λ λ

n

n
zn

=
∏
λ

exp
∞∑
n=1

λn

n
zn =

∏
λ

exp
∞∑
n=1

(λz)n

n
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=
∏
λ

(1− λz)−1 =

∏
λ

(1− λz)

−1

.

Suppose A is N × N . Then the numbers λ

above are the N roots of χA (some might be

equal). Then∏
λ

(1− λz)

 = zN

∏
λ

(z−1 − λ)


= zNχA(z−1) .

This is the characteristic polynomial of A (χA)

“written backwards”. If

χA = zN + aN−1z
N−1 + · · ·+ ajz

j

with aj 6= 0, then zNχA(z−1) is

zN(z−N + aN−1z
−(N−1) + · · ·+ ajz

−j)

= 1 + aN−1z + · · ·+ ajz
N−j .

The roots of det(I − zA) are precisely the re-

ciprocals of the nonzero roots of χA(z), with



appropriate multiplicity.

For example, if A = (2), then χA(z) = z − 2

and det(I − zA) = 1− 2z .

If

χA(z) = z6 − 2z5 = (z − 2) z5

then det(I − zA) = 1− 2z.

Summary: each of the following determines

the others:

det(I − zA);

the sequence (tr(An));

the sequence π(n);

the zeta function of the graph.



Act 2. 2. The same formalism, for G-

labeled graphs and their Z+G adjacency

matrices.

Now we will consider labeled graphs (graph

means directed graph).

We allow multiple edges between vertices.

For a labeled graph G, I will let G1 denote its

unlabeled graph. A1 will denote the adjacency

matrix of the unlabeled graph, and A matrix A

will present a labeled graph GA. The adjacency

matrix of the supporting unlabeled graph will

then be denoted A1.

The weight of a path of n edges will be the

product of the labels along its edges.

EXAMPLE. A = (1) and A1 = (1).

The is one vertex, with one self loop labeled

1.

For each n, there is one loop of length n. Its
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weight is 1.

EXAMPLE. B = (1
2 + 1

2) and B1 = (2).
There is one vertex, with two self loops, each
labeled 1

2.
There are 2n loops of length n. Each has
weight (1/2n). The total weight of the length
n loops is 1 (as for A above).

Sometimes we only care about the total weights
of n-loops (as in lecture II). Then we may as
well use the most simple graph, with A1 a zero
one-matrix, and we needn’t mention A1.

But sometimes it is critical to know also the
number of n-loops and the distribution of weights
among them. Then we need something more.

There is a simple algebraic device which han-
dles this perfectly. Note, we are assuming we
have a way to define weights of paths by mul-
tiplying labels. So at the very least, we need



the labels to lie in some semigroup. When the

semigroup is a multiplicately closed subset of

a ring, as in the first two examples, then it’s

natural to refer to “multiplying” labels for the

operation.

Now assume G is a group. Keep in mind the

example that G is the group of positive real

numbers under multiplication). We will define

the integral semigroup ring ZG.

As an additive group, ZG will be the free abelian

group on generator set {[g] : g ∈ G}. An ele-

ment of this group is a formal integral combi-

nation ∑
g∈G

ng[g]

with only finitely many of the integers ng nonzero.

Multiplication is

(
∑
g
ng[g])(

∑
h

mh[h]) =
∑
g

∑
h

(ngmh)[gh] .



If e is the identity of G, then [e] is the multi-

plicative identity of ZG, also denoted 1.

With this in mind, for G the positive reals un-

der multiplication we would write the matrix

example B more precisely as

B =
(
[1
2] + [1

2]
)
.

The matrix B1 is the image of B under the map

given entrywise by the “augmentation map”

α1 : ZG→ Z

α1 :
∑

ng[g] 7→
∑

ng .



Now consider the case that G is contained in a

ring R and the group operation of G is the ring

multiplication. (This fits our examples, with G

is the group of positive reals under multiplica-

tion.)

Then we have another matrix BR, the image

of B under a map defined entrywise by the ring

homomorphism ZG→ R given by the rule∑
ng[g] =

∑
ngg .

In general, for a matrix A over ZG:

• (B1)n(i, j) is the number of n-paths from i

to j

• (BR)n(i, j) is the total of the weights of n-

paths from i to j

• (B)n(i, j) tells you the number of n-paths

from i to j and the distribution of their weights.
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The zeta function for a labeled graph.

From here we assume that the group G la-

beling a graph is abelian. Then R = ZG is

commutative.

Let A be the adjacency matrix of a G-labeled

graph. So, A has entries in ZG. Then

1

det(I − zA)
= exp

∞∑
n=1

tr(An)

n
zn .

So, the polynomial det(I − zA) – the infor-

mation in the finite list of its coefficients – is

encoding the whole sequence (tr(An)), which

determines for every n the number of n-loops

and the distribution of their G-weights. The

proof is identical to the proof for a matrix A

over the integers. We are just working with a

different commutative ring.
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EXAMPLE. A =
(
[1
3] + [2

3]
)

.

Then A1 = (2) and

tr(An) =
n∑

k=0

(n
k

)2k

3n

 .



Why require G to be abelian? That is the con-

dition that makes the integral group ring ZG
commutative. To use determinant, we need

the matrices have entries in a commutative

ring.

But, it is even worse than that. We used for-

mal power series identities in developing the

zeta function. The underlying combinatorial

identities can involve rearrangements of orders

of multiplication, and can fail for a noncom-

mutative ring. For A over a noncommutative

ring, understanding the sequence (tr(An)) is a

much tougher business.

For example, we relied (rather heavily!) on

the identity eaeb = ea+b. Now, a+ b = b+ a in

any ring, so if ea+b makes sense, then it equals

eb+a. But if ab 6= ba, then there is no reason

for us to expect eaeb = ebea.
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Act 3. Polynomial matrices presenting non-
polynomial matrices.

We can see by example how a square matrix A
with entries from tZ+[t] can be used to define
a directed (and unlabeled) graph GA. (I use
the variable t to suggest “time”.)

EXAMPLE. A =

(
t t2

2t+ t3 0

)
.

(Draw GA.)

The graph GA has an adjacency matrix, which
we denote A]. There are some choices for as-
signing integer names to the new vertices in
GA. As usual, the choices don’t matter and
we ignore them.

You can see immediately that we can present
infinitely many graphs with even just 1×1 ma-
trices over tZ+[t]. A couple of theorems (there
are others) will indicate the richness of possi-
bilities.
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THEOREM (Handelman)

The following conditions on a positive real num-

ber λ are equivalent.

(1) There exists a 1 × 1 matrix A over tZ+[t]

such that A] is primitive and has spectral ra-

dius λ.

(2) λ is a Perron number and there is no other

root of the minimal polynomial of λ which is a

positive real number.

THEOREM (Perrin)

The following conditions on a positive real num-

ber λ are equivalent.

(1) λ is a Perron number.

(2) There exists a 2 × 2 matrix A over tZ+[t]

such that A] has spectral radius λ.

(B-Lind) Moreover, in (2) the matrix A] can

be chosen to be primitive.
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We will begin to see now and in Lecture IV that

the polynomial matrices provide much more

than a concise notation.

Here is the first indication.

Let A be square with entries in tZ+[t]. Let

A] be as above.

THEOREM [BGMY]

det(I − tA]) = det(I −A) .

For a proof: Manyana, manyana.

An example:

A =
(
t3
)

A] =

0 1 0
0 0 1
1 0 0


The characteristic polynomial of A] is t3 − 1.

Then

det(I − tA]) = 1− t3 = det(I −A) .
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Another example:

A =

(
t t+ t2

t 0

)
A] =

1 1 1
1 0 0
1 0 0

 .

You can check det(I − tA]) = det(I −A) .



Other rings.

Suppose now A is a matrix over tZ+G[t], with

G and abelian group. Just as we can asso-

ciate to a matrix A over tZ+[t] an unlabeled

graph, with adjacency matrix A] over Z+, we

can associate to a matrix A over tZ+G[t] a

labeled graph, with adjacency matrix A] over

Z+G. And then

THEOREM

det(I − tA]) = det(I −A) .

How to define the labeled graph from A?

Each entry A(i, j) of A is a sum of terms ng[g]tk,

which we regard as a sum of monomials [g]tk

(possibly some of these are repeated). A term

[g]tk will give rise to an isolated path of length

k from i to j (as in the unlabelled case, where

there were no coefficient [g]).

Now label the first edge on this path by [g]
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and the other edges by 1 (which is [e]). The

weight of this path is now [g].

The proof the Theorem for ZG will be as easy

as for Z.



Loop graphs

Recall we used a polynomial or power series

with coefficients in Z+,

f(z) = (f1)z + (f2)z2 + · · ·

to define a loop graph Gf , with some adja-

cency matrix A. When f is a polynomial, this

is the construction of A] from A in the special

case that A is 1× 1.

But! When f is a polynomial, by [BGMY],

1

1− f(z)
= exp

∞∑
n=1

tr((A])n)

n
zn .

This is the zeta function of the graph GA], or

the Artin-Mazur zeta function of the associ-

ated shift of finite type, as you prefer.

The same statement holds if f(z) is a power se-

ries, with infinitely many terms, and the graph

is infinite, with A] a matrix which is N × N.
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This follows immediately from the polynomial

case, because the coefficient of zn in the power

series on both sides does not change if we re-

place f with
∑n
k=1 fkz

k .

It is also interesting to note in this special case

that zeta function equals that series t(z) which

plays such a fundamental role in the theory of

infinite nonnegative matrices.



In conclusion :

Thank you for your attention.

I hope this has been of interest to some of

you.

But if this approach to zeta functions hasn’t

rocked your world, you can guess why you still

have reason to hope ...
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Pollicott is coming !
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