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1. Introduction

By a nonnegative matrix we mean a matrix whose entries are nonnegative real
numbers. By positive matrix we mean a matrix all of whose entries are strictly
positive real numbers.

These notes (with appendices) give the core elements of the Perron-Frobenius
theory of nonnegative matrices. This splits into three parts:

(1) the primitive case (due to Perron)
(2) the irreducible case (due to Frobenius)
(3) the general case (due to?)

2. The primitive case

Definition 2.1. A primitive matrix is a square nonnegative matrix some power of
which is positive.

The primitive case is the heart of the Perron-Frobenius theory and its applica-
tions.

More definitions:

• The spectral radius of a square matrix is the maximum of the moduli of the
roots of its characteristic polynomial.

• A number λ is a simple root of a polynomial p(x) if it is a root of multiplicity
one (i.e., p(λ) = 0 and p′(λ) 6= 0).

• For a matrix A or vector v, we define the norm (||A|| or ||v||) to be the sum
of the absolute values of its entries.
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If ||·|| and ||·||′ are two norms on Rn, then there are positive constants C1, C2 > 0
such that for all v in Rn

||v|| ≤ C1||v||′ and ||v||′ ≤ C2||v|| .

So, our particular choice of norm isn’t important.
In the sequel, inequalities of matrices or vectors are defined to hold entrywise.

Theorem 2.2 (Perron Theorem). Suppose A is a primitive matrix, with spectral
radius λ. Then λ is a simple root of the characteristic polynomial which is strictly
greater than the modulus of any other root, and λ has strictly positive eigenvectors.

For example,

•
(

0 2
1 1

)
is primitive (eigenvalues are 2,−1)

•
(

0 4
1 0

)
is not primitive (eigenvalues are 2,−2)

•
(

1 0
1 1

)
is not primitive (1 is a repeated root of char.polynomial)

3. Why the Perron Theorem is useful

The Perron theorem provides a very clear picture of the way large powers of a
primitive matrix behave, with exponentially good estimates.

Theorem 3.1. Suppose A is primitive. Let u be a positive left eigenvector and let
v be a positive right eigenvector for the spectral radius λ, chosen such that uv = (1).
Then ((1/λ)A)n converges to the positive matrix vu, exponentially fast.

The theorem says that for large n, An − λnvu has entries exponentially smaller
than An; the dominant behavior of An is described by the positive rank one matrix
λnvu.

For example, if A is a stochastic matrix defining a stationary Markov chain, then
λ = 1 and An(i, j) is the probability of being in state j after n steps from state
i. Here the Perron Theorem makes a statement that for each j the probability of
being in state j after n steps is positive and rapidly approaches independence of
the initial state i.

Example 3.2. Let A =

(
1 3
2 2

)
. Then A has spectral radius λ = 4, with left and

right eigenvectors (2, 3) and

(
1
1

)
. Normalizing to achieve uv = (1), we define

u =
(
2 3

)
and v = (1/5)

(
1
1

)
.

Then

vu = (1/5)

(
1
1

)(
2 3

)
= (1/5)

(
2 3
2 3

)
=

(
2/5 3/5
2/5 3/5

)
.

One can check that indeed

An = 4n
(

2/5 3/5
2/5 3/5

)
+ (−1)n

(
3/5 −3/5
−2/5 2/5

)
.
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Proof of Theorem. The matrix (1/λ)A multiplies the eigenvectors u and v by 1 (i.e.
leaves them unchanged).

Let W be the A-invariant codimension 1 subspace of column vectors complemen-
tary to Rv. Let β be the spectral radius of the restriction of A to V . Then there
are k > 0 and C > 0 such that for all w in W , and for all positive integers n,

||Anw|| ≤ Cnkβn||w|| .
By the Perron Theorem, β < λ, so

||
( 1

λ
A
)n
w|| ≤ Cnk

(β
λ

)n
||w||

which goes to zero exponentially fast.
Therefore ((1/λ)A)n converges to the (unique) rank one matrix M which anni-

hilates W and satisfies Mv = v. For any w in W ,

uw =
(
u
( 1

λ
A
)n)

w

= u
(( 1

λ
A
)n
w
)
−→ 0 as n→∞

and therefore uw = (0). Now to check vu = M , we check that (vu) is a rank one
matrix fixing v and annihilating W :

(vu)w = v(uw) = 0 for all w ∈W
(vu)v = v(uv) = v(1) = v .

�

4. A proof of the Perron Theorem

We’ll give a proof of the Perron Theorem. There are others.

Theorem 4.1 (Perron Theorem). Suppose A is a primitive matrix, with spectral
radius λ. Then λ is a simple root of the characteristic polynomial which is strictly
greater than the modulus of any other root, and λ has strictly positive eigenvectors.

Note that the “simple root” condition is stronger than the condition that λ have
a one dimensional eigenspace, because a one-dimensional eigenspace may be part
of a larger-dimensional generalized eigenspace. For example, consider(

4 1
0 4

)
and

(
4
)
.

We begin with a geometrically compelling lemma.

Lemma 4.2. Suppose T is a linear transformation of a finite dimensional real
vector space, S′ is a polyhedron containing the origin in its interior, and a positive
power of T maps S′ into its interior. Then the spectral radius of T is less than 1.

Proof of the lemma. Without loss of generality, we may suppose T maps S′ into
its interior. Clearly, there is no root of the characteristic polynomial of modulus
greater than 1.

The image of S′ is a closed set which does not intersect the boundary of S′.
Because Tn(S′) ⊂ T (S′) if n ≥ 1, no point on the boundary of S′ can be an image
of a power of T , or an accumulation point of points which are images of powers of
T . But this is contradicted if T has an eigenvalue of modulus 1, as follows:
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CASE I: a root of unity is an eigenvalue of a T.
In this case, 1 is an eigenvalue of a power of T , and a power of T has a fixed

point on the boundary of S′. Thus the image of S′ under a power of T intersects
the boundary of S′, a contradiction.

CASE II: there is an eigenvalue of modulus 1 which is not a root of unity.
In this case, let V be a 2-dimensional subspace on which T acts as an irrational

rotation. Let p be a point on the boundary of S′ which is in V . Then p is a limit
point of {Tn(p) : n > 1}, so p is in the image of T , a contradiction.

This completes the proof. �

Proof of the Perron Theorem. There are three steps.
STEP 1: get the positive eigenvector.
The unit simplex S is the set of nonnegative vectors v such that ||v|| :=

∑
i vi

equals 1. The map

S → S

v 7→ 1

||vA||
vA

is well defined (vA 6= 0 because no row of A is zero) and continuous. By Brouwer’s
Fixed Point Theorem, this map has a fixed point, which must be a nonnegative
eigenvector of A for some positive eigenvalue, λ. Because a power of A is positive,
the eigenvector must be positive.

STEP 2: stochasticize A.
Let r be a positive right eigenvector. Let R be the diagonal matrix whose

diagonal entries come from r, i.e. R(i, i) = ri. Define the matrix P = (1/λ)R−1AR.
P is still primitive. The column vector with every entry equal to 1 is an eigenvector
of P with eigenvalue 1. Therefore every row sum of P is 1, and P is stochastic. It
now suffices to do Step 3.

STEP 3: show 1 is a simple root of the characteristic polynomial of P dominating
the modulus of any other root.

Consider the action of P on row vectors: P maps the unit simplex S into itself
and a power of P maps S into its interior. From Step 1, we know there is a
positive row vector v in S which is fixed by P . Therefore S′ = −v + S is a
polyhedron, whose interior contains the origin. By the lemma the restriction of
P to the subspace V spanned by S′ has spectral radius less than 1. But V is
P -invariant with codimension 1. �

Remarks 4.3 (Remarks on the proof above.).

(1) Any number of people have noticed that applicability of Brouwer’s Theorem
(Ky Fan in the 1950’s.) It’s a matter of taste as to whether to use it to
get the eigenvector. There are other significant arguments for getting the
existence of the positive eigenvector.

(2) The proof above, using the easy reduction to the geometrically clear and
simple lemma, was found by Michael Brin in 1993. It is dangerous in this
area to claim a proof is new. I haven’t seen an earlier explicit use of this
reduction.

(3) The utility of the stochasticization trick is by no means confined to this
theorem.
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We can now note that a primitive matrix has (up to scalar multiples) just one
nonnegative eigenvector.

Corollary 4.4. Suppose A is a primitive matrix and w is a nonnegative vector,
with eigenvalue β. Then β must be the spectral radius of A.

Proof. Because A is primitive, we can choose k > 0 such that Akw is positive.
Thus, w > 0 (since Akw = βkw) and β > 0. By the Perron Theorem, there is a
positive eigenvector v which has eigenvalue λ, the spectral radius, such that v < w.
Then for all n > 0,

λnv = Anv ≤ Anw = βnw .

This is impossible if β < λ, so β = λ. �

The following fact, whose proof doesn’t need the Perron Theorem, can be quite
useful.

Theorem 4.5. Suppose A and B are square nonnegative matrices, with spectral
radii λA and λB, such that A is primitive, A ≥ B and A 6= B.

Then λB < λA.

Proof. For k any positive integer, λB < λA is equivalent to λBk < λAk . Because
A is primitive, after passing to a power we may assume A is positive. Then A2 >
AB ≥ B2, so after passing to another power we may assume A > B, and therefore
A > (1− ε)B for some positive ε. By the Spectral Radius Theorem,

λB = lim
n
||Bn||1/n

≤ lim
n
||
(

(1− ε)A
)n
||1/n = (1− ε) lim

n
||An||1/n = (1− ε)λA .

�

The theorem also holds with |B| replacing B in the statement, by the same proof.
After the next section, it will be easy to prove that the theorem still holds if also
“primitive” is replaced by “irreducible” in the statement.

5. The irreducible case

Given a nonnegative n× n matrix A, we let its rows and columns be indexed in
the usual way by {1, 2, . . . n}, and we define a directed graph G(A) with vertex set
{1, 2, . . . , n} by declaring that there is an edge from i to j if and only if A(i, j) 6= 0.
A loop of length k in G(A) is a path of length k (a path of k successive edges)
which begins and ends at the same vertex.

Definition 5.1. An irreducible matrix is a square nonnegative matrix such that for
every i, j there exists k > 0 such that Ak(i, j) > 0.

Notice, for any positive integer k, Ak(i, j) > 0 if and only if there is a path of
length k in G(A) from i to j.

Definition 5.2. The period of an irreducible matrix A is the greatest common divisor
of the lengths of loops in G(A).

E.g., the matrix

(
0 2
1 1

)
has period 1 and the matrix

(
0 4
1 0

)
has period 2.
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Now suppose A is irreducible with period p. Pick some vertex v, and for 0 ≤ i, p
define a set of vertices

Ci = {u : there is a path of length n from v to u such that n ≡ i mod p} .

The sets C(i) partition the vertex set. An arc from a vertex in C(i) must lead to
a vertex in C(j) where j = i + 1 mod p. If we reorder the indices for rows and
columns of A, listing indices for C0, then Cl, etc., and replace A with PAP−1 where
P is the corresponding permutation matrix, then we get a matrix B with a block
form which looks like a cyclic permutation matrix. For example, with p = 4, we
have a block matrix

B =


0 A1 0 0
0 0 A2 0
0 0 0 A3

A4 0 0 0

 .

A specific example with p = 3 is
0 2 1 0 0 0
0 0 0 4 1 2
0 0 0 1 0 3
3 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0

 .

Note the blocks of B are rectangular (not necessarily square). B and A agree on
virtually all interesting properties, so we usually just assume A has the form given
as B (i.e., we tacitly replace A with B, not bothering to rename). We call this a
cyclic block form.

Proposition 5.3. Let A be a square nonnegative matrix. Then A is primitive if
and only if it is irreducible with period one.

Proof. Exercise. �

Definition 5.4. We say two matrices have the same nonzero spectrum if their char-
acteristic polynomials have the same nonzero roots, with the same multiplicities.

Proposition 5.5. Let A be an irreducible matrix of period p in cyclic block form.
Then Ap is a block diagonal matrix and each of its diagonal blocks is primitive.
Moreover the diagonal blocks have the same nonzero spectrum.

Proof. We’ll give a proof in the special case p = 3 and A having block form

A =

 0 A1 0
0 0 A2

A3 0 0

 .

(The proof of the general case involved no additional ideas and should be perfectly
clear from this special case.) Note the diagonal blocks Di of Ap:

Ap =

A1A2A3 0 0
0 A2A3A1 0
0 0 A3A1A2

 :=

D1 0 0
0 D2 0
0 0 D3

 .
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These diagonal blocks must be irreducible of period 1, hence primitive. We have
for example

D1 = (A1) (A2A3) := RS

D2 = (A2A3) (A1) := SR .

Therefore D1 and D2 have equal trace, since

trace(RS) =
∑
i

(RS)(i, i)

=
∑
i

∑
k

R(i, k)S(k, i)

=
∑
i

∑
k

S(k, i)R(i, k) =
∑
k

∑
i

S(k, i)R(i, k)

= trace(SR) .

For n > 1 likewise,

(D1)n =
(

(D1)n−1R
)
S

(D2)n = S
(

(D1)n−1R
)

and therefore trace(D1)n = trace(D2)n for all n > 0. This forces D1 and D2 to have
the same nonzero spectrum (we will see a formal proof of this in a later lecture).
Likewise (applying the argument to the pair D2, D3), D3 has this same nonzero
spectrum. �

Proposition 5.6. Let A be an irreducible matrix with period p and suppose that ξ
is a primitive pth root of unity. Then the matrices A and ξA are similar.

In particular, if c is root of the characteristic polynomial of A with multiplicity
m, then ξc is also a root with multiplicity m.

Proof. The proof for the period 3 case already explains the general case:ξ−1I 0 0
0 ξ−2I 0
0 0 ξ−3I

 0 A1 0
0 0 A2

A3 0 0

ξ1I 0 0
0 ξ2I 0
0 0 ξ3I


=

 0 ξA1 0
0 0 ξA2

ξ−2A3 0 0

 = ξ

 0 A1 0
0 0 A2

A3 0 0


since ξ−2 = ξ. �

Definition 5.7. If A is a matrix, then its characteristic polynomial away from zero
is the polynomial qA(t) such that qA(0) is not 0 and the characteristic polynomial
of A is a power of t times qA(t).

Theorem 5.8. Let A be an irreducible matrix of period p. Let D be a diagonal
block of Ap (so, D is primitive). Then

qA(t) = qD(tp) .
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Equivalently, if ξ is a primitive pth root of unity and we choose complex numbers

λ1, . . . , λj such that qD(t) =
∏k

j=1(t− (λpj )), then

qA(t) =

p−1∏
i=0

k∏
j=1

(t− ξiλj) .

Proof. From the last proposition, a nonzero root c of qAp has multiplicity kp, where
k is the number such that every pth root of c is a root of multiplicity k of qA. Each
c which is a root of multiplicity k for qD is a root of multiplicity kp for qAp (since
the diagonal blocks of Ap have the same nonzero spectrum. �

Theorem 5.9 (Perron-Frobenius Theorem). Let A be an irreducible matrix of
period p.

(1) A has a nonnegative right eigenvector r. This eigenvector is strictly posi-
tive, its eigenvalue λ is the spectral radius of A, and any nonnegative eigen-
vector of A is a scalar multiple of r.

(2) The roots of the characteristic polynomial of A of modulus λ are all simple
roots, and these roots are precisely the p numbers λ, ξλ, . . . , ξp−1λ where ξ
is a primitive pth root of unity.

(3) The nonzero spectrum of A is invariant under multiplication by ξ.

Proof. Everything is easy from what has gone before except the construction of the
eigenvector. The general idea is already clear for p = 3. Then we can consider A
in the block form

A =

 0 A1 0
0 0 A2

A3 0 0

 .

Now A1A2A3 is a diagonal block of A, primitive with spectral radius λ3. Let r
be a positive right eigenvector for A1A2A3. Compute: 0 A1 0

0 0 A2

A3 0 0

 λ2r
A2A3r
λA3r

 =

A1A2A3r
λA2A3r
λ2A3r

 = λ

 λ2r
A2A3r
λA3r


�

6. General nonnegative matrices

Theorem 6.1. If A is a square nonnegative matrix, then there is a permutation
matrix P such that P−1AP is block triangular, with each diagonal block either an
irreducible matrix or a zero matrix.

Proof. Suppose A is m × m. Recall the directed graph G(A): the vertex set is
{1, . . . ,m} and there is an edge from i to j iff there exists k > 0 such that Ak(i, j) >
0. Partition {1, . . . ,m} into classes Ci: two indices i, j are in the same class if in
G(A) there is a path from i to j and a path from j to i. Draw a new directed graph
G′ with vertex set the set of classes, with an edge from C to C′ iff there is an edge
in G(A) from an index in C to an index in C′. There is no cycle in G′. Thus by
induction we may order the classes as C1, . . . , Cj such that i < j implies there is
no path in G′ from Cj to Ci. Then define P to reorder {1, . . . ,m} compatible with
the ordering C1, . . . , Cj . �
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Here is a simple example following the proof notation above:

A =


1 1 1 0 1
0 0 0 0 0
1 1 1 0 1
1 1 1 1 1
0 1 0 0 0


Set C1, C2, C3, C4 = {4}, {1, 3}, {5}, {2}. Define P (acting on rows) to effect the
permutation 4→ 1, 1→ 2, 3→ 3, 5→ 4, 2→ 5. Then

P =


0 1 0 0 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0
0 0 0 1 0

 and P−1AP =


1 1 1 1 1
0 1 1 1 1
0 1 1 1 1
0 0 0 1 1
0 0 0 0 0

 .

Remark 6.2. A square nonnegative matrix will always have at least one nonnegative
(not necessarily positive) eigenvector for eigenvalue the spectral radius.

Remark 6.3. The characteristic polynomial χA(t) of a square nonnegative matrix
A will be the same as that for P−1AP above, which will be a product of those of
characteristic polynomials of irreducible diagonal blocks and some power of t.

So, the basic picture: understanding the spectra of primitive matrices, we under-
stand the spectra of irreducible matrices; understanding the spectra of irreducible
matrices, we understand the spectra of general nonnegative matrices.

7. Perron numbers and Mahler measures

Here is our first example of a nontrivial inverse spectral problem for nonnegative
matrices.

Question: What real numbers can be the spectral radius of a primitive matrix
with integer entries?

Definition 7.1. A Perron number is an algebraic integer which is strictly greater
than the modulus of any of its algebraic conjugates over Q.

Theorem 7.2 (Lind, Bulletin AMS 1983). For a real number λ, the following
conditions are equivalent.

(1) λ is the spectral radius of a primitive matrix with integer entries.
(2) λ is a Perron number.

That (1) implies (2) follows from the Perron Theorem. Lind’s proof that (2)
implies (1) is a pleasant geometric construction.

The set P of Perron numbers has some algebraic properties, which (as in [Lind
1983]) are left as excercises for the interested:

(1) P is closed under addition and multiplication.
(2) If α, β and λ are in P and λ = αβ, then {α, β} ⊂ Q(λ).
(3) Q(λ) ∩ P is a discrete subset of R.
(4) A Perron number has only finitely many factorizations as a product of

Perron numbers greater than 1.

By (4), any Perron number greater than 1 is a product of “irreducible” Perron
numbers: those Perron numbers greater than 1 which are not a product of other
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Perron numbers which are greater than 1. Factorization into irreducibles in P is

not unique. For example, letting α = 1+
√
5

2 , we have (α+ 2)2 = 4α2.

Definition 7.3. The Mahler measure of a polynomial p(z) = a(z−α1)(z−α2) · · · (z−
αn) is |a(α1α2 · · ·αn)|.

The Mahler measure can be defined by an integral, and there is a definition
by an integral for polynomials in several variables. Mahler measure is a rich and
multifaceted topic that we won’t go into here except to remark on some relations
and parallels to Perron numbers:

(1) If p(z) is a monic polynomial with coefficients in Z, then its Mahler measure
is a Perron number.

(2) (Dixon and Dubickas, Mathematika 2004) Given λ the Mahler measure of
a degree d polynomial over Z, there is K = K(d) such that λ has degree at
most K.

(3) Given a polynomial p with integer coefficients and a root λ of p, there is an
algorithm to determine whether λ is a Mahler measure.

The description of Perron numbers gives a satisfying characterization of the
numbers which are spectral radii of primitive matrices. Whether there is a satisfying
characterization of the numbers which are Mahler measures, I leave as an open
question.

8. The Spectral Conjecture

In this section we complement the basic Perron-Frobenius theory above, by con-
sidering the inverse spectral problem for nonnegative matrices. This is a step to
more algebraic relations in later lectures.

There is a long history of looking for sufficient conditions for a list of n complex
numbers (possibly repeated) to be the spectrum of a nonnegative n×n matrix. The
literature contains ingenious special results and also complete characterizations for
some small n. Overall, the problem is quite complicated. However, by focusing on
the nonzero spectrum one can recover simple conditions.

As we’ve seen, if you understand the possible spectra of primitive matrices, then
you understand the possible spectra of general nonnegative matrices. Also, for ap-
plications you need to understand the primitive case. So the nonzero spectra of
primitive matrices are our focus, and it is here that we find clear conditions.

Spectral Conjecture (Boyle-Handelman, Annals of Math. 1991)
Let Λ = (λ1, . . . , λk) be a list of nonzero complex numbers. Let S be a unital
subring of R. Then the following are equivalent.

(1) There exists primitive matrix A of size n whose characteristic polynomial

is tn−k
∏k

i=1(t− λi) (i.e., Λ is the nonzero spectrum of A).
(2) The list Λ satisfies the following conditions:

(a) (Perron Condition)
There exists a unique index i such that λi is a positive real number
and λi > |λj | whenever j 6= i.

(b) (Coefficents Condition)

The polynomial
∏k

i=1(t− λi) has coefficients in S.
(c) (Trace Conditions)
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(i) (In the case S 6= Z.)

(Let tr(Λn) denote
∑k

i=1(λi)
n.)

For all positive integers n, k the following hold:
(A) For all n, tr(Λn) ≥ 0.
(B) If tr(Λn) > 0, then tr(Λnk) > 0.

(ii) (In the case S = Z.)
(Let trn(Λ) denote

∑
k|n µ(n/k)tr(Λn).)

For all positive integers n, trn(Λ) ≥ 0

The three conditions are necessary conditions for existence of the primitive matrix
with nonzero spectrum Λ; this is explained below. Also, if a nonzero spectrum
can be realized at matrix size n × n, then it can be realized at all larger sizes. So
the inverse spectral problem for primitive matrices given the Spectral Conjecture
reduces to finding the minimum dimension allowing a given nonzero spectrum.

Results on the Spectral Conjecture

• (BH, Annals of Math 1991)
True whenever the large entry of Λ is in S. In particular:
True for S = R.
(Very complicated proof using symbolic dyanmics.)

• (Kim-Ormes-Roush, JAMS 2000)
True for S = Z.
(Complicated proof using polynomial matrix presentations, formal power
series, etc.)

• (Laffey, Linear Algebra Appl. 2012)
For the special (but central) case that tr(Λ) > 0 and also
S = R or S is any subfield of R:
A short, practical and constructive proof is given, via an elegantly struc-
tured family of matrices, with meaningful bounds on the size matrix re-
quired in terms of the spectral gap (the difference between the spectral
radius and the next largest modulus of an element of the spectrum).

Just how large a primitive matrix must be to accommodate a given nonzero
spectrum is in general still poorly understood. The proofs above are not geometric.
The problem seems geometric, but evidently nobody has understood this geometry
well enough to say much.

Why the conditions of the Spectral Conjecture are necessary.

The first condition of course follows from the Perron Theorem.
The second condition is obvious.
The trace conditions for S 6= Z follow easily from the following fact: if A has

nonzero spectrum Λ, then tr(Λn) = tr(An) ≥ 0 .
To understand the trace conditions for S = Z, imagine the nonnegative matrix

A as the adjacency matrix of a directed graph G. (The vertices of G are the indices
of the rows/columns of A, and A(i, j) is the number of edges from i to j in G.) A
loop is a path of edges from i to i, for some i. A loop ` is simple if there is no
shorter loop `′ such that ` is a concatenation of copies of `′.
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The trace conditions for S = Z are stating that the number of simple loops of
length n is nonnegative, for all n. To see this, let sk denote the number of simple
loops in G of length k, and recall tr(An) = tr(Λn) is the number of loops in G of
length n. Then

tr(Λn) =
∑
k|n

sk

because for any loop ` of length n, there is unique simple loop `′ such that ` is the
concatenation of copies of `′. If `′ has length k and ` is a concatenation of copies
of `′, then k divides n.

Consequently, by applying the combinatorial Mobius inversion formula we get

sn =
∑
k|n

µ(n/k)tr(Λk) .

Here µ : N→ {−1, 0, 1} is the Mobius function:

µ(1) = 1

µ(n) = 0 if the square of a prime divides n

= 1 if n is the product of an even number of distinct primes

= −1 if n is the product of an odd number of distinct primes .
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