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0-Motivations



Question

Given a set S, does there exists an algorithm (with finite memory)
that recognizes the elements of S.
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◮ Subsets of groups or rings, Fp[X ], Z+ iZ, ... .
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Other questions

◮ How to represent the elements of the set S?

◮ What do we mean by algorithm?

Local answers

◮ We will use numeration systems

◮ and finite automata.
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It strongly depends on the numeration base (Cobham, 1969) and
recognizable sets are not any subsets (Cobham, 1972).



An example

Let E2n = {2n; n ∈ N}.



An example

Let E2n = {2n; n ∈ N}.
Expansion of the elements of E2n in base 2 : L2(E2n) = 10∗.



An example

Let E2n = {2n; n ∈ N}.
Expansion of the elements of E2n in base 2 : L2(E2n) = 10∗.

0 0 0,1

1 1



An example

Let E2n = {2n; n ∈ N}.
Expansion of the elements of E2n in base 2 : L2(E2n) = 10∗.

0 0 0,1

1 1

E2n is 2-recognizable.



An example

Let E2n = {2n; n ∈ N}.
Expansion of the elements of E2n in base 2 : L2(E2n) = 10∗.

0 0 0,1

1 1

E2n is 2-recognizable.
Does E2n be 3-recognizable ? : Does there exist a finite automaton
that recognizes L3(E2n) ?



Other examples

The integer Cantor set : EC = {n =
∑

ǫi3
i |ǫi ∈ {0, 2}}.

The Morse set : EM = {n =
∑

ǫi2
i |
∑

ǫi = 0 mod 2}.
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First answer (Cobham, 1969)

Cobham’s theorem Let E be a set of integers. Let p, q ≥ 2 be
two multiplicatively independent integers. Then,

E is p-recognizable and q-recognizable

if and only if

E is a finite union of arithmetic progressions.

S. Eilenberg (Automata, Languages, and Machines, Acad. Press,
1972) : The proof is correct, long and hard. It is a challenge to
find a more reasonable proof of this fine theorem.
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Second answer (Cobham, 1972) : p-automatic sequences

Theorem (Cobham, 1972) E is p-recognizable if and only if 1E is
p-automatic.

Let x ∈ {a, b, c}N be the fixed point starting with a of the
substitution

a 7→ ab, b 7→ bc , c 7→ cc

and φ the map defined by

a, c 7→ 0, b 7→ 1,

then 1E2n
= φ(x).

We say it is a 2-automatic sequence (p-automatic in general).
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The prime numbers?

Is P p-recognizable for some p ?

Recall the lecture of Mark Pollicott : P ∩ {1, . . . , n} ∼ n
log n

.

Theorem (Cobham, 1972) Let E ⊂ N be p-recognizable and such

that lim sup #E∩{1,...,n}
n

= 0 and #E = ∞.
Then E satisfies one of the two following properties.

1. ∃p ≥ 1, s ∈]0, 1[,

0 < lim inf
n

#E ∩ {1, . . . , n}

ns(log n)p−1
< lim sup

n

#E ∩ {1, . . . , n}

ns(log n)p−1
< ∞,

2. ∃p ≥ 1,m ≥ 2, c ∈ Q+,#E ∩ {1, . . . , n} ∼ c
(

log n
logm

)p−1

.



Summary

TODAY
I-Survey of Cobham’s type results (logic, algebraic
(transcendance), geometric (tilings), combinatorics on words,
languages, automata, ...)

FRIDAY

II-Proof of Cobham’s theorem (1969)
(using dynamical systems)

III-Open problems
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Equivalent definition

E ⊂ Nd is p-recognizable if and only if

◮ (Buchi, 1960) it is definable (by a first order formula) in
< N,+,Vp >.

◮ (Christol, 1979) (d = 1, p prime)
fE (X ) =

∑

n∈E X n ∈ Fp[[X ]] is algebraic over Fp(X ).

◮ (Eilenberg, 1972) the p-kernel
#{(1E (a+ pkn))n∈N | a ≤ pk − 1, k ≥ 1} is finite.



”Logical” extension

Theorem (Semenov, 1977) p and q multiplicatively independent.
E ⊂ Nd is both p and q-recognizable (or p and q-definable) if and
only if E is definable in < N,+ >.
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Definability and Presburger arithmetic (1929)

Definition E ⊂ Nd is definable (resp. p-definable) if E is defined
by a formula from 〈N,+〉 (resp. 〈N,+,Vp〉)

◮ Vp(n) = pk if n = pkm with p not dividing m.

◮ First order formula φ(x1, x2, . . . , xn) in 〈N,+〉 (resp.
〈N,+,Vp〉) :

◮ integer variables : x1, x2, . . .

◮ equality : =

◮ fonctions : +, (resp. Vp)

◮ connectors : ⇐,⇒,⇔,∨,∧,¬

◮ quantifiers : ∃, ∀.

◮ A priori : no constant ... or you should defined them by a
formula ...
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Examples

◮ E2n is 2-definable and 4-definable :

◮ φ2(x) := (V2(x) = x) et

◮ φ4(x) := (V4(x) = x) ∨ (V4(x + x) = x + x)

◮ Other example : X = {(x , y , z) ∈ N3; x + y = z} is
p-definable for all p ≥ 2.

◮ Theorem. E ⊂ N is ultimately periodic iff E is definable in
〈N,+〉.
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Algebraic extension: Examples

Recall (Christol, 1979) : E ⊂ N is p-recognizable if and only if
fE (X ) =

∑

n∈E X n ∈ Fp[[X ]] is algebraic over Fp(X ).

fE2n
(X ) is a solution of Y 2 − Y + X = 0 in F2[[X ]].

fEM
(X ) is a solution of (X + 1)3Y 2 + (1 + X )2Y + X = 0 in

F2[[X ]].
Hint : u2n = un, u2n+1 = un + 1

fEC
(X ) is a solution of ... ? in F3[[X ]].

Hint : ... not difficult
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Algebraic extension

Theorem (Christol, Kamae, Mendès-France, Rauzy, 1980) Let A
be a finite alphabet, x ∈ AN, and, p and q two different prime
numbers. Let αp : A → Fp and αq : A → Fq be one-to-one maps.
Then,

∑

n∈N αp(xn)X
n ∈ Fp[[X ]] is algebraic over Fp(X ) and

∑

n∈N αq(xn)X
n ∈ Fq[[X ]] is algebraic over Fq(X )

if, and only if,
they are rational.

Conjecture ? : If one of these numbers is irrational,
∑

n ǫn3
−n

and
∑

n ǫn2
−n, then one of them is transcendental.
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All integer series with uniformly bounded integer coefficients is
transcendental or rational.
Proof of Allouche, 1999
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Digression on transcendancy

Question : If (uk) is p-automatic then
∑

k ukp
−n is

transcendental or rational ?

Theorem (Adamczewski-Bugeaud-Lucas, 2004) If ζ ∈ R \Q is
algebraic then

lim
n→∞

p(n, b, ζ)

n
= +∞,

where p(n, b, ζ) is the number of words of length n in the base b
expansion of ζ.

Consequence : ”All non ultimately periodic automatic sequences
are transcendental”.

Conjecture : If ζ is an irrational algebraic number then for all n
and b, p(n, b, ζ) = bn.
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α-substitutive sequences

◮ Recall 1E2n
= φ(x) where x is the fixed point of

τ : a 7→ ab, b 7→ bc , c 7→ cc starting with a and φ the map
defined by a, c 7→ 0, b 7→ 1,

◮ Remark : the dominant eigenvalue of (the incidence matrix
of) τ is 2. We say 1E2n

is 2-substitutive.

◮ In general : a sequence x is α-substitutive if it is the image
under a letter-to-letter morphism of a fixed point of a
(non-erasing) substitution σ : A → A∗ whose dominant
eigenvalue is α (all letters of A appearing in x).

◮ Fact : p-automatic sequences are p-substitutive. The
converse is not true.

◮ The Fibonacci sequence (0 7→ 01, 1 7→ 0) is 1+
√
5

2
-substitutive.
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Substitutive version of Cobham’s theorem

Theorem (Cobham, 1969+1972) Let p, q ≥ 2 be two
multiplicatively independent integers. Let x be a sequence on a
finite alphabet. Then, x is both p and q-automatic if and only if
x = uvvvvv ....

Theorem (Durand, 2011) Let α, β > 1 be two multiplicatively
independent Perron numbers. Then, x is both α and β-substitutive
if and only if x = uvvvvv ....
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Non standard numeration systems

Question : What about numeration systems like Fibonacci ?

Definition. A numeration system is an increasing sequence of
integers U = (Un; n ∈ N) such that

1. U0 = 1,

2. s = sup{Un+1

Un
; n ∈ N} < ∞.

AU = {0, · · · , S − 1} where S = ⌈s⌉ − 1

With the greedy algorithm, uniqueness of the expansion
ρU(n) = ai · · · a0

n = aiUi + ai−1Ui−1 + · · ·+ a0U0;

with aj ∈ AU
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Non standard numeration systems

◮ We set LU(E ) = {0nρU(x); n ∈ N, x ∈ E}.

◮ E ⊂ N is U-recognizable if LU(E ) is recognizable (by a finite
automata)

◮ Open question: Let U and V be two linear numeration
systems with Un+1/Un →n α and Vn+1/Vn →n β where α
and β are multiplicatively independent real numbers. Then,
E ⊂ N is U and V -recognizable iff 1E = uvvv . . . .

◮ Answer : (Durand, 1998) for Bertrand numeration systems,
(Durand-Rigo, 2009) for abstract numeration systems.
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p-kernel

◮ R commutative ring, k ≥ 2,

◮ x = (xn)n≥0 taking values in some R-module,

◮ If the R-module generated by all sequences in the k-kernel
{(xnpi+j)n|i , j < pi} is finitely generated then the sequence x
is said to be (R , k)-regular.

Theorem (Bell, 2006) Let k, l be two multiplicatively independent
integers. If a sequence x ∈ RN is both (R , k)-regular and
(R , l)-regular, then it satisfies a linear recurrence over R.
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◮ Weak automata : automata such that each strongly
connected component contains either only accepting or only
non-accepting states.

◮ Weakly r-recognizable : recognized by a weak automaton in
base r .

Theorem (Boigelot, Brusten, Bruyère, 2008) Let k , l ≥ 2 be two
multiplicatively independent integers. Let X ⊆ R be compact set.
Then, X is both weakly k- and l-recognizable iff it is a finite union
of intervals with rational extremities.

Theorem (Brusten PhD thesis, 2011) Let k , l ≥ 2 be two
multiplicatively independent integers. Let X ⊂ Rd be a compact
set. Then, X is both weakly k- and l-recognizable iff it is definable
in 〈R,+, <, 1〉.
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Self-similar sets

Self-similar set K or attractor of the IFS (fi ) :
K = f1(K ) ∪ . . . fn(K ) where the fi are contractions.

The IFS is homogeneous if fi (x) = ax + bi

Theorem (Feng-Wang, 2009) (Suppose K is not a finite union of
intervals and (fi ) homogeneous)
If αK + β ⊂ K then logα/ log a ∈ Q.

Theorem (Elekes-Keleti-Mathé, 2010) (Suppose K is not a finite
union of intervals)
If αK + β ⊂ K then logα is a linear combination of the log ai .
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Relation with Cobham

Question : What is the relation with Cobham’s theorem ?

The Cantor set ... but not only

Graph Directed Iterated Function Systems (GDIFS)

Observation : K is p-recognizable iff it is an homogeneous GDIFS
with contraction ratio 1/p.

Boigelot-Brusten theorem for GDIFS : Let K be a compact
which is not a finite union of rational polyhedrons (it can be
expressed as a finite Boolean combination of linear constraints with
rational coefficients). Suppose K is an attractor of an
homogeneous GDIFS with contraction ratio a and of an other one
with contraction ratio b. Then, log a/ log b ∈ Q.
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