
FROM SALEM NUMBERS TO MAHLER MEASURE OF K3
SURFACES (LECTURE 2)

MARIE-JOSÉ BERTIN

1. Characterization of some interesting subsets of Salem numbers-
Bertin-Boyd’s results

Consider the construction

(1) Q(z) = zP (z) + εP ∗(z)

Boyd and myself [BB95] observed that they are two particular classes of poly-
nomial P for which we can be sure that Q(z) has at most one zero in |z| > 1.

(A): P has no zero in |z| ≤ 1. Then zP (z) has one zero in |z| < 1 and n zeros
in |z| > 1. The branches starting at the n zeros in |z| > 1 end at points in
|z| ≥ 1 so Q has at least n zeros in |z| ≥ 1 and hence at most one zero in
|z| < 1(the end of the branch starting at 0). Since Q is reciprocal, it thus
has at most one zero in |z| > 1. If there is such a zero it must be ±τ for a
Salem number τ (or reciprocal quadratic). This was the choice considered
in Bertin’s thesis [Be81].

(B): P has a single zero in |z| > 1 so zP (z) has n zeros in |z| < 1. The
above argument can be repeated by considering the fate of the n branches
beginning at these zeros. This was the case considered by Salem [Sa45] and
Boyd [Bo78]. In this case, if the zero θ of P (z) in |z| > 1 satisfies θ > 1,
then θ is a Pisot number and P (z) = zm−1P0(z) where P0 is the minimal
polynomial of θ. If Q has a zero in |z| > 1 then it is a Salem number (or
reciprocal quadratic).

Note that if Q has one zero in |z| > 1 and hence n − 1 zeros on |z| = 1 then
these are all entrances in case (A) and exits in case (B).

Given any Q with integer coefficients reciprocal or antireciprocal, with a single
root in |z| > 1 and simple roots on |z| = 1, and given k with 1 ≤ k ≤ n, it was shown
in the previous section that they are monic polynomials P with integer coefficients
satisfying(1) with exactly k zeros in |z| > 1 and n − k zeros in |z| < 1. Thus
any such class of P , in particular (A) or (B), can be used to generate all
Salem numbers.

The classes (A) and (B) have the advantage that they generate only Salem
numbers, reciprocal quadratics, and roots of unity. Note, in these two cases, that
the restriction that Q have simple roots on |z| = 1 is necessary since an multiple
root must be both an exit and an entrance.

Definition 1. The set Aq is the set of Salem numbers produced by (A) with |P (0)| =
q and ε = −sgnP (0).
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The set Bq is the set of Salem numbers produced by (B) with |P (0)| = q and
ε = sgnP0(0) where P (z) = zm−1P0(z), P0(0) 6= 0.

Remark 2. The set Aq = Tq ∩ T where Tq was the set introduced by Bertin in
[Be81] and T the set of Salem numbers. In particular it was shown there that Aq is
bounded above by q+ (q2− 1)1/2. Note that if ε = 1 then the restriction P (0) = −q
is needed to insure that Q(1) < 0 so that Q has a zero τ > 1. Moreover since all
zeros of P are in |z| > 1 we must have q ≥ 2 in case (A).

Remark 3. The sets Bq were considered by Boyd in [Bo78]. When q = 0, P (z) =
zm−1P0(z) with m > 1 so B0 = {θεm m > 1} in the notation [Bo77], [Bo78] while
Bq = {θε1; |N(θ)| = q, ε = sgnN(θ)}.

Remark 4. By the result of [Bo80] mentionned above,

T =
⋃
q

Aq =
⋃
q

Bq.

Given c > 1, the hope was the existence of M such that T ∩ [1, c] be contained in
the finite union

⋃
2≤q≤M Aq or

⋃
0≤q≤M−2Bq.

Remark 5. The set B0 ∩ [9/8, 13/10] was enumerated in [Bo78].

1.0.1. Examples of small Salem numbers in A2. In 1980, I tempted to determine
the smallest Salem numbers of the set A2. Using an adapted version of the Schur’s
algorithm, I found for example.
σ1 is zero of three different polynomials

z =
1 + 2z + z2 − z3 − z4 − z5 − z6 − z7 + 2z9 + 2z10

2 + 2z − z3 − z4 − z5 − z6 − z7 + z8 + 2z9 + z10

z =
1 + 2z + z2 + z8 + 2z9 + 2z10

2 + 2z + z2 + z8 + 2z9 + z10

z =
1 + 2z + 2z2 + 2z3 + 3z4 + 4z5 + 4z6 + 3z7 + 3z8 + 3z9 + 2z10

2 + 3z + 3z2 + 3z3 + 4z4 + 4z5 + 3z6 + 2z7 + 2z8 + 2z9 + z10

σ2 is zero of the polynomial

z =
1 + 2z2 + z4 − z6 − 2z8 − 2z10 − 2z12 + 2z16 + 2z18

2 + 2z2 − 2z6 − 2z8 − 2z10 − z12 + z14 + 2z16 + z18

σ3 is zero of the polynomial

z =
1 + 2z2 + z4 − z6 − 2z8 − 2z10 + 2z14 + 2z16

2 + 2z2 − 2z6 − 2z8 − z10 + z12 + 2z14 + z16

σ5 is zero of five polynomials

z =
1 + z + z2 + 2z3 + 2z4 + 2z5 + 2z6 + 3z7 + 2z8 + z9 + 2z10

2 + z + 2z2 + 3z3 + 2z4 + 2z5 + 2z6 + 2z7 + z8 + z9 + z10

z =
1 + 2z2 + z4 − z6 − 2z8 + 2z12 + 2z14

2 + 2z2 − 2z6 − z8 + z10 + 2z12 + z14

z =
1 + z + 2z+2z3 + z4 + z5 + z6 + 2z7 + 2z8 + 2z9 + 2z10

2 + 2z + 2z2 + 2z3 + z4 + z5 + z6 + 2z7 + 2z8 + z9 + z10

z =
1 + z + z3 − z4 − z6 − z7 − 2z9 − z11 + z13 + 2z15

2 + z2 − z4 − 2z6 − z8 − z9 − z11 + z12 + z14 + z15
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z =
1 + z + z3 − z4 − z5 − z6 + z8 + 2z10

2 + z2 − z4 − z5 − z6 + z7 + z9 + z10

σ6 is root of the polynomial

z =
1 + z2 − z8 − 2z10 + 2z18

2− 2z8 − z10 + z16 + z18

σ10 is root of the polynomial

z =
1 + z2 − z8 + 2z16

2− z8 + z14 + z16

σ16 is root of the polynomial

z =
1 + z2 − z4 − z6 + z10 − 2z14 + 2z18

2− 2z4 + z8 − z12 − z14 + z16 + z18

1.0.2. Characterization of the sets Aq and Bq.

Theorem 6 (Theorem A). Suppose that τ is a Salem number with minimal poly-
nomial T . Then τ is in Aq if and only if there is a cyclotomic polynomial K
with simple roots and K(1) 6= 0 and a reciprocal polynomial L with the following
properties:

(1) L(0) = q − 1
(2) degL = deg(KT )− 1
(3) L(1) ≥ −K(1)T (1)
(4) L has all its zeros on |z| = 1 and they interlace the zeros of KT on |z| = 1

in the following sense: let eiψ1 , ..., eiψm be the zeros of L with =z ≥ 0,
excluding z = −1, with 0 < ψ1 < ... < ψm < π, and let eiφ1 , ..., eiφm be the
zeros of KT on |z| = 1, =z ≥ 0, with 0 < φ1 < ... < φm ≤ π; then

0 < ψ1 < φ1 < ... < ψm < φm.

Theorem 7 (Theorem B). Suppose that τ is a Salem number with minimal poly-
nomial T . Then τ is in Bq if and only if there is a cyclotomic polynomial K
with simple roots and K(1) 6= 0 and a reciprocal polynomial L with the following
properties:

(1) L(0) = q + 1
(2) degL = deg(KT )− 1
(3) L(1) ≥ K(1)T (1)
(4) and either (i) L as in (4) of Theorem (A), or else

(ii) L has a single zero in |z| > 1, this root being positive, and if
eiψ2 , ..., eiψm are its zeros on |z| = 1, =z ≥ 0 with 0 < ψ2 < ... < ψm
then

0 < φ1 < ψ2 < ... < ψm < φm ≤ π.

Remark 8. For proofs of Theorem (A) and Theorem (B) we refer to [BB95].
In case Q = zP − P ∗, we can write (z − 1)Q1 = zZ − P ∗ and we can take

L = P −Q1.

Corollary 9.
Aq ⊂ Bq−2 for q ≥ 2.

PROOF. The conditions of Theorem (B) are weaker than the corresponding
conditions of Theorem (A). �
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Corollary 10.
Aq ⊂ Akq−k+1 for q ≥ 2, k ≥ 1

PROOF. If L satifies Theorem (A) with L(0) = q − 1, then kL satisfies the
theorem with kL(0) = kq − k showing τ is in Akq−k+1. �

Theorem 11. Denote C the list of 43 smallest known Salem numbers called σ1,..of
Mossinghoff’s list except ∗σ39, ∗σ40, ∗σ43, ∗σ46 discovered later.

We have the inclusion

A2 ⊂ C \ {σ20, σ23, σ28, σ31, σ33, σ35}

PROOF. To show that σk belongs to A2 it generally suffices to take K = 1 and
to produce by inspection a suitable cyclotomic polynomial L whose zeros interlace
those of KT .

To show that a given σk is not in A2, one can rely on the algorithm of [Bo78]
which enumerates all the possible representations of σk as an element of B0. For
example, σ33, which is of degree 34, has just one such representation and this
shows that the only choices of K and L are K = 1 and L = (z4− 1)(z29− 1). Since
L(1) = 0, this does not satisfy Theorem (A), so σ33 /∈ A2.

�

2. A minoration of Salem numbers

Most of known minorations of τ , if τ is a Salem number depend on the degree
of the Salem polynomial (Dobrowolski, Voutier, etc use transcendental methods).
Another, though not the sharpest is the elegant minoration due to Smyth (1980)

τ > 1 +
c

d

c being a constant and d denoting the degree of the Salem number.
We have seen in the previous section that the conjugates of modulus 1 of the

smallest known Salem numbers offer a certain regularity, interlacing property with
roots of unity. We propose here a minoration using the discriminant of the Salem
polynomial or its trace polynomial[Be95]. And again we shall see a certain regularity
of the discriminants.

Definition 12. Let T a Salem polynomial of degree 2s. We call trace polynomial
of T , the monic polynomial Q, Q ∈ Z[X], of degree s, satisfying

XsQ(X +
1
X

) = T (X).

For example, if T is the Salem polynomial of degree 6 of the Salem number
τ = 1.401288...,

T (X) = X6 −X4 −X3 −X2 + 1,
its trace polynomial is

Q(Y ) = Y 3 − 4Y − 1.

Denoting by τ , 1
τ , τ (j), 1

τ(j) , 2 ≤ j ≤ s, the roots of T , then the roots of the trace
polynomial are τ + 1

τ , τ (j) + 1
τ(j) , thus all real between −2 and 2 except τ + 1

τ > 2.
If τ is the Salem number of degree 2s, then the integers of Q(τ), namely 1, τ ,

..., τ2s−1 form a base of Q(τ) over Q. We denote ∆τ the discriminant of that base,
that is
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∆τ =

∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
τ 1

τ τ (2) . . . 1
τ(s)

τ2 1
(τ)2 (τ (2))2 . . . 1

(τ(s))2

...
...

...
...

...
τ2s−1 1

(τ)2s−1 (τ (2))2s−1 . . . 1
(τ(s))2s−1

∣∣∣∣∣∣∣∣∣∣∣∣

2

=
∏
i<j

(τi − τj)2,

where τ = τ1, τ2 = 1
τ , τ3 = τ (2), τ4 = 1

τ(2) , ...,τ2s = 1
τ(s) .

The totally real number field Q(τ + 1
τ ) has also a base of algebraic integers 1,

τ + 1
τ , ..., (τ + 1

τ )s−1 with discriminant

∆τ+ 1
τ

=

∣∣∣∣∣∣∣∣∣
1 1 . . . 1

τ + 1
τ τ (2) + 1

τ(2) . . . τ (s) + 1
τ(s)

...
...

...
...

(τ + 1
τ )s−1 (τ (2) + 1

τ(2) )s−1 . . . (τ (s) + 1
τ(s) )s−1

∣∣∣∣∣∣∣∣∣
2

=
∏
i<j

(γi − γj)2,

where γ1 = τ + 1
τ , γ2 = τ (2) + 1

τ(2) , ..., γs = τ (s) + 1
τ(s) .

Proposition 13. Let τ be a Salem number, then there exists a non zero integer c
such that

∆τ = c
(

∆τ+ 1
τ

)2

.

PROOF.
By definition,

∆τ =(τ − 1
τ

)2
s∏
j=2

(τ − τ (j))2(τ − 1
τ (j)

)2
s∏
j=2

(
1
τ
− τ (j))2(

1
τ
− 1
τ (j)

)2

∏
j<k

(
1
τ (j)
− τ (k))2(

1
τ (j)
− 1
τ (k)

)2
∏
j<k

(τ (j) − τ (k))2(τ (j) − 1
τ (k)

)2

s∏
j=2

(τ (j) − 1
τ (j)

)2.

Since

(τ − 1
τ

)2 = (τ +
1
τ

)2 − 4
s∏
j=2

(τ (j) − 1
τ (j)

)2 =
s∏
j=2

((τ (j) +
1
τ (j)

)2 − 4)

(τ − τ (j))2(τ − 1
τ (j)

)2 = τ2(τ +
1
τ
− (τ (j) +

1
τ (j)

))2

(
1
τ
− τ (j))2(

1
τ
− 1
τ (j)

)2 =
1
τ2

(τ +
1
τ
− (τ (j) +

1
τ (j)

))2

(τ (j) − τ (k))2(τ (j) − 1
τ (k)

)2 = (τ (j))2(τ (j) +
1
τ (j)
− (τ (k) +

1
τ (k)

))2,

we get
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∆τ = (∆τ+ 1
τ

)2((τ +
1
τ

)2 − 4)
s∏
j=2

((τ (j) +
1
τ (j)

)2 − 4).

Since ((τ + 1
τ )2− 4)

∏s
j=2((τ (j) + 1

τ(j) )2− 4) is a symmetric function of the roots of
the monic polynomial trace Q, it is an integer c.

�

Lemma 14. Let p be a prime number and denote τ = α1, ..., αd the conjugates of
a Salem number τ . Then τp = αp1, ..., αpd are the conjugates of the Salem number
τp and we get the inequality ∣∣∣∣∣∣

∏
i,j

(αpi − αj)

∣∣∣∣∣∣ ≥ pd.
PROOF. Let P (resp. Π) denote the minimal polynomial of the Salem τ (resp.
τp) and A =

∏
i,j(α

p
i − αj).

We observe that A 6= 0, otherwise P and Π would have a common root and since
they are monic and irreducible, P = Π, a contradiction.

Moreover A being a symmetric function of the αi is an integer, nothing else than
the resultant of P and Π.

First, given a polynomial Q ∈ Z[X], we prove the existence of a polynomial
R(X) ∈ Z[X] satisfying

(Q(X))p = Q(Xp) + pR(X).

We make an induction on the degree of Q.
If the degree of Q is 1, that is Q = aX + b, a and b ∈ Z, we obtain

(aX + b)p = apXp + bp + pR1(X), R1 ∈ Z[X]

From the little Fermat’s theorem, since ap ≡ a mod.p and bp ≡ b mod.p, we get

(aX + b)p = aXp + b+ (ap − a)Xp + bp − b+ pR1(X)

= aXp + b+ pR(X), R ∈ Z[X].

Suppose the relation satisfied until degree n and suppose that the degree of Q is
n+ 1.

Write Q(X) = XQ1(X) + c with c ∈ Z and degree of Q1 being n. We get

(XQ1(X) + c)p = Xp(Q1(X))p + cp + pR1(X), R1 ∈ Z[X]

= Xp(Q1(Xp) + pR2(X)) + cp + pR1(X) R2 ∈ Z[X]
by induction

= XpQ1(Xp) + c+ cp − c+ p(R1(X) +XpR2(X))

= Q(Xp) + pR(X) R ∈ Z[X]

using again little Fermat’s theorem.
Taking now Q = P = (X − α1)...(X − αd), it follows

P (αpi ) = −pR(αi) 6= 0
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and

|A| =

∣∣∣∣∣∏
i

P (αpi )

∣∣∣∣∣ = pd
∏
i

|R(αi)| ≥ pd,

since,
∏
iR(αi), symmetric function of the αi, is a rational integer. �

Theorem 15. (Bertin [Be95]) Let τ be a Salem number of degree d = 2s; then

τ ≥ 1 + inf(

∣∣∣∆τ+ 1
τ

∣∣∣1/s
96s

, 1/6).

PROOF. Let p denote a prime number and τ = α1, α2, ..., αd the conjugates
of the Salem number τ . Consider the determinant

D =

∣∣∣∣∣∣∣∣∣
1 1 . . . 1 1 . . . 1
α1 α2 . . . αd αp1 . . . αpd
...

...
...

...
...

... . . .

α2d−1
1 α2d−1

2 . . . α2d−1
d α

p(2d−1)
1 . . . α

p(2d−1)
d

∣∣∣∣∣∣∣∣∣
We can write

|D|2 =
∏
i 6=j

|αi − αj |
∏
i 6=j

|αpi − α
p
j |
∏
i,j

|αpi − αj |
2.

Then, from the lemma and the proposition, it follows

|D|2 ≥ |∆τ ||∆τp |p2d ≥ |∆τ |2p2d ≥ |∆τ+1/τ |4p2d.

By Hadamard’s inequality applied to the columns of D, we get

|D|2 ≤ 2dτ2(2d−1)(2d)d−12dτ2p(2d−1)(2d)d−1 ≤ (2d)2dτ2(2d−1)(p+1) ≤ (2dτ2(p+1))2d.

From the previous majoration and minoration of |D|, we obtain

|∆τ+1/τ |2pd ≤ (2dτ2(p+1))d

that is
τ2(p+1) ≥ p

2d
|∆τ+1/τ |2/d =

p

2d
|∆τ+1/τ |1/s.

Now we choose the prime number p as best as possible. By Bertrand’s lemma,
given a rational integer m ∈ N, there exists a prime number p satisfying m ≤ p ≤
2m. Thus we can choose p such that

6d
|∆τ+1/τ |1/s

<

[
6d

|∆τ+1/τ |1/s

]
+ 1 ≤ p ≤ 2

[
6d

|∆τ+1/τ |1/s

]
+ 2,

where [x] denotes the integer part of x. We deduce
p

2d
|∆τ+1/τ |1/s > 3 > e;

thus

τ2(p+1) > e et τ > 1 +
1

2(p+ 1)
.
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If 6d
|∆τ+1/τ |1/s

< 1, we take p = 2, thus τ > 1 + 1/6; otherwise 12s ≥ |∆τ+1/τ |1/s

and p ≤ 12d
|∆τ+1/τ |1/s

+ 1. Thus

τ > 1 +
|∆τ+1/τ |1/s

96s
.

This achieves the proof of the theorem.
�

Remark 16. This result shows, in Lehmer’s question, the importance of the quan-

tity |∆τ+1/τ |1/s

s . The minoration by δ
1/d
d

d , where δd denotes the smallest totally real
discriminant of degree d, is not interesting, since a result of Martinet only asserts
that for d large, ∆1/d

d < 1085. However, trace polynomials of Salem polynomials
are very peculiar totally real polynomials since we have seen that the roots are in

a sense well distributed. I evaluated ∆
1/d
d

d for the list of known small Salem num-
bers and found that this quantity varies between 1.4299... for σ34 of degree 18 and
2.27134... for σ8 of degree 20.
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