Cobham's theorem(s) I

Fabien Durand

Université de Picardie Jules Verne

26 juin 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

0-Motivations

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

Question

Given a set S, does there exists an algorithm (with finite memory) that recognizes the elements of S.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Subsets of \mathbb{N} : \mathbb{N} , $2\mathbb{N}$, \mathbb{P} , $\{2^n | n \in \mathbb{N}\}$, ...;

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

• Subsets of \mathbb{N} : $\mathbb{N}, 2\mathbb{N}, \mathbb{P}, \{2^n | n \in \mathbb{N}\}, ...;$

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

► Subsets of N^d;

- Subsets of \mathbb{N} : \mathbb{N} , $2\mathbb{N}$, \mathbb{P} , $\{2^n | n \in \mathbb{N}\}$, ...;
- ► Subsets of N^d;
- Subsets of R^d: intervals, balls, graph of curves, the set of rational numbers, ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Subsets of \mathbb{N} : \mathbb{N} , $2\mathbb{N}$, \mathbb{P} , $\{2^n | n \in \mathbb{N}\}$, ...;
- ► Subsets of N^d;
- Subsets of R^d: intervals, balls, graph of curves, the set of rational numbers, ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Subsets of groups or rings, $\mathbb{F}_{p}[X]$, $\mathbb{Z} + i\mathbb{Z}$,

Other questions

▶ How to represent the elements of the set *S*?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Local answers

Other questions

▶ How to represent the elements of the set *S*?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Local answers

We will use numeration systems

Some comments

Other questions

▶ How to represent the elements of the set *S*?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What do we mean by algorithm?

Local answers

We will use numeration systems

Some comments

Other questions

▶ How to represent the elements of the set *S*?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

What do we mean by algorithm?

Local answers

- We will use numeration systems
- and finite automata.

Two answers for $\ensuremath{\mathbb{N}}$

◆□→ ◆□→ ◆臣→ ◆臣→ 臣 - のへで

It strongly depends on the numeration base (Cobham, 1969)

It strongly depends on the numeration base (Cobham, 1969) and recognizable sets are not any subsets (Cobham, 1972).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let
$$E_{2^n} = \{2^n; n \in \mathbb{N}\}.$$

Let $E_{2^n} = \{2^n; n \in \mathbb{N}\}$. Expansion of the elements of E_{2^n} in base $2 : L_2(E_{2^n}) = 10^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $E_{2^n} = \{2^n; n \in \mathbb{N}\}$. Expansion of the elements of E_{2^n} in base $2 : L_2(E_{2^n}) = 10^*$.

・ロト ・ 雪 ト ・ ヨ ト

э

Let $E_{2^n} = \{2^n; n \in \mathbb{N}\}$. Expansion of the elements of E_{2^n} in base $2 : L_2(E_{2^n}) = 10^*$.

ヘロト 人間ト ヘヨト ヘヨト

э

 E_{2^n} is 2-recognizable.

Let $E_{2^n} = \{2^n; n \in \mathbb{N}\}$. Expansion of the elements of E_{2^n} in base $2 : L_2(E_{2^n}) = 10^*$.

E_{2^n} is 2-recognizable.

Does E_{2^n} be 3-recognizable ? : Does there exist a finite automaton that recognizes $L_3(E_{2^n})$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Other examples

The integer Cantor set : $E_C = \{n = \sum \epsilon_i 3^i | \epsilon_i \in \{0, 2\}\}.$ The Morse set : $E_M = \{n = \sum \epsilon_i 2^i | \sum \epsilon_i = 0 \mod 2\}.$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Recognizability in \mathbb{N}^d

Exemple : $\begin{pmatrix} 3 \\ 9 \end{pmatrix}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Recognizability in \mathbb{N}^d

Exemple : $\begin{pmatrix} 3\\9 \end{pmatrix} = \begin{pmatrix} 0011\\1001 \end{pmatrix}$

Recognizability in \mathbb{N}^d

Exemple: $\begin{pmatrix} 3\\9 \end{pmatrix} = \begin{pmatrix} 0011\\1001 \end{pmatrix} = \begin{pmatrix} 0\\1 \end{pmatrix} \begin{pmatrix} 0\\0 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} \begin{pmatrix} 1\\1 \end{pmatrix}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cobham's theorem Let *E* be a set of integers. Let $p, q \ge 2$ be two multiplicatively independent integers. Then,

Cobham's theorem Let *E* be a set of integers. Let $p, q \ge 2$ be two multiplicatively independent integers. Then,

E is p-recognizable and q-recognizable

Cobham's theorem Let *E* be a set of integers. Let $p, q \ge 2$ be two multiplicatively independent integers. Then,

E is *p*-recognizable and *q*-recognizable if and only if

E is a finite union of arithmetic progressions.

Cobham's theorem Let *E* be a set of integers. Let $p, q \ge 2$ be two multiplicatively independent integers. Then,

E is *p*-recognizable and *q*-recognizable if and only if

E is a finite union of arithmetic progressions.

S. Eilenberg (*Automata, Languages, and Machines,* Acad. Press, 1972) : The proof is correct, long and hard. It is a challenge to find a more reasonable proof of this fine theorem.

Theorem (Cobham, 1972) *E* is *p*-recognizable if and only if 1_E is *p*-automatic.

Theorem (Cobham, 1972) *E* is *p*-recognizable if and only if 1_E is *p*-automatic.

Let $x \in \{a, b, c\}^{\mathbb{N}}$ be the fixed point starting with *a* of the substitution

 $a \mapsto ab, \quad b \mapsto bc, \quad c \mapsto cc$

and ϕ the map defined by

 $a, c \mapsto 0, b \mapsto 1,$

Theorem (Cobham, 1972) *E* is *p*-recognizable if and only if 1_E is *p*-automatic.

Let $x \in \{a, b, c\}^{\mathbb{N}}$ be the fixed point starting with *a* of the substitution

 $a \mapsto ab, \quad b \mapsto bc, \quad c \mapsto cc$

and ϕ the map defined by

$$a, c \mapsto 0, b \mapsto 1,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

then $1_{E_{2^n}} = \phi(x)$.

Theorem (Cobham, 1972) *E* is *p*-recognizable if and only if 1_E is *p*-automatic.

Let $x \in \{a, b, c\}^{\mathbb{N}}$ be the fixed point starting with *a* of the substitution

 $a \mapsto ab, \quad b \mapsto bc, \quad c \mapsto cc$

and ϕ the map defined by

$$a, c \mapsto 0, b \mapsto 1,$$

then $1_{E_{2^n}} = \phi(x)$.

We say it is a 2-automatic sequence (p-automatic in general).

Is \mathbb{P} *p*-recognizable for some *p* ?

Is \mathbb{P} *p*-recognizable for some *p* ? Recall the lecture of Mark Pollicott : $\mathbb{P} \cap \{1, \dots, n\} \sim \frac{n}{\log n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Is \mathbb{P} *p*-recognizable for some *p*? Recall the lecture of Mark Pollicott : $\mathbb{P} \cap \{1, ..., n\} \sim \frac{n}{\log n}$. **Theorem** (Cobham, 1972) Let $E \subset \mathbb{N}$ be *p*-recognizable and such that $\limsup \frac{\#E \cap \{1,...,n\}}{n} = 0$ and $\#E = \infty$.

Is \mathbb{P} *p*-recognizable for some *p* ?

Recall the lecture of Mark Pollicott : $\mathbb{P} \cap \{1, \ldots, n\} \sim \frac{n}{\log n}$.

Theorem (Cobham, 1972) Let $E \subset \mathbb{N}$ be *p*-recognizable and such that $\limsup \frac{\#E \cap \{1,...,n\}}{n} = 0$ and $\#E = \infty$. Then *E* satisfies one of the two following properties.

Is \mathbb{P} *p*-recognizable for some *p* ?

Recall the lecture of Mark Pollicott : $\mathbb{P} \cap \{1, \ldots, n\} \sim \frac{n}{\log n}$.

Theorem (Cobham, 1972) Let $E \subset \mathbb{N}$ be *p*-recognizable and such that $\limsup \frac{\#E \cap \{1,...,n\}}{n} = 0$ and $\#E = \infty$. Then *E* satisfies one of the two following properties.

1.
$$\exists p \geq 1, s \in]0, 1[$$

$$0 < \liminf_n \frac{\#E \cap \{1, \ldots, n\}}{n^s (\log n)^{p-1}} < \limsup_n \frac{\#E \cap \{1, \ldots, n\}}{n^s (\log n)^{p-1}} < \infty,$$
The prime numbers?

Is \mathbb{P} *p*-recognizable for some *p* ?

Recall the lecture of Mark Pollicott : $\mathbb{P} \cap \{1, \ldots, n\} \sim \frac{n}{\log n}$.

Theorem (Cobham, 1972) Let $E \subset \mathbb{N}$ be *p*-recognizable and such that $\limsup \frac{\#E \cap \{1,...,n\}}{n} = 0$ and $\#E = \infty$. Then *E* satisfies one of the two following properties.

1.
$$\exists p \geq 1, s \in]0, 1[,$$

 $0 < \liminf_{n} \frac{\#E \cap \{1, \dots, n\}}{n^{s} (\log n)^{p-1}} < \limsup_{n} \frac{\#E \cap \{1, \dots, n\}}{n^{s} (\log n)^{p-1}} < \infty,$
2. $\exists p \geq 1, m \geq 2, c \in \mathbb{Q}^{+}, \#E \cap \{1, \dots, n\} \sim c \left(\frac{\log n}{\log m}\right)^{p-1}.$

★□> ★□> ★□> ★□> ★□> □ - のへで

Summary

TODAY

I-Survey of Cobham's type results (logic, algebraic (transcendance), geometric (tilings), combinatorics on words, languages, automata, ...)

FRIDAY

II-Proof of Cobham's theorem (1969) (using dynamical systems)

III-Open problems

I-Survey of Cobham's type results

・ロト < 団ト < 三ト < 三ト < 三 ・ つへの

$E \subset \mathbb{N}^d$ is *p*-recognizable if and only if

(ロ)、(型)、(E)、(E)、 E) の(の)

 $E \subset \mathbb{N}^d$ is *p*-recognizable if and only if

• (Buchi, 1960) it is **definable** (by a first order formula) in $< \mathbb{N}, +, V_p >$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $E \subset \mathbb{N}^d$ is *p*-recognizable if and only if

• (Buchi, 1960) it is **definable** (by a first order formula) in $< \mathbb{N}, +, V_p >$.

► (Christol, 1979) (d = 1, p prime) $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$.

 $E \subset \mathbb{N}^d$ is *p*-recognizable if and only if

• (Buchi, 1960) it is **definable** (by a first order formula) in $< \mathbb{N}, +, V_p >$.

- ► (Christol, 1979) (d = 1, p prime) $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$.
- ▶ (Eilenberg, 1972) the *p*-kernel #{ $(1_E(a + p^k n))_{n \in \mathbb{N}} | a \le p^k - 1, k \ge 1$ } is finite.

Theorem (Semenov, 1977) p and q multiplicatively independent. $E \subset \mathbb{N}^d$ is both p and q-recognizable (or p and q-definable) if and only if E is definable in $\langle \mathbb{N}, + \rangle$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

• $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

- $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.
- ▶ First order formula $\phi(x_1, x_2, ..., x_n)$ in $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$) :

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

- $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.
- ► First order formula $\phi(x_1, x_2, ..., x_n)$ in $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$) :
- integer variables : x_1, x_2, \ldots

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

- $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.
- ▶ First order formula $\phi(x_1, x_2, ..., x_n)$ in $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$) :
- ▶ integer variables : *x*₁, *x*₂, . . .
- equality : =

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

- $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.
- ► First order formula $\phi(x_1, x_2, ..., x_n)$ in $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$) :
- ▶ integer variables : *x*₁, *x*₂, . . .
- equality : =
- fonctions : +, (resp. V_p)

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

- $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.
- ▶ First order formula $\phi(x_1, x_2, ..., x_n)$ in $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$) :
- integer variables : x_1, x_2, \ldots
- equality : =
- fonctions : +, (resp. V_p)
- connectors : $\Leftarrow, \Rightarrow, \Leftrightarrow, \lor, \land, \neg$

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

- $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.
- ▶ First order formula $\phi(x_1, x_2, ..., x_n)$ in $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$) :
- integer variables : x_1, x_2, \ldots
- equality : =
- fonctions : +, (resp. V_p)
- connectors : $\Leftarrow, \Rightarrow, \Leftrightarrow, \lor, \land, \neg$
- quantifiers : \exists, \forall .

Definition $E \subset \mathbb{N}^d$ is **definable** (resp. p-definable) if E is defined by a formula from $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$)

- $V_p(n) = p^k$ if $n = p^k m$ with p not dividing m.
- ▶ First order formula $\phi(x_1, x_2, ..., x_n)$ in $\langle \mathbb{N}, + \rangle$ (resp. $\langle \mathbb{N}, +, V_p \rangle$) :
- ▶ integer variables : *x*₁, *x*₂, . . .
- equality : =
- fonctions : +, (resp. V_p)
- connectors : $\Leftarrow, \Rightarrow, \Leftrightarrow, \lor, \land, \neg$
- quantifiers : \exists, \forall .
- A priori : no constant ... or you should defined them by a formula ...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• E_{2^n} is 2-definable and 4-definable :

• E_{2^n} is 2-definable and 4-definable :

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

•
$$\phi_2(x) := (V_2(x) = x)$$
 et

• E_{2^n} is 2-definable and 4-definable :

•
$$\phi_2(x) := (V_2(x) = x)$$
 et

•
$$\phi_4(x) := (V_4(x) = x) \lor (V_4(x + x) = x + x)$$

・ロト < 団ト < 三ト < 三ト < 三 ・ つへの

► *E*_{2ⁿ} is 2-definable and 4-definable :

•
$$\phi_2(x) := (V_2(x) = x)$$
 et

•
$$\phi_4(x) := (V_4(x) = x) \lor (V_4(x + x) = x + x)$$

Other example : X = {(x, y, z) ∈ N³; x + y = z} is p-definable for all p ≥ 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► *E*_{2ⁿ} is 2-definable and 4-definable :

•
$$\phi_2(x) := (V_2(x) = x)$$
 et

•
$$\phi_4(x) := (V_4(x) = x) \lor (V_4(x + x) = x + x)$$

- Other example : X = {(x, y, z) ∈ N³; x + y = z} is p-definable for all p ≥ 2.
- ▶ **Theorem.** $E \subset \mathbb{N}$ is ultimately periodic iff E is definable in $\langle \mathbb{N}, + \rangle$.

Recall (Christol, 1979) : $E \subset \mathbb{N}$ is *p*-recognizable if and only if $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$.

Recall (Christol, 1979) : $E \subset \mathbb{N}$ is *p*-recognizable if and only if $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$. $f_{E_{2n}}(X)$ is a solution of $Y^2 - Y + X = 0$ in $\mathbb{F}_2[[X]]$.

Recall (Christol, 1979) : $E \subset \mathbb{N}$ is *p*-recognizable if and only if $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$. $f_{E_{2^n}}(X)$ is a solution of $Y^2 - Y + X = 0$ in $\mathbb{F}_2[[X]]$. $f_{E_M}(X)$ is a solution of $(X + 1)^3 Y^2 + (1 + X)^2 Y + X = 0$ in $\mathbb{F}_2[[X]]$.

Recall (Christol, 1979) : $E \subset \mathbb{N}$ is *p*-recognizable if and only if $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$. $f_{E_{2^n}}(X)$ is a solution of $Y^2 - Y + X = 0$ in $\mathbb{F}_2[[X]]$. $f_{E_M}(X)$ is a solution of $(X + 1)^3 Y^2 + (1 + X)^2 Y + X = 0$ in $\mathbb{F}_2[[X]]$. Hint : $u_{2n} = u_n, u_{2n+1} = u_n + 1$

Recall (Christol, 1979) : $E \subset \mathbb{N}$ is *p*-recognizable if and only if $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$. $f_{E_{2^n}}(X)$ is a solution of $Y^2 - Y + X = 0$ in $\mathbb{F}_2[[X]]$. $f_{E_M}(X)$ is a solution of $(X + 1)^3 Y^2 + (1 + X)^2 Y + X = 0$ in $\mathbb{F}_2[[X]]$. Hint : $u_{2n} = u_n, u_{2n+1} = u_n + 1$ $f_{E_C}(X)$ is a solution of ... ? in $\mathbb{F}_3[[X]]$.

Recall (Christol, 1979) : $E \subset \mathbb{N}$ is *p*-recognizable if and only if $f_E(X) = \sum_{n \in E} X^n \in \mathbb{F}_p[[X]]$ is algebraic over $\mathbb{F}_p(X)$. $f_{E_{2^n}}(X)$ is a solution of $Y^2 - Y + X = 0$ in $\mathbb{F}_2[[X]]$. $f_{E_M}(X)$ is a solution of $(X + 1)^3 Y^2 + (1 + X)^2 Y + X = 0$ in $\mathbb{F}_2[[X]]$. Hint : $u_{2n} = u_n, u_{2n+1} = u_n + 1$ $f_{E_C}(X)$ is a solution of ... ? in $\mathbb{F}_3[[X]]$. Hint : ... not difficult

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Algebraic extension

Theorem (Christol, Kamae, Mendès-France, Rauzy, 1980) Let A be a finite alphabet, $x \in \mathcal{A}^{\mathbb{N}}$, and, p and q two different prime numbers. Let $\alpha_p : A \to \mathbb{F}_p$ and $\alpha_q : A \to \mathbb{F}_q$ be one-to-one maps. Then,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic extension

Theorem (Christol, Kamae, Mendès-France, Rauzy, 1980) Let A be a finite alphabet, $x \in \mathcal{A}^{\mathbb{N}}$, and, p and q two different prime numbers. Let $\alpha_p : A \to \mathbb{F}_p$ and $\alpha_q : A \to \mathbb{F}_q$ be one-to-one maps. Then,

$$\sum_{n \in \mathbb{N}} \alpha_p(x_n) X^n \in \mathbb{F}_p[[X]] \text{ is algebraic over } \mathbb{F}_p(X) \text{ and} \\ \sum_{n \in \mathbb{N}} \alpha_q(x_n) X^n \in \mathbb{F}_q[[X]] \text{ is algebraic over } \mathbb{F}_q(X) \\ \text{ if, and only if,} \\ \text{ they are rational.}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Algebraic extension

Theorem (Christol, Kamae, Mendès-France, Rauzy, 1980) Let A be a finite alphabet, $x \in \mathcal{A}^{\mathbb{N}}$, and, p and q two different prime numbers. Let $\alpha_p : A \to \mathbb{F}_p$ and $\alpha_q : A \to \mathbb{F}_q$ be one-to-one maps. Then,

$$\sum_{n \in \mathbb{N}} \alpha_p(x_n) X^n \in \mathbb{F}_p[[X]] \text{ is algebraic over } \mathbb{F}_p(X) \text{ and } \\ \sum_{n \in \mathbb{N}} \alpha_q(x_n) X^n \in \mathbb{F}_q[[X]] \text{ is algebraic over } \mathbb{F}_q(X) \\ \text{ if, and only if,} \\ \text{ they are rational.}$$

Conjecture ? : If one of these numbers is irrational, $\sum_{n} \epsilon_n 3^{-n}$ and $\sum_{n} \epsilon_n 2^{-n}$, then one of them is transcendental.

Fatou's result (1906)

All integer series with uniformly bounded integer coefficients is transcendental or rational.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Fatou's result (1906)

All integer series with uniformly bounded integer coefficients is transcendental or rational. Proof of Allouche, 1999

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Digression on transcendancy

Question : If (u_k) is *p*-automatic then $\sum_k u_k p^{-n}$ is transcendental or rational ?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Digression on transcendancy

Question : If (u_k) is *p*-automatic then $\sum_k u_k p^{-n}$ is transcendental or rational ?

Theorem (Adamczewski-Bugeaud-Lucas, 2004) If $\zeta \in \mathbb{R} \setminus \mathbb{Q}$ is algebraic then

$$\lim_{n\to\infty}\frac{p(n,b,\zeta)}{n}=+\infty,$$

where $p(n, b, \zeta)$ is the number of words of length *n* in the base *b* expansion of ζ .
Digression on transcendancy

Question : If (u_k) is *p*-automatic then $\sum_k u_k p^{-n}$ is transcendental or rational ?

Theorem (Adamczewski-Bugeaud-Lucas, 2004) If $\zeta \in \mathbb{R} \setminus \mathbb{Q}$ is algebraic then

$$\lim_{n\to\infty}\frac{p(n,b,\zeta)}{n}=+\infty,$$

where $p(n, b, \zeta)$ is the number of words of length *n* in the base *b* expansion of ζ .

Consequence : "All non ultimately periodic automatic sequences are transcendental".

Digression on transcendancy

Question : If (u_k) is *p*-automatic then $\sum_k u_k p^{-n}$ is transcendental or rational ?

Theorem (Adamczewski-Bugeaud-Lucas, 2004) If $\zeta \in \mathbb{R} \setminus \mathbb{Q}$ is algebraic then

$$\lim_{n\to\infty}\frac{p(n,b,\zeta)}{n}=+\infty,$$

where $p(n, b, \zeta)$ is the number of words of length *n* in the base *b* expansion of ζ .

Consequence : "All non ultimately periodic automatic sequences are transcendental".

Conjecture : If ζ is an irrational algebraic number then for all n and b, $p(n, b, \zeta) = b^n$.

Recall 1_{E₂n} = φ(x) where x is the fixed point of
 τ : a → ab, b → bc, c → cc starting with a and φ the map defined by a, c → 0, b → 1,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- Recall 1_{E₂n} = φ(x) where x is the fixed point of
 τ : a → ab, b → bc, c → cc starting with a and φ the map
 defined by a, c → 0, b → 1,
- Remark : the dominant eigenvalue of (the incidence matrix of) τ is 2. We say 1_{E₂n} is 2-substitutive.

- Recall 1_{E₂n} = φ(x) where x is the fixed point of
 τ : a → ab, b → bc, c → cc starting with a and φ the map defined by a, c → 0, b → 1,
- Remark : the dominant eigenvalue of (the incidence matrix of) τ is 2. We say 1_{E₂n} is 2-substitutive.
- In general : a sequence x is α-substitutive if it is the image under a letter-to-letter morphism of a fixed point of a (non-erasing) substitution σ : A → A* whose dominant eigenvalue is α (all letters of A appearing in x).

- Recall 1_{E₂n} = φ(x) where x is the fixed point of
 τ : a → ab, b → bc, c → cc starting with a and φ the map defined by a, c → 0, b → 1,
- Remark : the dominant eigenvalue of (the incidence matrix of) τ is 2. We say 1_{E₂n} is 2-substitutive.
- In general : a sequence x is α-substitutive if it is the image under a letter-to-letter morphism of a fixed point of a (non-erasing) substitution σ : A → A* whose dominant eigenvalue is α (all letters of A appearing in x).

Fact : p-automatic sequences are p-substitutive. The converse is not true.

- Recall 1_{E₂n} = φ(x) where x is the fixed point of
 τ : a → ab, b → bc, c → cc starting with a and φ the map defined by a, c → 0, b → 1,
- Remark : the dominant eigenvalue of (the incidence matrix of) τ is 2. We say 1_{E₂n} is 2-substitutive.
- In general : a sequence x is α-substitutive if it is the image under a letter-to-letter morphism of a fixed point of a (non-erasing) substitution σ : A → A* whose dominant eigenvalue is α (all letters of A appearing in x).
- Fact : p-automatic sequences are p-substitutive. The converse is not true.
- The Fibonacci sequence $(0 \mapsto 01, 1 \mapsto 0)$ is $\frac{1+\sqrt{5}}{2}$ -substitutive.

Substitutive version of Cobham's theorem

Theorem (Cobham, 1969+1972) Let $p, q \ge 2$ be two multiplicatively independent integers. Let x be a sequence on a finite alphabet.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Substitutive version of Cobham's theorem

Theorem (Cobham, 1969+1972) Let $p, q \ge 2$ be two multiplicatively independent integers. Let x be a sequence on a finite alphabet. Then, x is both p and q-automatic

Substitutive version of Cobham's theorem

Theorem (Cobham, 1969+1972) Let $p, q \ge 2$ be two multiplicatively independent integers. Let x be a sequence on a finite alphabet. Then, x is both p and q-automatic if and only if x = uvvvvv...

Theorem (Cobham, 1969+1972) Let $p, q \ge 2$ be two multiplicatively independent integers. Let x be a sequence on a finite alphabet. Then, x is both p and q-automatic if and only if x = uvvvvv...

Theorem (Durand, 2011) Let $\alpha, \beta > 1$ be two multiplicatively independent Perron numbers. Then, x is both α and β -substitutive if and only if x = uvvvvv...

Question : What about numeration systems like Fibonacci ?

Question : What about numeration systems like Fibonacci ?

Definition. A numeration system is an increasing sequence of integers $U = (U_n; n \in \mathbb{N})$ such that

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

1.
$$U_0 = 1$$
,
2. $s = \sup\{\frac{U_{n+1}}{U_n}; n \in \mathbb{N}\} < \infty$

Question : What about numeration systems like Fibonacci ?

Definition. A numeration system is an increasing sequence of integers $U = (U_n; n \in \mathbb{N})$ such that

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

1.
$$U_0 = 1$$
,
2. $s = \sup\{\frac{U_{n+1}}{U_n}; n \in \mathbb{N}\} < \infty$.
 $A_U = \{0, \cdots, S - 1\}$ where $S = \lceil s \rceil - 1$

Question : What about numeration systems like Fibonacci ?

Definition. A numeration system is an increasing sequence of integers $U = (U_n; n \in \mathbb{N})$ such that

1.
$$U_0 = 1$$
,
2. $s = \sup\{\frac{U_{n+1}}{U_n}; n \in \mathbb{N}\} < \infty$.
 $A_U = \{0, \dots, S-1\}$ where $S = \lceil s \rceil - 1$
With the greedy algorithm, uniqueness of the expansion
 $\rho_U(n) = a_i \cdots a_0$

$$n = a_i U_i + a_{i-1} U_{i-1} + \cdots + a_0 U_0;$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

with $a_j \in A_U$

• We set
$$L_U(E) = \{0^n \rho_U(x); n \in \mathbb{N}, x \in E\}.$$

◆□ ▶ <圖 ▶ < E ▶ < E ▶ E • 9 < 0</p>

- We set $L_U(E) = \{0^n \rho_U(x); n \in \mathbb{N}, x \in E\}.$
- E ⊂ N is U-recognizable if L_U(E) is recognizable (by a finite automata)

- We set $L_U(E) = \{0^n \rho_U(x); n \in \mathbb{N}, x \in E\}.$
- E ⊂ N is U-recognizable if L_U(E) is recognizable (by a finite automata)
- Open question: Let U and V be two linear numeration systems with U_{n+1}/U_n →_n α and V_{n+1}/V_n →_n β where α and β are multiplicatively independent real numbers. Then, E ⊂ N is U and V-recognizable iff 1_E = uvvv

- We set $L_U(E) = \{0^n \rho_U(x); n \in \mathbb{N}, x \in E\}.$
- E ⊂ N is U-recognizable if L_U(E) is recognizable (by a finite automata)
- **Open question:** Let U and V be two linear numeration systems with $U_{n+1}/U_n \rightarrow_n \alpha$ and $V_{n+1}/V_n \rightarrow_n \beta$ where α and β are multiplicatively independent real numbers. Then, $E \subset \mathbb{N}$ is U and V-recognizable iff $1_E = uvvv \dots$
- Answer : (Durand, 1998) for Bertrand numeration systems, (Durand-Rigo, 2009) for abstract numeration systems.

• R commutative ring, $k \ge 2$,

<□ > < @ > < E > < E > E のQ @

p-kernel

- R commutative ring, $k \ge 2$,
- $x = (x_n)_{n \ge 0}$ taking values in some *R*-module,

p-kernel

- R commutative ring, $k \ge 2$,
- $x = (x_n)_{n \ge 0}$ taking values in some *R*-module,
- ▶ If the *R*-module generated by all sequences in the *k*-kernel $\{(x_{np^i+j})_n | i, j < p^i\}$ is finitely generated then the sequence *x* is said to be (R, k)-regular.

p-kernel

- R commutative ring, $k \ge 2$,
- $x = (x_n)_{n \ge 0}$ taking values in some *R*-module,
- ▶ If the *R*-module generated by all sequences in the *k*-kernel $\{(x_{np^i+j})_n | i, j < p^i\}$ is finitely generated then the sequence *x* is said to be (R, k)-regular.

Theorem (Bell, 2006) Let k, l be two multiplicatively independent integers. If a sequence $x \in R^{\mathbb{N}}$ is both (R, k)-regular and (R, l)-regular, then it satisfies a linear recurrence over R.

$\ln \, \mathbb{R}^d$

Weak automata : automata such that each strongly connected component contains either only accepting or only non-accepting states.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$\ln \, \mathbb{R}^d$

- Weak automata : automata such that each strongly connected component contains either only accepting or only non-accepting states.
- Weakly r-recognizable : recognized by a weak automaton in base r.

$\ln \mathbb{R}^d$

- Weak automata : automata such that each strongly connected component contains either only accepting or only non-accepting states.
- Weakly r-recognizable : recognized by a weak automaton in base r.

Theorem (Boigelot, Brusten, Bruyère, 2008) Let $k, l \ge 2$ be two multiplicatively independent integers. Let $X \subseteq \mathbb{R}$ be compact set. Then, X is both weakly k- and l-recognizable iff it is a finite union of intervals with rational extremities.

$\ln \mathbb{R}^d$

- Weak automata : automata such that each strongly connected component contains either only accepting or only non-accepting states.
- Weakly r-recognizable : recognized by a weak automaton in base r.

Theorem (Boigelot, Brusten, Bruyère, 2008) Let $k, l \ge 2$ be two multiplicatively independent integers. Let $X \subseteq \mathbb{R}$ be compact set. Then, X is both weakly k- and l-recognizable iff it is a finite union of intervals with rational extremities.

Theorem (Brusten PhD thesis, 2011) Let $k, l \ge 2$ be two multiplicatively independent integers. Let $X \subset \mathbb{R}^d$ be a compact set. Then, X is both weakly k- and l-recognizable iff it is definable in $\langle \mathbb{R}, +, <, 1 \rangle$.

Self-similar set K or attractor of the IFS (f_i) : $K = f_1(K) \cup \ldots f_n(K)$ where the f_i are contractions.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Self-similar set K or attractor of the IFS (f_i) : $K = f_1(K) \cup \ldots f_n(K)$ where the f_i are contractions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The IFS is homogeneous if $f_i(x) = ax + b_i$

Self-similar set K or attractor of the IFS (f_i) : $K = f_1(K) \cup \ldots f_n(K)$ where the f_i are contractions.

The IFS is homogeneous if $f_i(x) = ax + b_i$

Theorem (Feng-Wang, 2009) (Suppose K is not a finite union of intervals and (f_i) homogeneous) If $\alpha K + \beta \subset K$ then $\log \alpha / \log a \in \mathbb{Q}$.

Self-similar set K or attractor of the IFS (f_i) : $K = f_1(K) \cup \ldots f_n(K)$ where the f_i are contractions.

The IFS is homogeneous if $f_i(x) = ax + b_i$

Theorem (Feng-Wang, 2009) (Suppose K is not a finite union of intervals and (f_i) homogeneous) If $\alpha K + \beta \subset K$ then $\log \alpha / \log a \in \mathbb{Q}$.

Theorem (Elekes-Keleti-Mathé, 2010) (Suppose K is not a finite union of intervals)

If $\alpha K + \beta \subset K$ then $\log \alpha$ is a linear combination of the $\log a_i$.

 $\ensuremath{\textbf{Question}}$: What is the relation with Cobham's theorem ?

Question : What is the relation with Cobham's theorem ? The Cantor set ... but not only

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question : What is the relation with Cobham's theorem ? The Cantor set ... but not only Graph Directed Iterated Function Systems (GDIFS)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Question : What is the relation with Cobham's theorem ?

The Cantor set ... but not only

Graph Directed Iterated Function Systems (GDIFS)

Observation : K is *p*-recognizable iff it is an homogeneous GDIFS with contraction ratio 1/p.

Question : What is the relation with Cobham's theorem ?

The Cantor set ... but not only

Graph Directed Iterated Function Systems (GDIFS)

Observation : K is *p*-recognizable iff it is an homogeneous GDIFS with contraction ratio 1/p.

Boigelot-Brusten theorem for GDIFS : Let *K* be a compact which is not a finite union of rational polyhedrons (it can be expressed as a finite Boolean combination of linear constraints with rational coefficients).
Relation with Cobham

Question : What is the relation with Cobham's theorem ?

The Cantor set ... but not only

Graph Directed Iterated Function Systems (GDIFS)

Observation : K is *p*-recognizable iff it is an homogeneous GDIFS with contraction ratio 1/p.

Boigelot-Brusten theorem for GDIFS : Let *K* be a compact which is not a finite union of rational polyhedrons (it can be expressed as a finite Boolean combination of linear constraints with rational coefficients). Suppose *K* is an attractor of an homogeneous GDIFS with contraction ratio a and of an other one with contraction ratio b.

Relation with Cobham

Question : What is the relation with Cobham's theorem ?

The Cantor set ... but not only

Graph Directed Iterated Function Systems (GDIFS)

Observation : K is *p*-recognizable iff it is an homogeneous GDIFS with contraction ratio 1/p.

Boigelot-Brusten theorem for GDIFS : Let K be a compact which is not a finite union of rational polyhedrons (it can be expressed as a finite Boolean combination of linear constraints with rational coefficients). Suppose K is an attractor of an homogeneous GDIFS with contraction ratio a and of an other one with contraction ratio b. Then, $\log a / \log b \in \mathbb{Q}$.