
MAHLER MEASURE OF MULTIVARIABLE POLYNOMIALS

MARIE-JOSÉ BERTIN

1. Definition of Mahler Measure and Lehmer’s question

Definition 1. Given P ∈ C[x], such that

P (x) = a
∏
i

(x− αi)

define the Mahler measure of P as

M(P ) = |a|
∏
i

max{1, |αi|}.

The logarithmic Mahler measure is defined as

m(P ) = logM(P ) = log |a|+
∑
i

log+ |αi|.

When does M(P ) = 1 for P ∈ Z[x]? We have the following result.

Lemma 2. (Kronecker, [Kr57]) Let P =
∏
i(x − αi) ∈ Z[x]. If |αi| ≤ 1, then the

αi are zero or roots of unity.

By Kronecker’s Lemma, P ∈ Z[x], P 6= 0, then M(P ) = 1 if and only if P is the
product of powers of x and cyclotomic polynomials. This statement characterizes
integral polynomials whose Mahler measure is 1.

Lehmer found the example

m(x10 +x9−x7−x6−x5−x4−x3 +x+1) = log(1.176280818 . . . ) = 0.162357612 . . .

and asked the following (Lehmer’s question, 1933, formulated in a slightly different
manner):

Is there a constant C > 1 such that for every polynomial P ∈ Z[x] with M(P ) >
1, then M(P ) ≥ C?

Lehmer’s question remains open nowadays. His 10-degree polynomial remains
the best possible result.

There are several results in the direction of solving Lehmer’s question. Some
of them consider restricted families of polynomials. The first of such results was
found by Breusch [Br51] and (independently) by Smyth [Sm71]. For P ∈ Z[x]
monic, irreducible, P 6= ±P ∗ (nonreciprocal), then

M(P ) ≥M(x3 − x− 1) = θ = 1.324717 . . .

The algebraic integer θ is nothing else than the smallest Pisot number.
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This result implies in particular that if P ∈ Z[x] is monic, irreducible, and of
odd degree, then P is nonreciprocal and

M(P ) ≥ θ.

On the other hand, there are results giving lower bounds that depend on the
degree. The most fundamental of such results was given by Dobrowolski [Do79]. If
P ∈ Z[x] is monic, irreducible and noncyclotomic of degree d, then

(1) M(P ) ≥ 1 + c

(
log log d

log d

)3

,

where c is an absolute positive constant.

2. Mahler Measure in several variables

Definition 3. For P ∈ C[x±1
1 , . . . , x±1

n ], the logarithmic Mahler measure is defined
by

m(P ) :=
∫ 1

0

. . .

∫ 1

0

log |P (e2πiθ1 , . . . , e2πiθn)|dθ1 . . . dθn

=
1

(2πi)n

∫
Tn

log |P (x1, . . . , xn)|dx1

x1
. . .

dxn
xn

,

where Tn = {(x1, . . . , xn) ∈ Cn | |x1| = · · · = |xn| = 1}.

It is possible to prove that this integral is not singular and that m(P ) always
exists. This definition appeared for the first time in the work of Mahler [Ma62].

Because of Jensen’s formula 1:∫ 1

0

log |e2πiθ − α|dθ = log+ |α|

we recover the formula for the one-variable case.
Let us mention some elementary properties.

Proposition 4. For P,Q ∈ C[x1, . . . , xn]

m(P ·Q) = m(P ) + m(Q).

Because of this formula, we can extend the definition of Mahler measure to
rational functions.

Proposition 5. Let P ∈ C[x1, . . . , xn] such that am1,...,mn is the coefficient of
xm1

1 . . . xmnn and P has degree di in xi. Then

| am1,...,mn | ≤
(
d1

m1

)
. . .

(
dn
mn

)
M(P ),

M(P ) ≤ L(P ) ≤ 2d1+···+dnM(P ),

where L(P ) is the length of the polynomial, the sum of the absolute values of the
coefficients.

1log+ x = log max{1, x} for x ∈ R≥0
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In fact, the reason why Mahler considered this construction is that he was looking
for inequalities of the typical polynomial heights (such as L(P ) or the maximum
absolute value of the coefficients) between the height of a product of polynomials
and the heights of the factors. These kinds of inequalities are useful in transcendence
theory. The Mahler measure M(P ) is multiplicative and comparable to the typical
heights, and that makes it possible to deduce such inequalities.

It is also true that m(P ) ≥ 0 if P has integral coefficients.
Let us mention the following amazing result.

Theorem 6. (Boyd [Bo81], Lawton [Law83]) For P ∈ C[x1, . . . , xn]

(2) lim
k2→∞

. . . lim
kn→∞

m(P (x, xk2 , . . . , xkn)) = m(P (x1, . . . , xn))

It should be noted that the limit has to be taken independently for each variable.
Because of the above theorem, Lehmer’s question in the several-variable case

reduces to the one-variable case. In addition, this theorem shows us that we are
working with the “right” generalization of the original definition for one-variable
polynomials.

The formula for the one-variable case tells us some information about the nature
of the values that Mahler measure can reach. For instance, the Mahler measure of
a polynomial in one variable with integer coefficients must be an algebraic number.

It is natural, then, to wonder what happens with the several-variable case. Is
there any simple formula, besides the integral from the definition?

Boyd’s limit formula (1981) [Bo81]

lim
N→+∞

m(P (x, xN )) = m(P (x, y))

whenever the left hand term contains an infinity of different measures, was a hope
for getting small measures in one variable from small measures in two variables. At
that time, Boyd computed numerically [Bo81]

(3) M((x+ 1)y2 + (x2 + x+ 1)y + x(x+ 1)) = 1.25542 · · ·

(4) M(y2 + (x2 + x+ 1)y + x2) = 1.28573 · · ·
and these are the smallest known measures in two variables. Notice that these

polynomials define elliptic curves.
The same year, Smyth obtained the first explicit Mahler measures [Bo81]:

(5) m(x+ y + 1) = L′(χ−3,−1)

(6) m(x+ y + z + 1) =
7

2π2
ζ(3)

where χ−3 denotes the odd quadratic character of conductor 3 (χ−3(3n + 1) = 1,
χ−3(3n+ 2) = −1, χ−3(3n) = 0) and

L′(χ−3,−1) =
3
√

3
4π

L(χ−3, 2) =: d3

is derived from the functional equation of the Dirichlet L-series.
Then, we must await Deninger’s guess of the formula [De97] (1996)

(7) m(x+
1
x

+ y +
1
y

+ 1) ?=
15
4π2

L(E, 2) = L′(E, 0),
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where, the Laurent polynomial defines an elliptic curve E of conductor 15 and
L(E, 2) its L-series at s = 2 2. The last equality comes from the functional equation.
(A question-mark over an equals sign means that the relation is verified numerically
up to fifty decimals.) Since then, there has been an abundant literature in this area,
three Conferences on the Mahler measure and developments in many mathematics
domains, see for example [Bo98].

Recently (2011), Rogers and Zudilin proved (7)[RZ]. Also, some weeks ago,
Zudilin [Zu13] posted on the arXiv a new proof.

3. Curves of genus 0

Let me take an example. For the polynomial

P = y2(x+ 1)2 + 2y(x2 − 6x+ 1) + (x+ 1)2,

Boyd guessed (1998) [Bo98]

m(P ) ?= 4L′(χ−4,−1) =
8
π
L(χ−4, 2) = 4

4
√

4
4π

L(χ−4, 2) =: 4d4

where
L(χ−4, 2) = 1− 1

32
+

1
52

+ · · · = G,

G being Catalan’s constant.
Here P defines a cubic curve C with (1, 1) as double point.
Putting x = 1 +X and y = 1 + Y and completing the square, we find

(Y (X + 2)2 + 2X2)2 = −16X2(X + 1).

Hence we get the parametrization of the curve C

x = −t2 y = −
(

1 + t

1− t

)2

But,

m(P ) =
1

(2πi)2

∫
|x|=1

∫
|y|=1

log |P (x, y)|dx
x

dy

y

=
1

2πi

∫
|x|=1

log(max(|y1|, |y2|))
dx

x
(by Jensen’s formula)

=
1

2πi

∫
Γ

η(2)(x, y)

where

η(x, y) = i log |y|d arg x− i log |x|d arg y
is a differential form on the variety Γ (Maillot’s trick [Ma00])

Γ = {(x, y) ∈ C2/ (x, y) ∈ C |x| = 1, |y| ≥ 1}.
Now η is related to the Bloch-Wigner dilogarithm D
The Bloch-Wigner dilogarithm of a complex number x is defined as

D(x) := =Li2(x) + log |x| arg(1− x)

2The L-series of the elliptic curve E is defined by L(E, s) =Q
p-N

1
1−app−s+p1−2s

Q
p|N

1
1−app−s

=
P

n≥1
an
ns
, with ap = p+ 1−Np and Np := |E(Fp)|.
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where Li2 is the ordinary dilogarithm. It is a univalued, real analytic function in
P1(C) \ {0, 1,∞}, continuous in P1(C). It satifies the property

D(
1
z

) = D(1− z) = D(z̄) = −D(z),

the distribution relation

D(zn) = n

n−1∑
k=0

D(ζkz)

where ζ denotes a primitive n-th root of unity and the five-term relation

D(x) +D(y) +D(1− xy) +D(
1− x
1− xy

) +D(
1− y

1− xy
) = 0.

Moreover, if the wedge differential η is given by

η(x, y) = log(| x |)di arg y − log | y | di arg x,

the derivative of D verifies

diD(x) = η(x, 1− x)

Notice that the differential η is

• multiplicative in each variable
• antisymetric
• and if α 6= β satisfies the Tate’s relation

η(t− α, t− β) = η(
t− α
β − α

, 1− t− α
β − α

) + η(t− α, α− β) + η(β − α, t− β).

Thus the Mahler measure can be expressed as

m(P ) = − i

2πi

∫
γ1

4dD(−t)− 4dD(t)

=
2
π

[D(t)−D(−t)]i−i

=
8
π
D(i)

= 4d4(by definition of D).

Thus, Boyd’s guess is proved.

Remark 7. Let us recall Bloch’s formula, where ζf = e
2πi
f ,

df =
f

4π

f∑
m=1

χ−f (m)D(ζmf ).

and also

L(χ−f , 2) =
∑
n≥1

χ−f (n)
n2

=
1√
f

f−1∑
k=1

(
k

f

)
Im(

∑
n≥1

ζknf
n2

)

=
1√
f

f−1∑
k=1

(
k

f

)
D(ζkf )(8)
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So, for some genus 0 curves, the Mahler measure encodes the Bloch-
Wigner dilogarithm hence the Bloch groups.

Lalin [La07] has proved that Smyth’s first result can be treated in that context.
Vandervelde [V08] has given a class of polynomials defining rational curves to which
this applies. For this class of polynomials, the Mahler measure can be expressed in
terms of dilogarithms of algebraic numbers up to possibly a term in ζF (2). One of
the conditions for such polynomials is to be tempered.

Definition 8. A polynomial in two variables is tempered if the polynomials corre-
sponding to the faces of its Newton polygon has roots of unity as the only zeros.

When drawing the convex hull of points (i, j) in Z2 corresponding to the mono-
mials ai,jxiyj , ai,j 6= 0, you also draw points of Z2 located on the faces. The
polynomial of the face is a polynomial in one variable t which is a combination of
the monomials 1, t, t2, .... The coefficients of the combination are given when going
along the face, that is ai,j if the lattice point of the face belongs to the convex hull
and 0 otherwise. For example, the polynomial

y2 + y + x2 + x+ 1

is tempered, since its Newton polygon corresponds to

1
1 0
1 1 1

The polynomials of the faces are

1 + t2, 1 + t+ t2, 1 + t+ t2.

The polynomial

P := (x2 + x− 1)y2 + (x2 + 5x+ 1)y − x2 + x+ 1

is not tempered, since its Newton polygon corresponds to

−1 1 1
1 5 1
1 1 −1

and the polynomials of the faces are all equal to ±(t2 + t− 1).
Motivated by Smyth’s result, Chinburg asked for each real odd Dirichlet charac-

ter χ−f the existence of a polynomial Pf (x, y) such that

m(Pf (x, y)) = rL′(χ−f ,−1) = r
f3/2

4π
L(χ−f , 2) =: rdf

where r denotes a rational number and L the Dirichlet L-series associated to the
character χ. His student Ray [Ra87] constructed polynomials for f = 3, 4, 7, 8, 20, 24
and Boyd [Bo98] extended the list to f = 11, 15, 35, 39, 55, 84. Most of these for-
mulae are experimental, that is, satisfied to a high accuracy. For example Boyd
obtained

(9) m((x+ 1)2y + x2 + x+ 1) ?=
1
3
d7

(10) m((x2 + x+ 1)y + x2 + 1) ?=
1
12
d15
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(11) m((x+ 1)2(x2 + x+ 1)y + (x2 − x+ 1)2) ?=
2
3
d11,

The shape of the expression is now well understood thanks to the properties of
the Bloch group of a number field. In fact, the quotient of the logarithmic Mahler
measure by the corresponding df is known to be rational. This rational number
can be guessed with a computer. So the point is to prove the formulae. We shall
give an example below by proving (9)

First we recall Vandervelde’s results on the Mahler measure of parametrisable
polynomials, the definition of the Bloch group of a number field and the expression
of the zeta function of a number field in terms of Bloch-Wigner dilogarithms, that
is Zagier’s theorem.

Suppose now the polynomial P of the shape A(x)y + B(x). The logarithmic
Mahler measure m(P ) using Jensen’s formula can be expressed as

m(P ) = m(A) +
1

2πi

∫
|x|=1

log(max{| B(x)
A(x)

|, 1})dx
x

= m(A)− 1
2πi

∫
γ

η(x, y)

where γ is the path defined on the variety intersection of P and P ∗, for P ∗(x, y) =
P (1/x, 1/y),

γ = {(x, y)/ P (x, y) = 0, P ∗(x, y) = 0, | x |= 1, | y |≥ 1}.

3.1. The Bloch groups. Let F be a field and define the abelian groups

C(F ) ⊂ A(F ) ⊂ Z[P1
F ]

where A(F ) = kerβ if
β : Z[P1

F ]→ Λ2F×

is defined by
β(0) = β(1) = β(∞) = 0

β(x) = (x) ∧ (1− x)
and

C(F ) := 〈[x] + [y] + [1− xy] + [
1− x
1− xy

] + [
1− y

1− xy
]〉

is generated by the five-term relation.
The Bloch group is now defined by the exact sequence

0→ B2(F )→ Z[P1
F ]/C(F )

β→ Λ2F×

The class of x in B2(F ), [x], behaves like a Bloch-Wigner dilogarithm.
The complex

BF (2)
⊗

Q : B2(F )Q
δ21→ (Λ2F×)Q

has a cohomology related to K-theory by Matsumoto’s theorem

H2(BF (2)) ' K2(F ).

These things are related to results by Zagier on ζF (2) 3.

3

ζF (2) =
X
A

1

NA2
=

Y
P

1

1−NP−2
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3.1.1. Zagier’s theorem.

Theorem 9. (Zagier) Let F be a number field, [F : Q] = n+ + n− = r1 + 2r2,
n+ = r1 + r2, n− = r2. Then the Bloch group modulo torsion satisfies

(1)
B2(F )/tors ' Zn−

(2) If ξ1, . . . , ξn− is a basis of B(F )/tors and σ1, . . . , σn− the complex embed-
dings of F into C, then there exists r ∈ Q× such that

det(D(σi(ξj)))i,j=1,...,n−

π2n+√
| DF |

= rζF (2).

It is also useful to recall Vandervelde’s theorem.

3.1.2. Vandervelde’s theorem.

Theorem 10. [V08] Suppose that P ∈ C[x, y] can be parametrized by x = f(t) =
λ1

∏
((t − αr)lr and y = g(t) = λ2

∏
(t − βs)ms . Let S consists of those points in

the zero-locus of P for which | x |= 1 and | y |≥ 1 and let γ1, . . . , γn be the paths
which map to S under t 7→ (f(t), g(t)), oriented via f(γj) ⊂ T1. If uj and vj denote
the initial and terminal points of γj and P (x, y) has leading coefficient λ(x) as a
polynomial in y, then ¡

2πm(P ) =2πm(λ(x)) +
n∑
j=1

(
′∑
r,s

lrms[D(
uj − αr
βs − αr

)−D(
vj − αr
βs − αr

)]+

∑
r

lr log | g̃(αr) | wind(γj , αr)−
∑
s

ms log | f̃(βs) | wind(γj , βs),

where

wind(γ, β) =
∫
γ

dz

z − β
.

The sum
∑′ is taken over r and s such that αr 6= βs. The function g̃ is defined

by g̃(t) = g(t)unless t = βs where the corresponding factor in g is omitted before
evaluating at t; hence g̃(αr) 6= 0,∞.

3.2. The function ζF (2) for imaginary quadratic fields F . If F is an imagi-
nary quadratic field or more generally with only one complex embedding, one can
associate to F an hyperbolic manifold M3 of dimension 3 in the hyperbolic plane
H3

M3 = H3/ΓF

where ΓF is a discrete co-finite subgroup of Sl2(C) = Aut(H3). We know since
Humbert (1919) that ζF (2) is related to Vol(M3). For example, if F = Q(

√
−d),

d > 0, then ΓF = Sl2(OF ) ⊂ Sl2(C) and

ζF (2) =
4π2

| DF |3/2
Vol(H3/ΓF ).

By results of Milnor and Thurston, the hyperbolic manifold M3 can be triangulated
by hyperbolic tetrahedra and its volume can be expressed in terms of a sum o
fN ≤ 24 Bloch-Wigner dilogarithms on algebraic numbers. In that case the five-
term relation can be interpreted as gluing conditions on the ideal tetrahedra.
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Theorem 11. If the number field F has only one complex embedding, ζF (2) is a
sum of Bloch-Wigner dilogarithms on algebraic numbers.

We can give an hyperbolic interpretation of the five term relation of the Bloch-
Wigner dilogarithm.

If P1, . . . , P5 ∈ ∂H3 = P1(C), then∑
(−1)iVol(P1, . . . , P̂i, . . . , P5) = 0.

Besides, if the ideal tetrahedron ∆ has vertices A, B, C, D, then

Vol(∆) = D((A : B : C : D)) = D

(
A−B
A− C

racD − CD −B
)

where D denotes the Bloch-Wigner dilogarithm and (A : B : C : D) the cross-ratio
of the corresponding complex numbers. In particular, for the ideal tetrahedron
∆z = (0, 1,∞, z), we get

Vol(∆z) = D(z).
For example if F = Q(

√
−7)

(12) ζF (2) =
4π2

21
√

7
(2D(

1 +
√
−7

2
) +D(

−1 +
√
−7

4
)).

Moreover the element

ξ = 2[
1 +
√
−7

2
] + [
−1 +

√
−7

4
]

belongs to the Bloch group of F . To prove this we have to compute β(ξ).

β(ξ) = 2
(

1 +
√
−7

2

)
∧
(

1−
√
−)

2

)
+
(
−1 +

√
−)

4

)
∧
(

5−
√
−7

4

)
.

Defining a :=
(

1−
√
−7

2

)
and b :=

(
−1−

√
−7

2

)
, it follows

β(ξ) = 2(−b) ∧ (a) +
(

1
b

)
∧
(
a2

b

)
.

Now, using the relations a−b = 1 and 1
b + a2

b = 1, we get β(ξ) = 0, thus ξ ∈ B2(F ).
The element ξ is not unique and can be replaced by another element such the

difference satisfies a five-term relation.

3.3. Proof of formula (9). The proof will use the following proposition.

Proposition 12. If α = −3+
√
−7

4 , we have the following dilogarithm relation

D(α3)− 3D(α) +D(
α

2
) = 0.

PROOF. The ingredients are the equation satified by α and the five-term
relation

(13) D(x)−D(y) +D(
y

x
) +D(

1− y−1

1− x−1
)−D(

1− y
1− x

) = 0

The equation satisfied by α is

(14) 1 + α+ α2 = −α
2
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By (13), we get with x = α3 and y = α

D(α3)−D(α) = D(α2)−D(
α2

1 + α+ α2
) +D(

1
1 + α+ α2

)

and by (14)

D(α3)−D(α) = D(α2)−D(−2α) +D(− 2
α

)

Now using the distribution formula for n=2, the property D(1/z) = −D(z) and the
relation

D(−2α) = D(−α
2

))

we get

D(α3)− 3D(α) +D(
α

2
) = 2D(−α)− 2D(−α

2
) +D(

α

2
).

First we prove that

D(−2α) = D(1 +
1−
√
−7

2
) = −D(

−1 +
√
−7

2
) = D(

−1−
√
−7

2
)

and

D(−α
2

) = −D(
8

3−
√
−7

) = D(
3−
√
−7

2
) = D(−2α).

Also

D(−α) = D(1− 1 +
√
−7

4
) = −D(

1 +
√
−7

4
) = −D(

1 +
√
−7

2
),

since

D(
1 +
√
−7

2
) = −D(

2
1 +
√
−7

= −D(
1−
√
−7

4
) = D(

1 +
√
−7

4
).

Now

2D(−α)− 2D(−2α) = −2D(
1 +
√
−7

2
)− 2D(

−1−
√
−7

2
)

= −D((
1 +
√
−7

2
)2) = −D(

−3 +
√
−7

2
)

by distribution formula.
Finally

2D(−α)− 2D(−2α) +D(2α) = −D(
−3 +

√
−7

2
) +D(

−3 +
√
−7

2
) = 0

since we can prove as previously that

D(
α

2
) = D(2α).

�

Theorem 13.

m((x+ 1)2y + x2 + x+ 1) =
1
3
d7 =

1
3
L′(χ−7,−1) =

1
3

73/2

4π
L(χ−7, 2)
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PROOF. We apply Vandervelde ’s result. We have only one path γ1 with initial
point u1 = −3+

√
−7

4 = α and terminal point ᾱ. So

2πm(P ) = 2D(
−3 +

√
−7

4
j2) + 2D(

−3 +
√
−7

4
j) + 4D(

3 +
√
−7

4
).

Applying the distribution formula for n = 3 and n = 2, it follows

πm(P ) = D(α)−D(α2) +
1
3
D(α3).

It is easy to prove that

ξ = [α]− [α2] +
1
3

[α3] ∈ B(Q(
√
−7))

since
β(ξ) = α ∧ (1− α)− α2 ∧ (1− α2) +

1
3
α3 ∧ (1− α3)

= α ∧ (1− α)(1− α3)
(1− α)2(1 + α)2

= α ∧ (−1) = 0

( since α2 + 3
2α+ 1 = 0 and α ∧ (−1) = α ∧ (−1)3 = 3α ∧ (−1); so α ∧ (−1) = 0)

Thus, by Zagier’s theorem

π2D(ξ1) = r′
√

7ζF (2)

for r′ ∈ Q×, that is m(P ) = rd7. We must prove now that r = 1
3 or r′ = 7/2.

So, using (12), we have to prove that

D(ξ1) =
4
3
D(

1 +
√
−7

2
) +

2
3
D(
−1 +

√
−7

4
) =: A

Using the proposition we can express

D(ξ) = −2D(−α)− 1
3
D(

α

2
).

Since (−1+
√
−7

4 )2 = ᾱ
2 and D( 1+

√
−7

2 ) = D(( 1+
√
−7

4 ), it follows from distribution
formula that

A = 2D(
1 +
√
−7

4
)− 1

3
D(

α

2
).

Thus the equality D(ξ) = A, since D( 1+
√
−7

4 ) = −D(−α).
�

4. The measures of a family of genus-one curves [B-L13]

An elliptic curve (over C) is roughly speaking a curve (zeros of a two-variable
polynomial) that is birationally equivalent to an equation of the form

E : Y 2 = X3 + aX + b.

For example, the curve given by the equation

x+
1
x

+ y +
1
y

+ k = 0,

where k is a parameter, corresponds to an elliptic curve. We can see this by applying
the change of variables

(15) x =
kX − 2Y

2X(X − 1)
y =

kX + 2Y
2X(X − 1)

,



12 MARIE-JOSÉ BERTIN

k sk N
1 1 15
2 1 24
3 2 21
5 6 15
6 1/2 120
7 1/2 231
8 4 24
9 1/2 195
10 -1/8 840

Table 1. sk numerically conjectured values from formula (16). N
corresponds to the conductor of the elliptic curve. When k = 4
the curve has genus zero.

and we get the equation

Y 2 = X

(
X2 +

(
k2

4
− 2
)
X + 1

)
.

If the elliptic curve is defined over Q (i.e., a, b ∈ Q), one can construct the
L-function as follows

L(E, s) =
∏

good p

(1− app−s + p1−2s)−1
∏

bad p

(1− app−s)−1 =
∞∑
n=1

an
ns
,

where for p prime,

ap = 1 + p−#E(Fp).

The family of two-variable polynomials Pk(x, y) = x + 1
x + y + 1

y + k was ini-
tially studied by Boyd [Bo81], Deninger [De97], and Rodriguez-Villegas [RV97] from
different points of view. Boyd found many numerical identities of the form

(16) m
(
x+

1
x

+ y +
1
y

+ k

)
?= skL

′(E(k), 0) k ∈ N 6= 0, 4

where sk is a rational number (often integer), and E(k) is the elliptic curve which
is the algebraic closure of the zero set of the polynomial (i.e., given by the change
of variables (15)). Table 1 shows the first values for sk conjectured by Boyd. He
numerically computed sk for k = 1, . . . 40.

The connection with L′(E, 0) was predicted by Deninger using Beilinson’s con-
jectures. However, there are some cases in which this identity can be proved. This
happens when Beilinson’s conjectures are known, i.e., when the elliptic curve has
complex multiplication, or when it is given as a modular curve, and then the Mahler
measure may be related to the L-function of a modular form.
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In [RV97], Rodriguez-Villegas expressed this Mahler measure as an Eisenstein–
Kronecker series:

m
(
x+

1
x

+ y +
1
y

+ k

)
= Re

(
16 Im τ

π2

′∑
m,n

χ−4 (m)
(m+ n4τ)2(m+ n4τ̄)

)

= Re

−πiτ + 2
∞∑
n=1

∑
d|n

χ−4(d)d2 q
n

n

 ,(17)

where the q parameter is coming from

q = e2πiτ = q

(
16
k2

)
= exp

(
−π 2F1

(
1
2 ,

1
2 ; 1, 1− 16

k2

)
2F1

(
1
2 ,

1
2 ; 1, 16

k2

) )
.

Rodriguez-Villegas’ idea to obtain this formula is as follows. One observes that for
λ = −1/k such that |λ| < 1/4, the Mahler measure of this polynomial is given by

m(k) = Re(m̃(λ)),

where

m̃(λ) = − log λ+
1

2πi)2

∫
T2

log(1− λ(x+ x−1 + y + y−1))
dx

x

dy

y

= − log λ−
∞∑
n=1

bn
n
λn,

where bn is the constant coefficient of the polynomial (x+ x−1 + y + y−1)n. More
specifically,

bn =


(
n
n/2

)2
n even,

0 n odd.
Now consider

u(λ) =
∫

T2

1
1− λ(x+ x−1 + y + y−1)

dx

x

dy

y

=
∞∑
n=0

bnλ
n.

Then

m̃(λ) = − log λ−
∫ λ

0

(u(δ)− 1)dδ.

By construction, u(λ) is a period of a holomorphic differential on the curve defined
by 1 − λ(x + x−1 + y + y−1) = 0 (see [Gr69]) hence a solution to a Picard-Fuchs
differential equation. Thus, it is not surprising that m̃(λ) has a hypergeometric
series form.

Formula (17) may in turn be related to the elliptic dilogarithm (using the tech-
niques of Bloch [Bl00]). Then one has to relate the values of the elliptic dilogarithm
to the L-function, which is done through Beilinson’s conjectures.

For example, Rodriguez-Villegas [RV97] proved

(18) m
(
x+

1
x

+ y +
1
y

+ 4
√

2
)

= L′(E32, 0).
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It should be remarked that it suffices that k2 be an integer for this equation to
have an interpretation in terms of Beilinson’s conjectures. In this case, the curve
has complex multiplication.

Other examples were given by Rogers and Zudilin: in [RZ] they proved

m
(
x+

1
x

+ y +
1
y

+ 1
)

=
15
4π2

L(E15, 2) = L′(E15, 0),

and in [RZ12] they proved

m
(
x+

1
x

+ y +
1
y

+ 8
)

=
24
π2
L(E24, 2) = 4L′(E24, 0).

These results come from relating these hypergeometric expressions to lattice sums
by means of Ramanujan’s identities for q-series. The lattice sums can be related
the special values of L-functions of elliptic curves by using the modularity theorem.

It should be noted that there are other families related to elliptic curves that yield
similar results that were already numerically studied by Boyd. After Boyd’s paper,
some identities for these families were proved also using Beilinson’s conjectures.

Brunault [Br05, Br06] considered the curve X1(11) and proved

m ((1 + x)(1 + y)(1 + x+ y) + xy) =
77
4π2

L(E11, 2) = 7L′(E11, 0),

by giving an explicit version of Beilinson’s theorem on modular curves.
Similarly, Mellit [Me] considered the modular curve X0(14) and proved several

identities including, for instance,

m
(
x3 + y3 + 1 + xy

)
=

7
π2
L(E14, 2) = 2L′(E14, 0).

What do these polynomials have in common? Boyd noticed that they all satisfy
that the faces of their Newton polygon are cyclotomic polynomials (i.e., they have
Mahler measure zero). This condition was explained by Rodriguez-Villegas [RV97]
in terms of K-theory. Roughly speaking, this condition guarantees that there is an
element {x, y} in K2 of the elliptic curve. The regulator is then evaluated in this
element.
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