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1. Introduction

The Perron-Frobenius theory for N×N nonneg-

ative matrices comes from Vere-Jones (1962,

1967).

In this lecture, A is an N × N or n × n matrix

with nonnegative real entries. As in the finite

(n× n) case, the analysis goes by cases:

(1) A is irreducible with period 1

(“irreducible and aperiodic”)

(2) A is irreducible with period p

(3) general A.

When A is finite (n× n),

(1) holds iff A is primitive.

For A infinite (N×N ), it is too restrictive (and

it is unnecessary) to assume some power of A

is positive. (1) holds if for each (i, j), An(i, j)

is positive for all large n.
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The reductions from general to irreducible, and

from irreducible to aperiodic, are similar to the

finite case. We concentrate on case (1). Until

further notice, A is assumed to be irreducible

aperiodic N× N or n× n.

In the finite case, the Perron Theorem holds

for ALL aperiodic irreducible A.

In the infinite case, the aperiodic irreducible

matrices split into four classes. The split re-

flects how conclusions and corollaries of the

Perron Theorem for finite matrices break down.

The goal of this lecture is to come to some

understanding of the statements and some key

ideas in the infinite matrix case. It would take

another lecture or two to go through a proof.

Anyway, the proof is intricate enough that it is

better done in private.



2. The Perron Theorem for finite matrices

PERRON THEOREM

For A an n× n primitive matrix,

there is a number λ > 0 such that

• A has a nonnegative (hence positive) eigen-

vector with eigenvalue λ

• λ is a simple root of χA (the characteristic

polynomial of A) and λ > |α| for every other

root α of χA.

The critical (and easy) first step of the proof

was to get the nonnegative eigenvector. That

step used the action of A as an operator on

Rn. But we have no suitable space V on which

all the N×N irreducible aperiodic matrices act

in a way allowing an analogous argument.

So Vere-Jones gave a very different kind of

argument.
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3. Matrices as labeled graphs

For visual support and language: associate to

A a labeled graph GA (“graph” means “di-

rected graph”).

EXAMPLE

A =

(
3 π
.43 0

)

GA has vertices 1 and 2,

with

an edge from 1 to 1 labeled 3;

an edge from 1 to 2 labeled π;

an edge from 2 to 1 labeled .43 .
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A path p of length n in GA from i to j is a

finite sequence of n head-to-tail edges,

p = (i0i1)(i1i2) · · · (in−1in),

such that i0 = i and in = j .

p is a loop if i0 = in.

p is a first return loop if no vertex ij with

0 < j < n equals i0. For example:

The length 2 path (11)(11) is a loop but not

a first return loop.

An n-path(n-loop) is a path(loop) of length n.

We restrict from here to A such that all en-

tries of all An are finite.

The weight of p is A(i0, i1)A(i1, i2) · · ·A(in−1, in).

The weight of an edge from i to j is A(i, j) .

An(i, j) is the sum of the weights of the length

n paths from i to j.
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4. The two series f(z), t(z)

We pick a base index in N – the choice is unim-

portant; for definiteness we choose 1 – and

with it define two formal power series critical

for the theory. Define for n ∈ N:

tn = An(1,1), the sum of the weights of the

n-loops from 1 to 1

fn = the sum of the weights of the first return

n-loops from 1 to 1 .

Easily checked:

• tm+n ≥ tmtn for all m,n

• therefore sup(tn)1/n = lim(tn)1/n := λ

• λ doesn’t depend on the choice of base index

Define the Perron value λA of A to be this

λ (possibly ∞). Then Rad(t), the radius of

convergence of the series t, is 1/λ.
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EXAMPLE:

For positive numbers a, b, c, d and A =

(
a b
c d

)
,

f(z) = az + (bc)z2 + (bdc)z3 + (bd2c)z4 + · · ·
f(z) = az + bc

∑∞
n=0 dz

k+2

t(z) = az + (a2 + bc)z2 + · · ·

Easily checked:

• If A is finite, then λA is the usual spectral

radius.

• λA equals the sup of the λB such that B is a

finite principal submatrix of A.
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An essential functional relation

There is an essential relation:

1

1− f(z)
= 1 + t(z) .

This is an equation of formal power series: by

definition, 1
1−f(z) is the series

1 + f(z) + [f(z)]2 + [f(z)]3 + · · · .

In this infinite sum of series, for each n only

finitely many terms contribute to the coeffi-

cient of zn. Therefore the infinite sum is well

defined as a formal power series. As the right

hand side is a series with positive coefficients,

for a positive real α greater than than Rad(t)

it makes sense to say 1
1−f(z) =∞ when z = α.

RADII OF CONVERGENCE:

Note, Rad(f) ≤ Rad(t).
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EXAMPLE: A = (2)

GA is a single vertex with a self loop labeled 2.

1− f(z) = 1− 2z

1 + t(z) = 1 + 2z + 22z2 + 23z3 + · · ·
1

1−f(z) = 1
1−2z = 1 + t(z) .

PROOF OF THE RELATION:

Let g(z) =
∑
gnzn = (1− f(z)) (1 + t(z)) .

We must show g(z) = 1. We have

gn = tn − f1tn−1 − f2tn−2 · · · − fn−1t1

so we must show

tn = f1tn−1 + · · ·+ fn−1t1. Well,

tn = sum of weight of n-loops from 1 to 1

fn = sum of weight of simple n-loops from 1

An n-loop from 1 which is not simple must

be (for some k < n) a simple k-loop from 1

followed by an (n− k)-loop. For a given k, the

weights of these loops total to fktn−k. QED
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Dividing irreducible period 1 into classes

Let t(1/λ) denote
∑
n tn(1/λ)n.

DEFN A is transient (T) if t(λ) :=<∞.

DEFN A is recurrent (R) if t(λ) =∞.

For PF theory, the transient matrices are the

bad ones. Almost everything goes wrong.

We divide the recurrent matrices into 3 classes.

Below, f ′(z) is the formal power series

f ′(z) =
∑∞
n=1 nfnz

n−1 .
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DEFN A is null recurrent (NR) if it is recurrent

and f ′(1/λ) =∞.

DEFN A is positive recurrent (PR) if it is re-

current and f ′(1/λ) <∞.

The great Vere-Jones work (1967) gave the

theory of T,NR, PR.

Let us also single out another class (however

it’s named).

DEFN A is exponentially recurrent (ER) if

Rad(f) < Rad(t) (i.e., lim sup(fn)1/n < λ) .

(Caveat: terminology variations are discussed

later.)

We have R ⊃ PR ⊃ ER. The PF properties

will improve along this progression. ER is the

class very close to finite primitive matrices for

PF.
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Recurrent matrices

Here is a list of properties which as conclusions

or corollaries of the Perron Theorem hold for

every finite primitive matrix, and which also

hold for every recurrent matrix A.

1. There are nonnegative vectors `, r such that

`A = λ` and Ar = λr.

(Then ` and r must be positive.)

2. The nonnegative eigenvectors for λ are

unique up to scalar multiples.

3. u ≥ 0 and uA ≤ λu =⇒ uA = λu.
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Transient matrices

None of the previous properties are guaran-

teed for transient matrices. A transient matrix

might have no nonnegative right eigenvector

for λ; linearly independent right eigenvectors;

a positive vector v with Av = βv and β > λ.

Likewise (obviously), for left eigenvectors.

Systematically, for A transient:

There is always a positive vector v such that

Av ≤ λv and Av 6= λv.
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Let’s look at a transient example.

For numbers ε2, ε3, . . . define M(1,2) = 1

M(k, k + 1) = 1− εk if k > 1

M(k,1) = εk if k > 1

M = 0 otherwise.

If every εk is zero, then Mn → 0 (entrywise).

If the εk are chosen to decrease sufficiently

rapidly then we can easily force λM < 1. But

M will be stochastic and we can also solve for a

positive left eigenvector. This matrix M must

be transient, by our definition.
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Positive recurrent matrices

Below (and elsewhere), convergence means en-

trywise convergence.

Suppose `, r are positive left, right eigenvec-

tors for A. By abuse of notation, let `·r denote∑
n `nrn.

If A is positive recurrent, then ` · r <∞. Then

we can choose them so that ` · r = 1. In this

case, as for finite A,

((1/λ)A)n −→ r` .

In contrast, if A is null recurrent or transient

then ((1/λ)A)n −→ 0 .
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Exponentially recurrent matrices

This is the class which enjoys essentially all

good properties Perron-Frobenius. In addition

to the PR properties:

1. The convergence

((1/λ)A)n −→ r` .

is entrywise exponentially fast. This means

that for each (i, j) there are constants C > 0

and 0 < κ < 1 such that for all n

|((1/λ)A)n(i, j)− r(i)`(j)| < Cκn .

(The convergence need not be uniform over all

entries: given the choice of a base vertex, the

same κ can be chosen for all entries (i, j) (any

number from the interval (Rad(t)/Rad(f),1)),

but in general C depends on (i, j).)

That number κ, reflecting the exponential rate,

in general cannot be chosen independent of the

choice of base vertex.
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2. If 0 ≤ B ≤ A and B 6= A, then λB < λA.

3. For a finite matrix A with nonzero spec-
trum (λ1, . . . , λk), the function det(I − zA) =
(1 − λ1z) · · · (1 − λkz). So, the poles of the
function ζA : z 7→ 1/det(I − zA) are the re-
ciprocals of the numbers λ1, . . . , λk. One way
of expressing the spectral gap provided by the
Perron Theorem is to say that the function

z 7→
(1− λz)

det(I − zA)

(where λ = λA) has radius of convergence strictly
greater than the radius of convergence of ζA.
For A in ER, an analogous fact is that the ra-
dius of convergence of 1/det(I − f(z)) is 1/λ
and the radius of convergence of
(1− λz)/det(I − f(z)) is strictly larger.
(This becomes more meaningful when ζA can
be interpreted in terms of periodic points.)

All three of these properties must fail if A is
not ER.



More about those classes.

Here is a table of possibilities for the four classes

f(1/λ) t(1/λ) f ′(1/λ)
T < 1 finite ≤ ∞

NR 1 ∞ ∞
PR, not NR 1 ∞ <∞

ER 1 ∞ <∞

To justify the table (and know ER ⊂ PR) we

need the definitions and three facts:

(1) 0 < f(1/λ) ≤ 1 .

(2) f(1/λ) = 1 iff t(1/λ) =∞ .

(3) ER ⊂ PR .

Proofs (easy) for these facts are in an ap-

pendix.
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Loop graphs
Loop graphs are a useful tool, e.g. to write
examples.

Given 0 6= f =
∑∞
n=1 with fn ≥ 0 for all n, de-

fine the loop graph G(f) as the labeled graph
which is the union of the first return loops from
the base vertex 1, such that
• there is one n-loop for each n such that
fn > 0, and the loop is labeled such that its
weight is fn
(to be definite: let the first edge of the loop
be labeled fn and label other edges 1)
• each vertex not equal to 1 has a single in-
coming and a single outgoing edge.

If (after naming vertices as integers) A is the
adjacency matrix of G(f), then the function fA
is the given f . A is irreducible with period
equal to gcd{n : fn 6= 0}.
Abuse of notation: write λf for λA.

EXAMPLE: f(z) = 3z+z2 . Then A =

(
3 1
1 0

)
.
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Examples of the classes.

It will often be more transparent to consider

the case λ = 1. There is an easy reduction

which generally lets one assume λ = 1 WLOG.

Below, A is a matrix such that GA = G(f) .

EXAMPLE.

f(z) =
∑
c/n2zn, with c a positive constant.

Here λ = 1/λ = 1 = lim sup(fn)1/n .

Whether f(1) = 1 depends on c.

• If f(1) < 1, then A is transient.

• If f(1) = 1, then A is null recurrent, because

f ′(1/λ) =
∑
c/n =∞ .
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EXAMPLE.

f(z) =
∑

(c/n3)zn, with c a positive constant

such that f(1) = 1.

Then λ = 1 = 1/λ, so f(1/λ) = 1 and

f ′(1/λ) =
∑
c/n2 <∞ .

Therefore A is PR.

Because lim sup(c/n3)1/n = 1 = 1/λ,

the matrix A is not ER.
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EXAMPLE

f(z) = z

A = (1)

1 + t(z) = 1 + z + z2 + z3 + · · ·
λ = 1

lim sup(fn)1/n = 0 < 1/λ .

This A is ER.
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“Robustness” of the classes.

Here are a few remarks to suggest how promi-

nent the different classes may be among the

N× N irreducible aperiodic matrices.

First of all, we restrict to matrices A such

that An is well defined as a matrix with real

entries, for all n. That exludes “most” matri-

ces. Then we also exclude the remaining A for

which λA = +∞. In the small remaining set

where we live:

1. If A is ER, then there is ε > 0 such that any

matrix B which has the same zero entries and

satisfies (1− ε)A < B < (1 + ε)A must also be

ER.

(One can define a separable metric on the ape-

riodic irredicble matrices with a given sign pat-

tern, in which T and ER are each open sets and

their union is dense.)
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2. If A and B are recurrent with B ≤ A and
B 6= A, then λB < λA.
(Otherwise, fA(1/λA) > fB(1/λA) = fB(1/λB) =
1, which is impossible.)
3. Suppose A is not ER. Then there are many
B such that λB = λA and A 6= B ≤ A.
For example, suppose 0 < c < 1 and C is a ma-
trix formed by multiplying finitely many rows
and finitely many columns of A by c. Then any
B such that C ≤ B ≤ A and B 6= A is transient.

There are other remarks about the size of sets.
Suppose we use the box topology (the neigh-
borhoods of a matrix A are the sets of the form
Vε = {B : |B(i, j)A(i, j)| < ε((i, j)), where ε is a
function from N × N to (0,+∞). (This topol-
ogy is neither separable nor metrizable.)
In this topology, T with finite λ and ER are
open subsets of the N × N matrices, and the
complement in the set of A with finite λ of the
union of their interiors has empty interior. In
this sense, R\ER is the small and unstable set.
(I haven’t thought this through completely;
there should be sharper remarks.)



Stochasticization.

Suppose that A is a nonnegative matrix (fi-
nite or countable) and r is a strictly positive
right eigenvector, A = βr (so, β > 0).
Define a diagonal matrix R with R(i, i) = r(i).
Define P = R−1(1/β)AR.
Let v be the column vector with every entry 1.

By direct computation, Pv = v.
Therefore P is stochastic (nonnegative with
every row sum 1). Let us say a matrix ob-
tained from A by a positive diagonal similarity
and a scalar multiple is a stochasticization of
A. If A has only one positive eigenvector up
to scalar multiples (for example, whenever A
is recurrent), then there is only one stochasti-
cization P of A.

If A is irreducible aperiodic and recurrent, then
it has the unique stochasticization. If A is tran-
sient we can find R such that R−1(1/λ)AR is
less than or equal to a stochastic matrix and
is not equal to it.
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Probabilistic heuristic.

Suppose we consider irreducible aperiodic ma-

trices A with Perron value 1. (This a natu-

ral reduction. For example, multiplication of

a matrix by a positive scalar does not change

membership in any of the classes T,NR, PR,ER.)

Now think of entries of A as being like transi-

tion probabilities. (This heuristic can be made

precise for recurrent matrices by stochasticiz-

ing them. Note, for a diagonal matrix R with

positive diagonal, A and R−1AR have exactly

the same series f and t.)

Then t(1) can be thought of as the expected

number of returns to the base state (1, for

us), and “recurrent” and “transient” match

the standard probabilistic terminology. Simi-

larly f ′(1) corresponds to expected return time

in the recurrent case: infinite for null recurrent

and finite for positive recurrent.
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However, for transient matrices this doesn’t

work without the assumed normalization to

λ = 1. A transient matrix A can be stochastic

but have λ < 1 and t(1) =∞.



Notation and references.

I follow Kitchens in using the terms transient,
null recurrent and positive recurrent. Vere-
Jones used in their place R-transient, R-null
recurrent and R-positive recurrent, where R is
the radius of convergence of t (this R is our
1/λ.) The repetition of R emphasizes the dis-
tinction in the transient case.

“Exponentially recurrent” is a term picked for
this lecture. It seems self-explanatory with re-
gard to the meaning of the class. Gurevich and
Savchenko called these positive recurrent ma-
trices stable. What in the terms of this paper
would be an ER stochastic matrix was called
geometrically ergodic by Vere-Jones (1962).

One basic reference for this topic is the ex-
position in Chapter 7 of Kitchens’ book Sym-
bolic Dynamics, which has further references
and discussion of them (and which I found very
helpful as a reference). A standard reference
for many years has been Seneta’s book.
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Defining the Perron eigenvectors.

Given the countable irreducible and aperiodic
matrix A, and our choice of base vertex 1, for
each state j and n ∈ N define `1j(n) to be
the weight of the n-paths (i0)(i1i2) · · · (is−1is)
from 1 to j such that is 6= 1 if 0 < s < n.

Define the power series L1j(z) =
∑
n `1j(n)(z).

Similarly, define r1i(n) to be the weight of the
n-paths (i0)(i1i2) · · · (is−1is) from i to 1 such
that is 6= 1 if 0 < s < n.

Define the power series Rj1(z) =
∑
n r1j(n)(z).

Now we can define the vectors `, r which for
recurrent A will be the eigenvectors for the
Perron value λ. Set `(j) = L1j(1/λ) and r(i) =
Ri1(1/λ) .

Note L11(z) = R11(z) = f(z), so `(1) = r(1)
is at most 1. Also for any j, the coefficient
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of zn in the series L1j(z)Ljj(z)Rj1(z) is the

sum of weights of n loops from 1 to 1 which

pass through j. Because Ljj(1) ≤ 1, we have

L1j(1) ≤ Rj1(1) ≤ f(1) ≤ 1.

Proving the convergence in the recurrent case

involves more recursion relations and estimates.



Appendix: Some proofs about f(1/λ), f ′(1/λ).

(1) 0 < f(1/λ) ≤ 1 .

PROOF

0 < f(1/λ) because fn ≥ 0 for all n and f 6= 0

.

To see f(1/λ ≤ 1, suppose 0 < β < ∞ and

1 < f(β) ≤ ∞. It suffices to show β > 1/λ.

Pick α such that 0 < α < β and f(α) > 1.

Then

1 + t(α) = 1 + f(α) + [f(α)]2 + · · · =∞

and therefore α ≥ Rad(t) = 1/λ, and β > 1/λ.
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(2) f(1/λ) = 1 iff t(1/λ) =∞ . PROOF

This holds because 0 < f(1/λ) ≤ 1 and 1 +

t(z) = 1 + f(z) + [f(z)]2 + · · · .
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(3) ER =⇒ PR .

PROOF

By definition of ER, the function f defined

from the matrix A satisfies

lim sup(fn)1/n = Rad(f) > 1/λ .

First we prove A is recurrent. If f(1/λ < 1,

then (because Rad(f) > 1/λ) we may take α >

1/λ such that f(α) < 1. Then 1+t(α) <∞, so

Rad(t) ≥ α > 1/λ, a contradiction. Therefore

f(1/lambda) = 1.

Next we show f ′(1/λ) < ∞ . This holds be-

cause Rad(f ′) = Rad(f) > 1/λ.
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Appendix. Finite approximation for eigen-

vectors. Exercise: Prove the following regu-

larity result.

Suppose A is N×N recurrent and (Sk) is an in-

creasing sequence of subsets of N whose union

is N and such that for each k the principal sub-

matrix of A on index set Sk is primitive.

Let Ak be the N×N matrix such that Ak(i, j) =

A(i, j) if {i, j} ⊂ Sk and Ak = 0 otherwise.

Let rk be a nonnegative right eigenvector of

Ak, Akrk = λkrk, with the sequence (rk) nor-

malized such that for some element I of S1,

rk(I) = 1 for all k.

Then limλk = λ and lim rk = r such that

Ar = λr.

30


