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1 Introduction

In this chapter we essentially focus on the representation of non-negative integers in a
given numeration system. The main role of such a system — likethe usual integer base
k numeration system — is to replace numbers or more generally sets of numbers by their
corresponding representations,i.e., by words or by languages. First we consider integer
base numeration systems to present the main concepts but rapidly we will introduce non-
standard systems and their relationships with substitutions.

Let k ∈ N>2 be an integer whereN>2 denotes the set of non-negative integers larger
or equal to2. The set{0, . . . , k} is denoted by[[0, k]]. If we do not allow leading zeroes
when representing numbers, the function mapping a non-negative integern onto itsk-ary
representationrepk(n) ∈ [[0, k − 1]]∗ is a one-to-one correspondence. In the literature,
one also finds notation like〈n〉k, (n)k or ρk(n) instead ofrepk(n). In particular,0 is
assumed to be represented by the empty wordε. Hence any setX ⊆ N is associated with
the languagerepk(X) consisting of thek-ary representations of the elements ofX .

It is natural to study the relation existing between the arithmetic or number-theoretic
properties of integers and the syntactical properties of the corresponding representations
in a given numeration system. We focus on those setsX ⊆ N for which a finite automaton
can be used to decide for any given wordw over [[0, k − 1]] whether or notw belongs
to repk(X). Sets having the property thatrepk(X) is regular1 are calledk-recogniza-
ble sets. Such a set can be considered as a particularly simple set because using the
k-ary numeration system it has a somehow elementary algorithmic description. In the
framework of infinite-state systems verification, one also finds the terminology ofNumber
Decision Diagramor NDD [122].

The essence of Cobham’s theorem is to express that the property for a set to be rec-
ognizable by a finite automatonstrongly dependson the choice of the base and more
generally on the considered numeration system. Naturally this fact leads to and motivates
the introduction and the study of recognizable sets in non-standard numeration systems.
Considering alternative numeration systems may provide new recognizable sets and these
non-standard systems also have applications in computer arithmetic [59]. Last but not
least, the proof of Cobham’s theorem is non-trivial and relies on quite elaborate argu-

1We use the terminology of regular language, instead of rational language.
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ments.
Now let us state this celebrated result from 1969 and give allthe needed details and

definitions. Several surveys have been written on the same subject, see [25, 26, 28, 98].

Theorem 1.1(Cobham’s theorem [35]).Letk, ℓ > 2 be two multiplicatively independent
integers. A setX ⊆ N is bothk-recognizable andℓ-recognizable if and only if it is
ultimately periodic.

In the various contexts that we will describe, showing that an ultimately periodic set
is recognizable is always the easy direction to prove. See Remark 1.3. So we focus on the
other direction.

Definition 1.1. A subset ofN is ultimately periodicif it is the union of a finite set and a
finite number of infinite arithmetic progressions. In particular,X is ultimately periodic if
and only if there existN > 0 andp > 1 such that for alln > N , n ∈ X ⇔ n+ p ∈ X .
Recall that anarithmetic progressionis a set of the kindaN+ b := {an+ b | n > 0}.

Definition 1.2. Let α, β > 1 be two real numbers. If the equationαm = βn with
m,n ∈ N has only the trivial integer solutionm = n = 0, thenα andβ are said
to bemultiplicatively independent. Otherwise,α andβ are said to bemultiplicatively
dependent.

Let k, ℓ > 2 be two integers. Notice thatk andℓ are multiplicatively independent if
and only if log k/ log ℓ is irrational. Note that fork andℓ to be multiplicatively depen-
dent it is not enough thatk andℓ share exactly the same prime factors occurring in their
decomposition. For instance,6 and18 are multiplicatively independent. But coprime
integers are multiplicatively independent.

The irrationality oflog k/ log ℓ is a crucial point in the proof of Cobham’s theorem
(see Subsection 5.3). Recall that ifθ > 0 is irrational, then the set{{nθ} | n > 0}
of fractional parts of the multiples ofθ is dense in[0, 1]. For a proof of the so-called
Kronecker’s theorem, see [66].

Remark 1.2. The fact for two integers to be multiplicatively dependent is an equivalence
relationM overN>2. If k andℓ are multiplicatively dependent, then there exist a minimal
q > 2 and two positive integersm,n such thatk = qm andℓ = qn. Let us give the first
(with respect to their minimal element) few equivalence classes forM partitioningN>2 :
[2]M, [3]M, [5]M, [6]M, [7]M, [10]M, [11]M, [12]M, . . . .

Remark 1.3. We show that if a setX ⊆ N is ultimately periodic then, for allk > 2, X
is k-recognizable. In the literature, one also finds the terminology of a recognizable set
X (without any mention to a base), meaning thatX is k-recognizable for allk > 2. Note
that a finite union of regular languages is again a regular language. Hence it is enough to
check thatrepk(aN + b) is regular with0 6 b < a. We can indeed assume thatb < a
because if we add or remove a finite number of words to a regularlanguage, we still have
a regular language. Consider a DFA havingQ = [[0, a− 1]] as its set of states. For all
i ∈ Q, d ∈ [[0, k − 1]], the transitions are given by

i
d−→ ki+ d mod a.
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The initial state is0 and the unique final state isb. As an example, a DFA accepting
exactly binary representations of the integers congruent to 3 mod4 is given in Figure 1.
A study of the minimal automaton recognizing such divisibility criteria expressed in an
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Figure 1. A finite automaton acceptingrep2(4N+ 3).

integer base is given in [3]. See also the discussion in [109,Prologue]. The fact that a
divisibility criterion exists in every base for any fixed divisor was already observed by
Pascal in [97, pp. 84–89].

2 Numeration basis

It is remarkable that the recognizability of ultimately periodic sets extends to wider con-
texts (see Proposition 2.6 and Theorem 5.1). Let us introduce a first generalization of the
integer base numeration system.

Definition 2.1. A numeration basisis a sequenceU = (Un)n>0 of integers such thatU
is increasing,U0 = 1 and that the set{Ui+1/Ui | i > 0} is bounded. This latter condition
ensures the finiteness of the alphabet of digits used to represent integers. Ifw = wℓ · · ·w0

is a word over a finite alphabetA ⊂ Z then the numerical value ofw is

πA,U (w) =

ℓ
∑

i=0

wi Ui.

Using the greedy algorithm [57], any integern has a unique(normal)U -representation
repU (n) = wℓ · · ·w0 which is a finite word over a minimal finite alphabet called the
canonical alphabetof U and denoted byAU . The normalU -representation satisfies

πAU ,U (repU (n)) = n and for alli ∈ [[0, ℓ− 1]], πAU ,U (wi · · ·w0) < Ui+1.

Again,repU (0) = ε. See [85, Chapter 7] or Ch. Frougny and J. Sakarovitch’s chapter in
[12, Chapter 2]. A subsetX ⊆ N is U -recognizableif repU (X) is accepted by a finite
automaton. LetB ⊂ Z be a finite alphabet. Ifw ∈ B∗ is such thatπB,U (w) > 0, then
the function mappingw ontorepU (πB,U (w)) is callednormalization.

Definition 2.2. A numeration basisU is said to belinear if there existk ∈ N \ {0},
d1, . . . , dk ∈ Z, dk 6= 0, such that, for alln > k, Un = d1Un−1 + · · · + dkUn−k. The
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polynomialPU (X) = Xk − d1X
k−1 − · · · − dk−1X − dk is called thecharacteristic

polynomialof U .

Definition 2.3. Recall that aPisot-Vijayaraghavan numberis an algebraic integerβ > 1
whose Galois conjugates have modulus strictly less than one. We say thatU = (Un)n>0

is aPisot numeration systemif the numeration basisU is linear andPU (X) is the minimal
polynomial of a Pisot numberβ. Integer base numeration systems are particular cases of
Pisot systems. For instance, see [27] where it is shown that most properties related to
k-recognizable sets,k ∈ N>2, can be extended to Pisot systems. In such a case, there
exists somec > 0 such that|Un − c βn| → 0, asn tends to infinity.

Example 2.1. Consider the Fibonacci sequence defined byU0 = 1, U1 = 2 andUn+2 =
Un+1+Un for all n > 0. A word over{0, 1} is aU -representation if and only if it belongs
to the languageL = 1{0, 01}∗ ∪ {ε}. For instance10110 is not aU -representation.
SinceπAU ,U (10110) = 13, the normalization maps10110 to repU (13) = 100000. The
characteristic polynomial of this linear numeration basisis the minimal polynomial of the
Pisot number(1 +

√
5)/2. This Pisot numeration system is presented in [123].

The following result is an easy exercise but also can be carried on in a wider context.

Theorem 2.1. [115] Let U be a numeration basis. IfN is U -recognizable, thenU is
linear.

Definition 2.4. [13] A Bertrand numeration basisU is a numeration basis satisfying the
following property:w ∈ repU (N) if and only if, for all n ∈ N, w0n ∈ repU (N). It is a
natural condition satisfied by all integer basek > 2 systems. For instance, the sequence
defined byU0 = 1, U1 = 3 and, for alln > 0, Un+2 = Un+1 + Un is not a Bertrand
numeration basis becauserepU (2) = 2, butπAU ,U (20) = 6 andrepU (6) = 102.

Let α > 1 be a real number. The notion ofα-expansion was introduced by Parry in
[96], (also see Rényi’s paper [104]). See again [85, Chapter 7]. All x ∈ [0, 1] can be
uniquely written in the following way:

x =
∑

n>1

anα
−n, (2.1)

with x1 = x and for alln > 1, an = ⌊αxn⌋ andxn+1 = {αxn}, where⌊·⌋ stands
for the integer part. The sequencedα(x) = (an)n>1 is theα-expansionof x andL(α)
denotes the set of finite words having an occurrence in some sequencesdα(x), x ∈ [0, 1].
Let dα(1) = (tn)n>1. If there existN > 0, p > 0 such that, for alln > N , tn+p = tn
thenα is said to be aParry number, sometimes called aβ-number(for more details or
information about these numbers, see [96] or [58]). Observethat integers greater or equal
to 2 are Parry numbers.

The following result relates Bertrand numeration systems to languages defined by
some real number.

Theorem 2.2(A. Bertrand-Mathis [14]).LetU be a numeration basis. It is a Bertrand
numeration basis if and only if there exists a real numberα > 1 such thatrepU (N) =
L(α). In this case, ifU is linear thenα is a root of the characteristic polynomial ofU .



6 F. Durand, M. Rigo

Theorem 2.3(A. Bertrand-Mathis [13]).Let α > 1 be a real number. The language
L(α) is regular if and only ifα is a Parry number.

Associated with a Parry numberβ, one can define the notion of beta-polynomial. For
details see [68] or [12, Chapter 2]. First we define thecanonical beta-polynomial. If
dβ(1) is eventually constant and equal to0: dβ(1) = t1 · · · tm0ω, with tm 6= 0, then
we setGβ(X) = Xm −∑m

i=1 tiX
m−i and r = m. Otherwise,dβ(1) is eventually

periodic: dβ(1) = t1 · · · tm(tm+1 · · · tm+p)
ω, with m andp being minimal. Then we

setGβ(X) = Xm+p −∑m+p
i=1 tiX

m+p−i − Xm +
∑m

i=1 tiX
m−i andr = p. Let β

be a Parry number. Anextended beta-polynomialis a polynomial of the formHβ(X) =
Gβ(X)(1 +Xr + · · ·+Xrk)Xn for k, n ∈ N.

Proposition 2.4. [68] Let U be a linear numeration basis with dominant rootβ, i.e.,
limn→∞ Un+1/Un = β for someβ > 1. If repU (N) is regular, thenβ is a Parry number.

Theorem 2.5(M. Hollander [68]). LetU be a linear numeration basis whose dominant
root β is a Parry number.

• If dβ(1) is infinite and eventually periodic, thenrepU (N) is regular if and only ifU
satisfies an extended beta-polynomial forβ.

• If dβ(1) is finite of lengthm, then: if U satisfies an extended beta-polynomial
for β thenrepU (N) is regular; and conversely ifrepU (N) is regular, thenU sat-
isfies either an extended beta-polynomial forβ, Hβ(X), or a polynomial of the
form (Xm − 1)Hβ(X).

Ultimately periodic sets are recognizable for any linear numeration basis.

Proposition 2.6(Folklore [12, 85]).Leta, b > 0. If U = (Un)n>0 is a linear numeration
basis, then

π−1
AU ,U (aN+ b) =

{

cℓ · · · c0 ∈ A∗
U |

ℓ
∑

k=0

ck Uk ∈ aN+ b

}

is accepted by a DFA that can be effectively constructed. In particular, if N isU -recogni-
zable, then any ultimately periodic set isU -recognizable.

To conclude this section, consider again the integer base numeration systems.

Example 2.2. The setP2 = {2n | n > 0} of powers of two is trivially2-recognizable
becauserep2(P2) = 10∗. Since the difference between any two consecutive elementsin
P2 is of the kind2n+1 − 2n = 2n, P2 is not ultimately periodic. As a consequence of
Cobham’s theorem,P2 is for instance neither3-recognizable nor5-recognizable.

One could also consider the case when the two basesk and ℓ are multiplicatively
dependent. This case is much easier and can be considered as an exercise.

Proposition 2.7. Let k, ℓ > 2 be two multiplicatively dependent integers. A setX ⊆ N

is k-recognizable if and only if it isℓ-recognizable.
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The theorem of Cobham implies that ultimately periodic setsare the only infinite sets
that arek-recognizable for everyk > 2. We have seen so far that there exist sets (like the
setP2 of powers of two) that are only recognizable for some specificbases: exactly all
bases belonging to a unique equivalence class for the equivalence relationM overN>2.
To see that a given infinite ordered setX = {x0 < x1 < x2 < · · · } is k-recognizable
for nobasek > 2 at all, we can use results like the following one, where the behavior of
the ratio (resp. difference) of any two consecutive elements inX is studied through the
quantities

RX = lim sup
i→∞

xi+1

xi
andDX = lim sup

i→∞
(xi+1 − xi) .

Theorem 2.8(Gap theorem [36]).Let k > 2. If X ⊆ N is a k-recognizable infinite
subset ofN, then eitherRX > 1 or DX < +∞.

Corollary 2.9. Let a ∈ N>2. The set of primes and the set{na | n > 0} are never
k-recognizable for any integer basek > 2.

Proofs of the Gap theorem and its corollary can also be found in [51]. For more results
on primes, see also the chapter “Automata in number theory” of this handbook.

Definition 2.5. An infinite ordered setX = {x0 < x1 < x2 < · · · } such thatDX <
+∞ is said to besyndeticor with bounded gaps: there existsC > 0 such that for all
n > 0, xn+1 − xn < C. In particular, any ultimately periodic set is syndetic. The
converse does not hold, see for instance Example 3.1.

Remark 2.10. Note that syndeticity occurs in various contexts like in ergodic theory.
As an example, a subset of an Abelian groupG is said to be syndetic if finitely many
translates of it coverG. The term “syndetic” was first quoted in [62]. Note that in [64] the
following result is proved. Letα, β > 1 be multiplicatively independent real numbers. If
a setX ⊆ N is α-recognizable andβ-recognizable, for the Bertrand numeration systems
based respectively on the real numbersα andβ in the sense of [14] and Theorem 2.2, then
X is syndetic.

Cobham’s original proof of Theorem 1.1 appeared in [35] and we quote [51] “The
proof is correct, long and hard. It is a challenge to find a morereasonable proof of this
fine theorem”. Then G. Hansel proposed a simpler presentation in [63], also one can see
[98] or the dedicated chapter in [9] for an expository presentation. Prior to these last two
references, one should read [108]. Usually a first step to prove Cobham’s theorem is to
show the syndeticity of the considered set. See Section 5.3.

3 Automatic sequences

As explained in Corollary 3.3 presented in this section, theformalism ofk-recognizable
sets is equivalent to the one ofk-automatic sequences2. Let us recall briefly what they are.

2We indifferently use the terms sequence and infinite word.
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An infinite wordx = (xn)n>0 ∈ BN over an alphabetB is said to bek-automaticif there
exists a DFAO (deterministic finite automaton with output) over the alphabet[[0, k − 1]],
(Q, [[0, k − 1]], ·, q0, B, τ) such that, for alln > 0,

xn = τ(q0 · repk(n)) .
The transition function is· : Q × [[0, k − 1]] → Q and can easily be extended toQ ×
[[0, k − 1]]∗ by q · ε = q andq · wa = (q · w) · a. The output function isτ : Q →
B. Roughly speaking, thenth term of the sequence is obtained by feeding a DFAO
with thek-ary representation ofn. For a complete and comprehensive exposition onk-
automatic sequences and their applications see the book [9]. We equally use the terms of
sequences or (right-) infinite words. For more information about combinatorics on words,
see [84, 85] or also J. Cassaigne and F. Nicolas’ chapter in [12, Chapter 4].

Definition 3.1. Let σ : A∗ → A∗ be a morphism,i.e., σ(uv) = σ(u)σ(v) for all u, v ∈
A∗. Naturally such a map can be defined onAω. A finite or infinite wordx such that
σ(x) = x is said to be afixed pointof σ. A morphismσ : A∗ → A∗ is completely
determined by the images of the letters inA. In particular, if there existsk > 0 such
that for alla ∈ A, |σ(a)| = k, thenσ is said to be ofk-uniformor simply uniform. A
1-uniform morphism is called acoding. If there exist a lettera ∈ A and a wordu ∈ A+

such thatσ(a) = au and moreover, iflimn→+∞ |σn(a)| = +∞, thenσ is said to be
prolongableona or to be asubstitution. Letσ : A∗ → A∗ be a morphism prolongable on
a. We have

σ(a) = a u, σ2(a) = a u σ(u), σ3(a) = a u σ(u)σ2(u), . . . .

Since for alln ∈ N, σn(a) is a prefix ofσn+1(a) and because|σn(a)| tends to infinity
whenn → +∞, the sequence(σn(a))n>0 converges (for the usual product topology on
words, see for instance (6.2)) to an infinite word denoted byσ∞(a) and given by

σ∞(a) := lim
n→+∞

σn(a) = a u σ(u)σ2(u)σ3(u) · · · .

This infinite word is a fixed point ofσ. An infinite word obtained in this way by iterating a
prolongable morphism is said to bepurely substitutive(or pure morphic). If σ : A∗ → B∗

is a non-erasing morphism, it can be extended to a map fromAN to BN as follows. If
x = x0x1 · · · is an infinite word overA, then the sequence of words(σ(x0 · · ·xn−1))n>0

is easily seen to be convergent towards an infinite word overB. Its limit is denoted by
σ(x) = σ(x0)σ(x1)σ(x2) · · · . If x ∈ AN is purely substitutive and ifτ : A → B is a
coding, then the wordy = τ(x) is said to besubstitutive.

Another result due to A. Cobham is the following one, see [36]. The idea is to canon-
ically associated with anyk-uniform morphism a DFA over[[0, k − 1]].

Theorem 3.1. Let k > 2. A sequencex = (xn)n>0 ∈ BN is k-automatic if and only if
there exists ak-uniform morphismσ : A∗ → A∗ prolongable on a lettera ∈ A and a
codingτ : A→ B such thatx = τ(σ∞(a)).

Theorem 3.2(Eilenberg [51]).A sequencex = (xn)n>0 is k-automatic if and only if its
k-kernelNk(x) = {(xken+d)n>0 | e > 0, 0 6 d < ke} is finite.
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Definition 3.2. Thecharacteristic sequence1X ∈ {0, 1}N of a setX ⊆ N is defined by1X(n) = 1 if and only if n ∈ X .

An infinite wordx ∈ Aω is ultimately periodicif there exist two finite wordsu ∈ A∗

andv ∈ A+ such thatx = uvω. If u = ε, x is periodic. Obviously, a setX ⊆ N is
ultimately periodic if and only if1X is an ultimately periodic word over{0, 1}. In that
case, there exist two finite wordsu ∈ {0, 1}∗ andv ∈ {0, 1}+ such that1X = uvω. In
particular,|v| is a period ofX . If u andv are chosen of minimal length, then|u| (resp.
|v|) is said to be thepreperiodor indexof X (resp. theperiod of X). If u = ε, X is
(purely) periodic. Periodic sets are in particular ultimately periodic.

Corollary 3.3. Let k > 2. If x = (xn)n>0 ∈ BN is a k-automatic sequence then, for
all b ∈ B, the set{n > 0 | xn = b} is k-recognizable. Conversely, if a setX ⊆ N is
k-recognizable, then its characteristic sequence isk-automatic.

Theorem 3.4(Cobham’s theorem, version 2).Let k, ℓ > 2 be two multiplicatively in-
dependent integers. An infinite wordx = (xn)n>0 ∈ BN is bothk-automatic andℓ-
automatic if and only if it is ultimately periodic.

Remark 3.5. Using the framework ofk-automatic sequences instead of the formalism of
k-recognizable sets turns out to be useful. For instance, consider thecomplexity function
of an infinite wordx which mapsn ∈ N onto the numberpx(n) of distinct factors of
lengthn occurring inx. Morse–Hedlund’s theorem states thatx is ultimately periodic if
and only ifpx is bounded by some constant. This result appeared first in [90]. Proofs can
be found in classical textbooks like [9, 84].

It is also well known that for ak-automatic sequencex, px ∈ O(n), again see the
seminal paper [36]. This latter result can be used to show that particular sets are notk-
recognizable for anyk > 2: for instance, those sets whose characteristic sequence1X

has a complexity function such thatlimn→+∞ p1X
(n)/n = +∞. For the behavior ofpx

in the substitutive case, see the survey [4] or [12, Chapter 4].

Example 3.1. Iterating the morphismσ : 0 7→ 01, 1 7→ 10, we get theThue–Morse
word (tn)n>0 = σ∞(0) = 0110100110010110100101100110 · · · . For an account on
this celebrated word, see [8] and [56, Chapter 2]. It is a2-automatic word, thenth letter
in the word is0 if and only if rep2(n) contains an even number of1’s. This word is
generated by the DFAO represented in Figure 2. In particular, the set

0 1

0 0

1

1
Figure 2. A DFAO generating the Thue–Morse word.

X2 =

{

n ∈ N | rep2(n) = ct · · · c0 and
t
∑

i=0

ci ≡ 0 (mod 2)

}
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is 2-recognizable. The Thue–Morse word is not ultimately periodic (see for instance [23]
or [39] where the complexity function of this word is studiedcarefully) and thereforeX2

isk-recognizable only for thosek of the form2m,m ∈ N>1. Nevertheless, one can notice
thatX2 is syndetic.

4 Multidimensional extension and first order logic

4.1 Subsets ofNd

To extend the concept ofk-recognizability to subsets ofNd, d > 2, it is natural to consider
d-tuples ofk-ary representations. To getd words of the same length that have to be read
simultaneously by an automaton, the shortest ones are padded with leading zeroes. We
extend the definition ofrepk to a map of domainNd as follows. Ifn1, . . . , nd are non-
negative integers, we consider the word

repk(n1, . . . , nd) :=







0m−| repk(n1)| repk(n1)
...

0m−| repk(nd)| repk(nd)






∈
(

[[0, k − 1]]d
)∗

wherem = max{| repk(n1)|, . . . , | repk(nd)|}. A subsetX of Nd is k-recognizableif
the corresponding languagerepk(X) is accepted by a finite automaton over the alphabet
[[0, k − 1]]d which is the Cartesian product ofd copies of[[0, k − 1]]. This automaton is
readingd digits at a time (one for each component): this is why we needd words of the
same length.

Example 4.1. Consider the automaton depicted in Figure 3 (the sink is not represented).
It accepts(ε, ε) and all pairs of words of the kind(u0, 0u) whereu ∈ 1{0, 1}∗. This
means that the set{(2n, n) | n > 0} is 2-recognizable.

(

0
0

) (

1
1

)

(

1
0

)

(

0
1

)

(

1
0

)

Figure 3. A DFA recognizing{(2n, n) | n > 0}.

Note that the notion ofk-automatic sequence and Theorem 3.1 have been extended
accordingly in [111, 112] where the images by a morphism of letters ared-dimensional
cubes of sizek.

Extending the concept of ultimately periodic sets to subsets of Nd, with d > 2, is
at first glance not so easy. We use bold face letters to represent elements inNd. For
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instance, one could take the following definition of a (purely) periodic subsetX ⊆ Nd.
There exists a non-zero elementp ∈ Nd such thatx ∈ X if and only if x + p ∈ X .
As we will see (Remark 4.2, Proposition 6.9 and Theorem 6.11), it turns out that this
definition does not fit to the extension of Cobham’s theorem ind dimensions. Therefore
we will consider sets definable in〈N,+〉. Let us mentionNivat’s conjectureconnecting
such a notion of periodicity in higher dimensions with the notion of block complexity as
introduced in Remark 3.5: letX ⊂ Z2, if there exist positive integersn1, n2 such that
pX(n1, n2) 6 n1n2 thenX is periodic, wherepX(n1, n2) counts the number of distinct
blocks of sizen1 × n2 occurring inX . See [92] and in particular [102] for details and
pointers to the existing bibliography.

4.2 Logic andk-definable sets

The formalism of first order logic is probably the best suitedto present a natural exten-
sion (in the sense of Cobham’s theorem) of the definition of ultimately periodic sets in
d dimensions. See [100, 101] or the survey [16]. In thePresburger arithmetic〈N,+〉,
the variables range overN and we have at our disposal the connectors∧,∨,¬,→,↔, the
equality symbol= and the quantifiers∀ and∃ that can only be applied to variables. This
is the reason we speak of first order logic; in second order logic, quantifiers can be applied
to relations, and in monadic second order logic, only variables and unary relations,i.e.,
sets, may be quantified. If a variable is not within the scope of any quantifier, this variable
is said to befree. Formulas are build inductively from terms and atomic formulas. Here
details have been omitted, see for instance [28, Section 3.1]. For instance, order relations
<, 6, > and> can be added to the language by noticing thatx 6 y is equivalent to

(∃z)(y = x+ z). (4.1)

In the same way, constants can also be added. For instance,x = 0 is equivalent to
(∀y)(x 6 y) andx = 1 is equivalent to¬(x = 0) ∧ (∀y)(¬(y = 0) → (x 6 y)). In
general, thesuccessorfunctionS(x) = y of x is defined by

(x < y) ∧ (∀z)((x < z) → (y 6 z)) .

For a complete account on the interactions between first order logic andk-recognizable
sets, see the excellent survey [28].

Remark 4.1. We mainly discuss the case〈N,+〉 but all developments can be made for
〈Z,+,6〉. Note that if the variables belong toZ then it is no longer possible to define6
as in (4.1). So this order relation has to be added to the structure. The constant0 can be
defined byx+ x = x.

Let ϕ(x1, . . . , xd) be a formula withd free variablesx1, . . . , xd. Interpretingϕ in
〈N,+〉 permits one to define the set ofd-tuples of non-negative integers for which the
formula holds true:

{(r1, . . . , rd) | 〈N,+〉 |= ϕ[r1, . . . , rd]}.
We write〈N,+〉 |= ϕ[r1, . . . , rd] if ϕ(x1, . . . , xd) is satisfied in〈N,+〉 when interpreting
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xi by ri for all i ∈ {1, . . . , d}. For the reader having no background in logic and model
theory, the first chapters of [50] are worth reading.

Remark 4.2. The ultimately periodic sets ofN are exactly the sets that are definable in
the Presburger arithmetic. It is obvious that ultimately periodic sets ofN are definable.
For instance, the set of even integers can be defined byϕ(x) ≡ (∃y)(x = y + y). Since
constants can easily be defined, it is easy to write a formula for any arithmetic progression.
As an example, the formulaϕ(x) ≡ (∃y)(x = S(S(y + y + y))) defines the progression
3N+ 2. In particular, multiplication by a fixed constant is definable in 〈N,+〉. Note that
it is a classical result that the theory of〈N,+,×〉 is undecidable, see for instance [15].

Adding congruences modulo any integerm permits quantifier elimination, which
means that any formula expressed in the Presburger arithmetic is equivalent to a formula
using only∧, ∨, =, < and congruences, see [100, 101]. Presentations can also be found
in [52, 80].

Theorem 4.3 (Presburger).The structure〈N,+, <, (≡m)m>0〉 admits elimination of
quantifiers.

This result can be used to prove that the theory of〈N,+〉 is decidable. This can be
done using the formalism of automata, see for instance [28].

Corollary 4.4. Any formulaϕ(x) in the Presburger arithmetic〈N,+〉 defines an ulti-
mately periodic set ofN.

Let k > 2. We add to the structure〈N,+〉 a functionVk defined byVk(0) = 1
and for allx > 0, Vk(x) is the greatest power ofk dividing x. As an example, we
haveV2(6) = 2, V2(20) = 4 andV2(2n) = 2n for all n > 0. Again the theory of
〈N,+, Vk〉 can be shown to be decidable [28]. The next result shows that,as for thek-
automatic sequences, the logical framework within the richer structure〈N,+, Vk〉 gives
an equivalent presentation of thek-recognizable sets in any dimension. Proofs of the next
three theorems can again be found in [28] where a full accountof the different approaches
used to prove Theorem 4.5 is presented. For Büchi’s original paper, see [29].

Theorem 4.5(Büchi’s theorem).Letk > 2 andd > 1. A setX ⊆ Nd is k-recognizable
if and only if it can be defined by a first order formulaϕ(x1, . . . , xd) of 〈N,+, Vk〉.

For instance the setP2 introduced in Example 2.2 can be defined by the formula
ϕ(x) ≡ V2(x) = x. Note that Theorem 4.5 holds for Pisot numeration systems given in
Definition 2.3, see [27] where the functionVk is modified accordingly. This is partially
based on the fact that in a Pisot numeration system the normalization function is realized
by a finite automaton, see [58], which allows one to consider addition of integers: first
perform addition digit-wise without any carry, then normalize the result.

Theorem 4.6(Cobham’s theorem, version 3).Let k, ℓ > 2 be two multiplicatively in-
dependent integers. A setX ⊆ N can be defined by a first order formula in〈N,+, Vk〉
and by a first order formula in〈N,+, Vℓ〉 if and only if it can be defined by a first order
formula in〈N,+〉.



On Cobham’s theorem 13

This theorem still holds in higher dimensions and is called the Cobham–Semenov
theorem. In this respect, the notion of subset ofNd definable in the Presburger arithmetic
〈N,+〉 is the right extension of periodicity in a multidimensionalsetting. For Semenov’s
original paper, see [113].

Theorem 4.7(Cobham–Semenov theorem).Let k, ℓ > 2 be two multiplicatively inde-
pendent integers. A setX ⊆ Nd can be defined by a first order formula in〈N,+, Vk〉
and by a first order formula in〈N,+, Vℓ〉 if and only if it can be defined by a first order
formula in〈N,+〉.

Subsets ofNd defined by a first order formula in〈N,+〉 are characterized in [61]. The
nice criterion of Muchnik appeared first in 1991 and is given in [91]. See Proposition 6.9
for its precise statement. Using this latter characterization, a proof of Theorem 4.7 is
presented in [28]. The logical framework has given rise to several works. Let us men-
tion chronologically [118, 119] and [88, 89]. In [89, Section 5] the authors interestingly
show how to reduce Semenov’s theorem to Cobham’s theorem: “Nothing new in higher
dimensions”. Also extensions to non-standard numeration systems are considered in [99]
and [15]. In this latter paper, the Cobham–Semenov theorem is proved for two Pisot
numeration systems.

5 Numeration systems and substitutions

5.1 Substitutive sets and abstract numeration systems

In Sections 4.1 and 4.2, we have mainly extended the notion ofrecognizability to subsets
of Nd. Now we consider another extension of recognizability. In Corollary 3.3, we have
seen that ak-recognizable set has a characteristic sequence generatedby a uniform sub-
stitution and the application of an extra coding. It is pretty easy to define sets of integers
encoded by a characteristic sequence generated by an arbitrary substitution and an extra
coding, that is whose characteristic sequence is morphic. This generalization permits one
to reach a larger class of infinite words, hence a larger classof sets of integers.

Example 5.1. Consider the morphismσ : {a, b, c}∗ → {a, b, c}∗ given byσ(a) = abcc,
σ(b) = bcc, σ(c) = c and the codingτ : a, b 7→ 1, c 7→ 0. We get

σ∞(a) = abccbccccbccccccbccccccccbccccccccccbcc · · ·
andτ(σ∞(a)) = 010010000100000010000000010000000000100 · · · . Using the special
form of the images byσ of b andc, it is not difficult to see that the difference between
the position of thenth b and the(n + 1)st b in σ∞(a) is 2n+ 1. Henceτ(σ∞(a)) is the
characteristic sequence of the set of squares and it is substitutive. From Corollary 2.9 the
set of squares is neverk-recognizable for any integer basek.

Definition 5.1. As a natural extension of the concept of recognizability, wemay consider
setsX ⊆ N having a characteristic sequence1X which is (purely) substitutive. Such a set
is said to be a(purely) substitutive set. In particulark-recognizable sets are substitutive.
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With Theorem 5.2 it will turn out that the formalism of substitutive sets is equivalent
to the one of abstract numeration systems.

Definition 5.2. [81] An abstract numeration systemor ANSis a tripleS = (L,A,<)
whereL is an infinite regular language over a totally ordered alphabet (A,<). The map
repS : N → L is the one-to-one correspondence mappingn ∈ N onto the(n + 1)th
word in the genealogically ordered languageL, which is called theS-representationof
n. In particular, a setX ⊆ N is S-recognizable, if repS(X) is regular, and,N is trivially
S-recognizable becauserepS(N) = L. Recall that in thegenealogical order(also called
radix or military order), words are first ordered by increasing length and for words of the
same length, one uses the lexicographic ordering induced bythe order< onA.

Example 5.2. Consider the languageL = a∗b∗ ∪ a∗c∗ with a < b < c. The first words
in L areε, a, b, c, aa, ab, ac, bb, cc, aaa, aab, aac, abb, . . .. This means that for the ANS
S built onL, 0 is represented byε, 1 by a, 2 by b, 3 by c, 4 by aa, etc. SinceL contains
exactly2n+ 1 words of lengthn for all n > 0, we have thatn2 is represented byan for
all n > 0. In particular, the set{n2 | n > 0} is S-recognizable becausea∗ is regular. It
is well known that in a regular languageL, the set of the first words of each length in the
genealogically ordered languageL is regular, see [115].

Pisot numeration systems are special cases of ANS. Indeed, if the numeration basis
U = (Un)n>0 defines a Pisot numeration system, thenrepU (N) is regular.

Example 5.3. Consider the Fibonacci sequence and the languageL = 1{0, 01}∗ ∪ {ε}
defined in Example 2.1. To get the representation of an integer n, one can either decom-
posen using the greedy algorithm or, order genealogically the words inL and take the
(n+ 1)th element.

Theorem 5.1. [81] LetS = (L,A,<) be an abstract numeration system. Any ultimately
periodic set isS-recognizable.

Note that in [78], it is in particular proved that this latterresult cannot be extended to
context-free languages. Specific cases ofS-recognizable sets are discussed in P. Lecomte
and M. Rigo’s chapter in [12, Chapter 3]. We have an extensionof Theorem 3.1.

Theorem 5.2. Let x = (xn)n>0 be an infinite word over an alphabetB. This word
is substitutive if and only if there exists an abstract numeration systemS = (L,A,<)
such thatx is S-automatic,i.e., there exists a DFAO(Q,A, ·, {q0}, B, τ) such that for all
n > 0, xn = τ(q0 · repS(n)).

A proof of this result is given in [105, 107] and a comprehensive treatment is given in
[12, Chapter 3]. In that context, we also obtain an extensionof Corollary 3.3.

Corollary 5.3. Let x = (xn)n>0 be an infinite substitutive word over an alphabetB.
There exists an ANSS such that for allb ∈ B, {n > 0 | xn = b} is S-recognizable.
Conversely, if a setX ⊆ N is S-recognizable, then its characteristic sequence isS-
automatic.
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Corollary 5.4. A setX ⊆ N is substitutive if and only if there exists an ANSS such that
X is S-recognizable.

5.2 Cobham’s theorem for substitutive sets

In the context of substitutive sets of integers,how could a Cobham-like theorem be ex-
pressed, i.e., what is playing the role of a base? Assume that there exist two purely
substitutive infinite wordsx ∈ Aω andy ∈ Bω respectively generated by the morphisms
σ : A∗ → A∗ prolongable ona ∈ A andτ : B∗ → B∗ prolongable onb ∈ B, i.e.,
σ∞(a) = x andτ∞(b) = y. Consider two codingsλ : A → {0, 1} andµ : B → {0, 1}
such thatλ(x) = µ(y). This situation corresponds to the case where a set (here, given by
its characteristic word) is recognizable in twoa priori different numeration systems.

If A = B andτ = σm for somem > 1, nothing particular can be said about the infi-
nite wordλ(x): iteratingσ orσm from the same prolongable letter leads to the same fixed
point. So we must introduce a notion analogous to the one of multiplicatively independent
bases related to the substitutionsσ andλ.

Definition 5.3. Let σ : A∗ → A∗ be a substitution over an alphabetA. The matrix
Mσ ∈ NA×A associated withσ is called theincidence matrixof σ and is defined by

for all a, b ∈ A, (Mσ)a,b = |σ(b)|a .
A square matrixM ∈ Rn×n with entries inR>0 is irreducible if, for all i, j, there exists
k such that(Mk)i,j > 0. A square matrixM ∈ Rn×n with entries inR>0 is primitive if
there existsk such that, for alli, j, we have(Mk)i,j > 0. Similarly, a substitution over
the alphabetA is irreducible(resp.primitive) if its incidence matrix is irreducible (resp.
primitive). Otherwise stated, a substitutionσ : A∗ → A∗ is primitive, if there exists an
integern > 1 such that, for alla ∈ A, all the letters inA appear in the image ofσn(a).

Let us denote byP the abelianisation map (or Parikh map) which maps a wordw over
A = {a1, . . . , ar} on ther-tuple t(|w|a1

, . . . , |w|ar
). The matrixMσ can be defined by

its columns:

Mσ =
(

P(σ(a1)) · · · P(σ(ar))
)

,

and it satisfies:

for all w ∈ A∗, P(σ(w)) = MσP(w) .

Remark 5.5. If a matrixM is primitive, the celebrated theorem of Perron can be used,
see standard textbooks like [72] or [60, 114]. A presentation is also given in [83]. To
recap some of the key points,M has a unique dominating real eigenvalueβ > 0 and there
exists an eigenvector with positive entries associated with β. Also, for all i, j, there exists
ci,j such that(Mn)i,j = ci,jβ

n + o(βn). For instance, primitiveness ofMσ implies the
existence of the frequency of any factor occurring in any fixed point ofσ. Note that

if P(w) = t(p1, . . . , pr), then|w| =
r
∑

i=1

pi. (5.1)
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Hence, for alln > 0, |σn(aj)| is obtained by summing up the entries in thejth column
of Mn

σ. If σ is primitive then there exists someCj such that|σn(aj)| = Cjβ
n + o(βn).

In particular, ifσ is prolongable ona, then|σn(a)| ∼ Cβn, for someC > 0.
In the general case of a matrixM with non-negative entries, one can use the Perron–

Frobenius theorem for each of the irreducible components ofM (they correspond to
the strongly connected components of the associated graph,also called communicating
classes). Thus any non-negative matrixM has a real eigenvalueα which is greater or
equal to the modulus of any other eigenvalue. We callα thedominating eigenvalueof M.
Moreover, if we exclude the case whereα = 1, then there exists a positive integerp such
thatMp has a dominating eigenvalueαp which is a Perron number, see [83, p. 369]. A
Perron numberis an algebraic integerα > 1 such that all its algebraic conjugates have
modulus less thanα. In particular, if we replace a prolongable substitutionσ such that
Mσ has a dominating eigenvalueα > 1, with a convenient powerσp of σ, we can assume
that the dominating eigenvalue ofσ is a Perron number.

Definition 5.4. Let σ : A∗ → A∗ be a substitution prolongable ona ∈ A such that
all letters ofA have an occurrence inσ∞(a). Let α > 1 be the dominating eigenvalue
of the incidence matrix ofσ. Let φ : A → B∗ be a coding. We sayφ(σ∞(a)) is an
α-substitutive infinite word (with respect toσ). In view of Definition 5.1, this notion can
be applied to subsets ofN. If moreoverσ is primitive, thenφ(σ∞(a)) is said to be a
primitiveα-substitutive infinite word (w.r.t.σ).

Observe thatk-automatic infinite words arek-substitutive infinite words.

Example 5.4. Consider the substitutionσ defined byσ(a) = aa0a, σ(0) = 01 and
σ(1) = 10. Its dominating eigenvalue is3. It is prolongable both ona, 0 and1. The fixed
point x of σ starting with0 is the Thue-Morse sequence (see Example 3.1). Definition
5.4 does not implies thatx is 3-substitutive becausea does not appear inx. But the fixed
pointy of σ starting witha is 3-substitutive.

Example 5.5. Consider the so-calledTribonacci word, which is the unique fixed point of
σ : a 7→ ab, b 7→ ac, c 7→ a. See [117, 56]. The incidence matrix ofσ is

Mσ =





1 1 1
1 0 0
0 1 0



 .

One can check thatM3
σ contains only positive entries. So the matrix is primitive.Let

αT ≃ 1.839 be the unique real root of the characteristic polynomial−X3 +X2 +X +1
of Mσ. The Tribonacci wordT = abacabaab · · · is primitiveαT -substitutive. Letτ :
a 7→ 1, b, c 7→ 0 be a coding. The wordτ(T ) is the characteristic sequence of a primitive
αT -substitutive set of integers{0, 2, 4, 6, 7, . . .}.

To explain the substitutive extension of Cobham’s theorem we need the following
definition.

Definition 5.5. Let S be a set of prolongable substitutions andx be an infinite word. If
x is anα-substitutive infinite word w.r.t. a substitutionσ belonging toS, thenx is said to
beα-substitutive with respect toS.
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Let us consider the following Cobham-like statement depending on two setsS andS ′

of prolongable substitutions. It is useful to describe chronologically known results gener-
alizing Cobham’s theorem in terms of substitutions leadingto the most general statement
for all substitutions.

Statement(S,S ′). Let S andS ′ be two sets of prolongable substitutions. Letα andβ
be two multiplicatively independent Perron numbers. Letx ∈ Aω whereA is a finite
alphabet. Then the following are equivalent:

(1) the infinite wordx is bothα-substitutive w.r.t.S andβ-substitutive w.r.t.S ′;
(2) the infinite wordx is ultimately periodic.

Note that this statement excludes1-substitutions,i.e., substitutions with a dominating
eigenvalue equal to1, because Perron numbers are larger than1. The case of1-substitutive
infinite words will be mentioned in Subsection 5.6. Also notice that the substitutions we
are dealing with can beerasing, i.e., at least one letter is sent onto the empty word. But
from a result in [34, 9, 71], we can assume that the substitutions are non-erasing. Note
thatα andαk are multiplicatively dependent.

Proposition 5.6. [49] Let x be anα-substitutive infinite word. Then, there exists an
integerk > 1 such thatx is αk-substitutive with respect to a non-erasing substitution.

The implication (2)⇒ (1) in the above general statement is not difficult to obtain as
mentioned in Remark 1.3 for the uniform situation.

Proposition 5.7. [47] Letx be an infinite word over a finite alphabet andα be a Perron
number. Ifx is periodic (resp. ultimately periodic) thenx is primitiveα-substitutive (resp.
α-substitutive).

Definition 5.6. Let σ : A∗ → A∗ andτ : B∗ → B∗ be two substitutions. We say thatσ
projectsonτ if there exists a codingφ : A→ B such that

φ ◦ σ = τ ◦ φ . (5.2)

The implication (1)⇒ (2) in Statement (S,S ′) is known in many cases described
below:

(i) WhenS = S ′ is the set ofuniform substitutions, this is the classical theorem of
Cobham.

(ii) In [53] S. Fabre proves the statement whenS is the set of uniform substitutions and
S ′ is a set of non-uniform substitutions related to some non-standard numeration
systems.

(iii) When S = S ′ is the set ofprimitive substitutions, the statement is proved in [44].
The proof is based on a characterization of primitive substitutive sequences using
the notion of return word [43].

(iv) WhenS = S ′ is the set ofsubstitutions projecting on primitive substitutions, the
statement is proved in [45]. This result is applied to generalize (ii). Using a char-
acterization ofU -recognizable sets of integers for a Bertrand numeration basisU
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[54], the main result of [45] extends Cobham’s theorem for some large family of
non-standard numeration systems. This latter result includes a result obtained pre-
viously in [15] for Pisot numeration systems.

(v) Definition 5.8 and Theorem 5.17 describe the situation whereS = S ′ = Sgood

(defined later). It includes all known and previously described situations for substi-
tutions.

(vi) In [42], Statement (S,S ′) is proven for the most general case that isS andS ′ are
both the set of all substitutions. The final argument is basedon a fine study of return
words for non-primitive substitutive sequences.

Example 5.6. The Tribonacci wordT is purely substitutive but isk-automatic for no
integerk > 2. Proceed by contradiction. Assume that there exists an integerk > 2 such
thatT is k-automatic. ThenT is bothk-substitutive and primitiveαT -substitutive. By
Theorem 5.17,T must be ultimately periodic but it is not the case. The factorcomplexity
of T is pT (n) = 2n + 1. By the Morse–Hedlund theorem, see Remark 3.5,T is not
ultimately periodic.

LetL(x) be the set of all factors of the infinite wordx. In [55], the following general-
ization of Cobham’s theorem is proved.

Theorem 5.8. Let k, ℓ > 2 be two multiplicatively independent integers. Letx be ak-
automatic infinite word andy be aℓ-automatic infinite word. IfL(x) ⊂ L(y), thenx is
ultimately periodic.

The same result is valid in the primitive case.

Theorem 5.9. [44] Let x and y be respectively a primitiveα-substitutive infinite word
and a primitiveβ-substitutive infinite word such thatL(x) = L(y). If α and β are
multiplicatively independent, thenx andy are periodic.

Note that under the hypothesis of Theorem 5.9x andy are primitive substitutive in-
finite words. ThusL(x) = L(y) wheneverL(x) ⊂ L(y). Observe that ify is the fixed
point starting witha andx the fixed point starting with0 of the substitutionσ defined in
Example 5.4, thenL(x) ⊂ L(y) butx is not ultimately periodic.

In Sections 5.3 and 5.4 we give the main arguments to prove Statement (Sgood,Sgood).

5.3 Density, syndeticity and bounded gaps

The proofs of most of the generalizations of Cobham’s theorem are divided into two parts.

(i) Dealing with a subsetX of integers, we have to prove thatX is syndetic. Equiva-
lently, dealing with an infinite wordx, we have to prove that the letters occurring
infinitely many times inx appear with bounded gaps.

(ii) In the second part of the proof, the ultimate periodicity of X or x has to be carried
out.
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This section is devoted to the description of the main arguments that lead to the com-
plete treatment of (i).

In the original proof of Cobham one of the main arguments is that ask and ℓ are
multiplicatively independent (we refer to Theorem 1.1) theset{kn/ℓm | n,m ∈ N} is
dense in[0,+∞). In the uniform case these powers refer to the length of the iterates of
the substitutions. Indeed, supposeσ : A∗ → A∗ is ak-uniform substitution. Then for any
a ∈ A we have|σn(a)| = kn. Unsurprisingly, to be able to treat the non-uniform case, it
is important to know that the set

{ | σn(a) |
| τm(b) | | n,m ∈ N

}

is dense in[0,+∞), for somea, b ∈ A. We explain below that|σn(a)| and|τm(b)| are
governed by the dominating eigenvalue of their incidence matrices. First we focus on part
(i) and consider infinite words.

5.3.1 The length of the iterates The length of the iterates are described in the following
lemma. Note that it includes erasing substitutions and substitutions with a dominating
eigenvalue equal to1. Observe that for the substitutionσ defined by0 7→ 001 and1 7→ 11
we have|σn(0)| = (n+ 2)2n−1 and|σn(1)| = 2n showing that the situation is different
from the uniform case. It can easily be described using the Jordan normal form of the
incidence matrixMσ. Discussion of the following result can be found in [12, Section
4.7.3].

Lemma 5.10(Chapter III.7 in [110]).Letσ : A → A∗ be a substitution. For alla ∈ A
one of the two following situations occur

(1) there existsN ∈ N such that for alln > N , |σn(a)| = 0, or,
(2) there existd(a) ∈ N and real numbersc(a), θ(a) such that

lim
n→+∞

|σn(a)|
c(a)nd(a) θ(a)n

= 1.

Moreover, in the situation(2), for all i ∈ {0, . . . , d(a)} there exists a letterb ∈ A
appearing inσj(a) for somej ∈ N and such that

lim
n→+∞

|σn(b)|
c(b)ni θ(a)n

= 1.

Definition 5.7. Let σ be a non-erasing substitution. For alla ∈ A, the pair(d(a), θ(a))
defined in Lemma 5.10 is called thegrowth typeof a. If (d, θ) and(e, β) are two growth
types, we say that(d, θ) is less than(e, β) (or (d, θ) < (e, β)) wheneverθ < β or, θ = β
andd < e.

Consequently if the growth type ofa ∈ A is less than the growth type ofb ∈ A then
limn→+∞ |σn(a)|/|σn(b)| = 0. We say thata ∈ A is agrowing letterif (d(a), θ(a)) >
(0, 1) or equivalently, iflimn→+∞ |σn(a)| = +∞.

We setΘ := max{θ(a) | a ∈ A}, D := max{d(a) | ∀a ∈ A : θ(a) = Θ} and
Amax := {a ∈ A | θ(a) = Θ, d(a) = D}. The dominating eigenvalue ofMσ is Θ. We
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say that the letters ofAmax areof maximal growthand that(D,Θ) is thegrowth typeof
σ. Consequently, we say that a substitutive infinite wordy is (D,Θ)-substitutiveif the
underlying substitution is of growth type(D,Θ). Observe that, due to Lemma 5.10, any
substitutive sequence is(D,Θ)-substitutive for some pair(D,Θ).

Observe that ifΘ = 1, then in view of the last part of Lemma 5.10, there exists at least
one non-growing letter of growth type(0, 1). Otherwise stated, if a letter has polynomial
growth, then there exists at least one non-growing letter. Consequentlyσ is growing(i.e.,
all its letters are growing) if and only ifθ(a) > 1 for all a ∈ A. We define

λσ : A∗ → R, u0 · · ·un−1 7→
n−1
∑

i=0

c(ui)1Amax
(ui) ,

wherec : A→ R+ is defined in Lemma 5.10. From Lemma 5.10 we deduce the following
lemma.

Lemma 5.11. For all u ∈ A∗, we havelimn→+∞ |σn(u)|/nDΘn = λσ(u).

We say that the wordu ∈ A∗ is of maximal growthif λσ(u) 6= 0.

Corollary 5.12. Letσ be a substitution of growth type(D,Θ). For all k > 1, the growth
type ofσk is (D,Θk).

5.3.2 Letters and words appear with bounded gapsRecall that the first step for Cob-
ham’s theorem is to prove that the letters occurring infinitely many times appear with
bounded gaps. In our context, this implies the same propertyfor words. Moreover, we
can relax the multiplicative independence hypothesis in order to include1-substitutions.
Note that1 andα > 1 are multiplicatively dependent.

Theorem 5.13. [49] Let d, e ∈ N \ {0} andα, β ∈ [1,+∞) such that(d, α) 6= (e, β)
and satisfying one of the following three conditions:

(i) α andβ are multiplicatively independent;
(ii) α, β > 1 andd 6= e;
(iii) (α, β) 6= (1, 1) and,β = 1 ande 6= 0, or,α = 1 andd 6= 0.

LetC be a finite alphabet. Ifx ∈ Cω is both(d, α)-substitutive and(e, β)-substitutive
then the words occurring infinitely many times inx appear with bounded gaps.

The main argument used to prove this in [49] is the following.

Theorem 5.14. Letd, e ∈ N andα, β ∈ [1,+∞). The set

Ω =

{

αnnd

βmme
| n,m ∈ N

}

is dense in[0,+∞) if and only if one of the following three conditions holds:

(i) α andβ are multiplicatively independent;
(ii) α, β > 1 andd 6= e;
(iii) β = 1 ande 6= 0, or,α = 1 andd 6= 0.
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Sketch of the proof of Theorem 5.13.We only consider the case whereα andβ are multi-
plicatively independent.

Let σ : A∗ → A∗ be a substitution prolongable on a lettera′ having growth type
(d, α). Let τ : B∗ → B∗ be a substitution prolongable on a letterb′ having growth
type (e, β). Let φ : A → C andψ : B → C be two codings such thatφ(σ∞(a′)) =
ψ(τ∞(b′)) = x. Using Proposition 5.6 we may assume thatσ andτ are non-erasing.
Suppose there is a lettera having infinitely many occurrences inx but that appears with
unbounded gaps. Then the letters inφ−1({a}) appear with unbounded gaps. To avoid
extra technicalities (a complete treatment is considered in [49]), we assume that there is
a letter inφ−1({a}) having maximal growth. Then, it is quite easy to construct, for all
n ∈ N, a wordwn of lengthc1ndαn, appearing iny at the indexc2ndαn, that does not
contain any letter ofφ−1({a}). On the other hand, using a kind of pumping lemma for
substitutions, one can show that there is a letter ofψ−1({a}) in z at the indexc3neβn.
Therefore, using Theorem 5.14, the lettera appears in a wordφ(wn) for somen. This is
not possible.

Now let us explain how to extend this result for a single letter to words. It uses what
is called in [103] thesubstitutions of the words of lengthn. Let u be a word of lengthn
occurring infinitely often inx. To prove thatu appears with bounded gaps inx, it suffices
to prove that the letter1 appears with bounded gaps in the infinite wordt ∈ {0, 1}N
defined by

ti =

{

1, if xi · · ·xi+n−1 = u;
0, otherwise.

LetAn be the set of words of lengthn overA. The infinite wordy(n) = (yi · · · yi+n−1)i>0

over the alphabetAn is a fixed point of the substitutionσn : (An)∗ → (An)∗ defined, for
all (a1 · · · an) in An, by

σn((a1 · · ·an)) = (b1 · · · bn)(b2 · · · bn+1) · · · (b|σ(a1)| · · · b|σ(a1)|+n−1)

whereσ(a1 · · · an) = b1 · · · bk. For details, see Section V.4 in [103].
Let ρ : An → A∗ be the coding defined byρ((b1 · · · bn)) = b1 for all (b1 · · · bn) ∈

An. We haveρ ◦ σn = σ ◦ ρ, and thenρ ◦ σk
n = σk ◦ ρ. Hence, ifσ is of growth type

(d, α) theny(n) is (d, α)-substitutive. Letf : An → {0, 1} be the coding defined by

f((b1 · · · bn)) =
{

1, if b1 · · · bn = u;
0, otherwise.

It is easy to see thatf(y(n)) = t, hencet is (d, α)-substitutive. Then one proceeds in the
same way withτ and uses the result for letters to conclude the proof.

5.4 Ultimate periodicity

Definition 5.8. Let σ : A∗ → A∗ be a substitution. If there exists a sub-alphabetB ⊆ A
such that for allb ∈ B, σ(b) ∈ B∗, then the substitutionτ : B∗ → B∗ defined by
the restrictionτ(b) = σ(b), for all b ∈ B, is asub-substitutionof σ. Note thatσ is in
particular a sub-substitution of itself.

The substitutionσ havingα as dominating eigenvalue is a“good” substitution, if it
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has aprimitive sub-substitution whose dominating eigenvalue isα. So let us stress the
fact that to be a “good” substitution, the sub-substitutionhas to be primitive and have the
same dominating eigenvalue as the original substitution. We letSgood denote the set of
good substitutions.

Remark 5.15. For all growing substitutionsσ, there exists an integerk such thatσk has
a primitive sub-substitution. Hence by taking a convenientpower ofσ, the substitution
can always be assumed to have a primitive sub-substitution.

Note that primitive substitutions and uniform substitutions are good substitutions.
Now consider the substitutionσ : {a, 0, 1}∗ → {a, 0, 1}∗ given byσ : a 7→ aa0, 0 7→
01, 1 7→ 0. Its dominating eigenvalue is2 and it has only one primitive sub-substitution
(0 7→ 01, 1 7→ 0) whose dominating eigenvalue is(1 +

√
5)/2, hence it is not a good

substitution.

Remark 5.16. Let σ : A∗ → A∗ andτ : B∗ → B∗ be two substitutions such thatσ
projects onτ , recall (5.2) for the definition of projection. There existsa codingφ : A→ B
such thatφ ◦ σ = τ ◦ φ. Note thatφ ◦ σn = τn ◦ φ. If τ is primitive, then it follows that
σ belongs toSgood.

Theorem 5.17. Let α andβ be two multiplicatively independent Perron numbers. Let
x ∈ Aω whereA is a finite alphabet. Then the following are equivalent:

(i) the infinite wordx is bothα-substitutive w.r.t.Sgood andβ-substitutive w.r.t.Sgood;
(ii) the infinite wordx is ultimately periodic.

Proof. Let σ : B∗ → B∗ (resp.τ : C∗ → C∗) be a substitution inSgood havingα (resp.
β) as its dominating eigenvalue andφ (resp.ψ) be a coding such thatx = φ(σ∞(b)) for
someb ∈ B (resp.x = ψ(τ∞(c)) for somec ∈ C).

Let us first suppose that both substitutions are growing. In this way, taking a power if
needed, we can suppose that they have primitive sub-substitutions.

By Theorem 5.13, the factors occurring infinitely many timesin x appear with bounded
gaps. Hence for any primitive and growing sub-substitutions σ andτ of σ and ofτ re-
spectively, we haveφ(L(σ)) = ψ(L(τ )) = L. Using Theorem 5.9 it follows thatL is
periodic,i.e., there exists a shortest wordu, appearing infinitely many times inx, such
thatL = L(uω). Thusu appears with bounded gaps. LetRu be the set of return words
to u. A word w is a return wordto u if wu ∈ L(x), u is a prefix ofwu andu has ex-
actly two occurrences inwu. Sinceu appears with bounded gaps, the setRu is finite.
There exists an integerN such that all wordswu ∈ L(xNxN+1 · · · ) appear infinitely
many times inx for all w ∈ Ru. Hence these words appear with bounded gaps inx.
We sett = xNxN+1 · · · and we will prove thatt is periodic. Consequentlyx would be
ultimately periodic. We can suppose thatu is a prefix oft. Thent is a concatenation of
return words tou. Let w be a return word tou. It appears with bounded gaps hence it
appears in someφ(σn(a)), whereσ is a primitive and growing sub-substitution, and there
exist two words,p andq, and an integeri such thatwu = puiq. As |u| is the least period
of L it must be thatwu = ui. It follows thatt = uω.

If, for example,σ is non-growing, then a result of J.-J. Pansiot [94] asserts that either
by modifying in a suitable wayσ andφ (in that caseα could be replaced by a power
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of α) we can supposeσ is growing orL(σ∞(b)) contains the language of a periodic
infinite word. We have treated the first case before. For the second case it suffices to use
Theorem 5.13.

Supposeα andβ are multiplicatively independent real numbers and thatx is a α-
substitutive infinite word w.r.t.Sgood andy is aβ-substitutive infinite word w.r.t.Sgood

satisfyingL(x) ⊂ L(y). Then the conclusion of Theorem 5.8 is far from true. It suffices
to look at Example 5.4 and the observation made after Theorem5.9.

Remark 5.18. The Statement (S,S ′) remains open whenS is the set of substitutions
which are not good. Nevertheless there are cases where we cansay more. For example, if
x is bothα-substitutive andβ-substitutive (withα andβ being multiplicatively indepen-
dent), and,L(x) contains the language of a periodic sequence then, from Theorem 5.13,
we deduce thatx is ultimately periodic.

Moreover, as we will see in the next section, this statement holds true in the purely
substitutive context.

5.5 The case of fixed points

Now let restrict ourselves to the purely substitutive case.In this setting Cobham’s theorem
holds true. Note that in the statement of the following result, α andβ are necessarily
Perron numbers. Moreover, since the substitutions are growing, thenα andβ must be
larger than one.

Theorem 5.19. Letσ : A∗ → A∗ andτ : A∗ → A∗ be two non-erasing growing substi-
tutions prolongable ona ∈ A with respective dominating eigenvaluesα andβ. Suppose
that all letters ofA appear inσ∞(a) and inτ∞(a) and thatα andβ are multiplicatively
independent. Ifx = σ∞(a) = τ∞(a), thenx is ultimately periodic.

Proof. Thanks to Remark 5.15, we may assume thatσ has a primitive sub-substitution.
Using Theorem 5.13, the letters appearing infinitely often in x appear with bounded gaps.
Let σ : A → A be a primitive sub-substitution ofσ. Let c ∈ A. Suppose that there
exists a letterb, appearing infinitely many times inx, which does not belong toA. Then
the wordσn(c) = σn(c) does not containb andb could not appear with bounded gaps.
Consequently all letters (and in particular a letter of maximal growth) appearing infinitely
often inx belong toA. Henceσ also hasα as dominating eigenvalue andσ is a “good”
substitution. In the same wayτ is a “good” substitution. Theorem 5.17 concludes the
proof.

5.6 Back to numeration systems

Let S be an abstract numeration system. There is no reason for the substitutions describ-
ing characteristic words ofS-recognizable sets (see Corollary 5.4) to be primitive. To
obtain a Cobham type theorem for families of abstract numeration systems, one has to
interpret Theorem 5.17 in this formalism.
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5.6.1 Polynomially growing abstract numeration systemsHere we only mention the
following result. The paper [40] is also of interest. It is well-known that the growth func-
tion counting the number of words of lengthn in a regular language is eitherpolynomial,
i.e., in O(nk) for some integerk or exponential, i.e., in Ω(θn) for someθ > 1.

Proposition 5.20. [49] Let S = (L,A,<) (resp. T = (M,B,≺)) be an abstract nu-
meration system whereL is a polynomial regular language (resp.M is an exponential
regular language). A setX of integers is bothS-recognizable andT -recognizable if and
only ifX is ultimately periodic.

5.6.2 Bertrand basis andωα-substitutive words LetU be a Bertrand numeration basis
such thatrepU (N) = L(α) whereα is a Parry number which is not an integer. In [54]
a substitution denoted byωα is defined. The importance of this substitution is justified
by Theorem 5.21. Ifdα(1) = t1 · · · tn0ω, tn 6= 0, thenωα is defined on the alphabet
{1, . . . , n} by

1 7→ 1t12, . . . , n− 1 7→ 1tn−1n, n 7→ 1tn .

If dα(1) = t1 · · · tn(tn+1tn+2 · · · tn+m)ω, wheren andm are minimal and wheretn+1+
tn+2 + · · ·+ tn+m 6= 0, thenωα is defined on the alphabet{1, · · · , n+m} by

1 7→ 1t12, . . . , n+m− 1 7→ 1tn+m−1(n+m), n+m 7→ 1tn+m(n+ 1) .

In both cases the substitutionωα is primitive and hasα as dominating eigenvalue. A
substitution that projects (see Definition 5.6) onωα is called aωα-substitutionand we call
each infinite word which is the image under a coding of a fixed point of aωα-substitution
aωα-substitutiveinfinite word (α-automatic infinite word in [54]).

Theorem 5.21. [54, Corollary 1] Let U be a Bertrand numeration basis such that
repU (N) = L(α) whereα is a Parry number. A setX ⊂ N is U -recognizable if and
only if its characteristic sequence1X is ωα-substitutive.

Remark 5.16 and Theorem 5.17 imply the following result.

Theorem 5.22. [45] Let U and V be two Bertrand numeration systems. Letα and
β be two multiplicatively independent Parry numbers such that repU (N) = L(α) and
repV (N) = L(β). A setX ⊆ N is U -recognizable andV -recognizable if and only ifX
is ultimately periodic.

6 Cobham’s theorem in various contexts

6.1 Regular sequences

Regular sequences as presented in [6, 7, 9] are a generalization of automatic sequences
for sequences taking infinitely many values. Many examples of such sequences are given
in the first two references. Also see [41] for a generalization of the notion of automaticity
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in the framework of group actions. LetR be a commutative ring. Letk > 2. Consider
a sequencex = (xn)n>0 taking values in someR-module. If theR-module generated
by all sequences in thek-kernelNk(x) is finitely generated (recall Theorem 3.2) then the
sequencex is said to be(R, k)-regular.

Theorem 6.1(Cobham–Bell theorem [10]).LetR be a commutative ring3. Let k, ℓ be
two multiplicatively independent integers. If a sequencex ∈ RN is both(R, k)-regular
and(R, ℓ)-regular, then it satisfies a linear recurrence overR.

6.2 Algebraic setting and quasi-automatic functions

In [32] G. Christol characterizedp-recognizable sets in terms of formal power series.

Theorem 6.2. Let p be a prime number andFp be the field withp elements. A subset
A ⊂ N is p-recognizable if and only iff(X) =

∑

n∈AX
n ∈ Fp[[X ]] is algebraic over

Fp(X).

This was applied to Cobham’s theorem in [33] to obtain an algebraic version.

Theorem 6.3. LetA be a finite alphabet,x ∈ AN, and,K1 andK2 be two finite fields
with different characteristics. Letα1 : A → K1 andα2 : A → K2 be two one-to-one
maps. Iff(X) =

∑

n∈N
α1(xn)X

n ∈ K1[[X ]] is algebraic overK1(X) andf(X) =
∑

n∈N
α2(xn)X

n ∈ K2[[X ]] is algebraic overK2(X) thenf(X) is rational.

Quasi-automatic functions are introduced by Kedlaya in [74]. Also see [75] where
Christol’s theorem is generalized to Hahn’s generalized power series. In this algebraic
setting, an extension of Cobham’s theorem is proved by Adamczewski and Bell in [1].
Details are given in the chapter “Automata in number theory”of this handbook.

6.3 Real numbers and verification of infinite-state systems

Sets of numbers recognized by finite automata arise when analyzing systems with un-
bounded mixed variables taking integer or real values. Therefore systems such as timed
or hybrid automata are considered [17]. One needs to developdata structures representing
sets manipulated during the exploration of infinite state systems. For instance, it is often
needed to compute the set of reachable configurations of sucha system. Letk > 2 be an
integer. Considering separately integer and fractional parts, a real numberx > 0 can be
decomposed as

x =

d
∑

i=0

ci k
i +

+∞
∑

i=1

c−i k
−i, ci ∈ [[0, k − 1]], i 6 d, (6.1)

and gives rise to the infinite wordcd · · · c0 ⋆ c−1c−2 · · · over [[0, k − 1]] ∪ {⋆} which is
ak-ary representationof x. Note that rational numbers of the kindp/kn have twok-ary

3Note that in [6] the ground ringR is assumed to be Noetherian (every ideal inR is finitely generated), but
this extra assumption is not needed in the above statement.
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representations, one ending with0ω and one with(k − 1)ω. For the representation of
negative elements, one can consider basek-complements or signed number representa-
tions [77], the sign being determined by the most significantdigit which is thus0 or k− 1
(and this digit may be repeated an arbitrary number of times). For definition of Büchi and
Muller automata, see the first part of this handbook.

Definition 6.1. A setX ⊆ R is k-recognizableif there exists a Büchi automaton accept-
ing all thek-ary representations of the elements inX . Such an automaton is called aReal
Number Automatonor RNA.

These notions extend naturally to subsets ofRd and toReal Vector Automataor RVA.
Also the Büchi theorem 4.5 holds for a suitable structure〈R,Z,+, <, Vk〉, see [22].

Theorem 6.4. [21] If X ⊆ Rd is definable by a first-order formula in〈R,Z,+, <〉, then
X written in basek > 2 is accepted by a weak deterministic RVAA.

Weakness means that each strongly connected component ofA contains only accept-
ing states or only non-accepting states.

Theorem 6.5. [18] Let k, ℓ > 2 be two multiplicatively independent integers. IfX ⊆
R is bothk- and ℓ-recognizable by two weak deterministic RVA, then it is definable in
〈R,Z,+, <〉.

The extension of the Cobham–Semenov theorem for subsets ofRd in this setting is
discussed in [20], see also [24] for a comprehensive presentation. The case of two coprime
bases was first considered in [18]. Surprisingly, if the multiplicatively independent bases
k, ℓ > 2 share the same prime factors, then there exists a subset ofR that is bothk- and
ℓ-recognizable but not definable in〈R,Z,+, <〉, see [19]. This shows a main difference
between recognizability of subsets of real numbers writtenin basek for (general) Büchi
automata and weak deterministic RVA. Though written in a completely different language,
a similar result was independently obtained in [2]. This latter paper is motivated by the
study of some fractal sets.

6.4 Dynamical systems and subshifts

In this section we would like to express a Cobham-type theorem in terms of dynamical
systems called substitutive subshifts. Theorem 5.9 will appear as a direct corollary of
these developments.

We first need some definitions.
A dynamical systemis a pair(X,S) whereX is a compact metric space andS a

continuous map fromX onto itself. The dynamical system(X,S) is minimalwhenever
X and the empty set are the onlyS-invariant closed subsets ofX , that is,S(X) = X .
We say that a minimal system(X,S) is periodicwheneverX is finite.

Let (X,S) and(Y, T ) be two dynamical systems. We say that(Y, T ) is a factor of
(X,S) if there is a continuous and onto mapφ : X → Y such thatφ ◦ S = T ◦ φ (φ is
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called afactor map). If φ is one-to-one we say thatφ is anisomorphismand that(X,S)
and(Y, T ) areisomorphic.

LetA be an alphabet. We endowAω with the infinite product of the discrete topolo-
gies. It is a metric space where the metric is given by

d(x, y) =
1

2n
with n = inf{k | xk 6= yk}, (6.2)

wherex = (xn)n>0 andy = (yn)n>0 are two elements ofAω . A subshiftonA is a pair
(X,T|X) whereX is a closedT -invariant subset ofAω andT is theshift transformation
T : Aω → Aω, (xn)n>0 7→ (xn+1)n>0.

Let u be a word overA. The set[u]X = {x ∈ X | x0 · · ·x|u|−1 = u} is acylinder.
The family of these sets is a base of the induced topology onX . When there is no
misunderstanding, we write[u] andT instead of[u]X andT|X .

Let x ∈ Aω. The set{y ∈ Aω | L(y) ⊆ L(x)} is denotedΩ(x). It is clear that
(Ω(x), T ) is a subshift. We say that(Ω(x), T ) is thesubshift generatedby x. Whenx is
a sequence, we haveΩ(x) = {T nx | n ∈ N}. Observe that(Ω(x), T ) is minimal if and
only if x is uniformly recurrent, i.e., all its factors occur infinitely often inx and for each
factoru of x, there exists a constantK such that the distance between two consecutive
occurrences ofu in x is bounded byK.

Let φ be a factor map from the subshift(X,T ) on the alphabetA onto the subshift
(Y, T ) on the alphabetB. Herex[i,j] denotes the wordxi · · ·xj , i 6 j. The Curtis–
Hedlund–Lyndon theorem [83, Thm. 6.2.9] asserts thatφ is a sliding block code: there
exists anr-block mapf : Ar → B such that(φ(x))i = f(x[i,i+r−1]) for all i ∈ N

andx ∈ X . We shall say thatf is ablock map associated toφ and thatf definesφ. If
u = u0u1 · · ·un−1 is a word of lengthn > r we definef(u) by (f(u))i = f(u[i,i+r−1]),
i ∈ {0, 1, · · · , n − r + 1}. Let C denote the alphabetAr andZ = {(x[i,r+i−1])i>0 |
(xn)n>0 ∈ X}. It is easy to check that the subshift(Z, T ) is isomorphic to(X,T ) and
thatf induces a1-block map (a coding) fromC ontoB which defines a factor map from
(Z, T ) onto(Y, T ).

We can now state a Cobham-type theorem for subshifts generated by substitutive se-
quences. Observe that it implies Theorem 5.9 and Statement (S,S ′) whenS = S ′ is the
set of primitive substitutions.

Theorem 6.6. Let (X,T ) and(Y, T ) be two subshifts generated respectively by a prim-
itive α-substitutive sequencex and by a primitiveβ-substitutive sequencey. Suppose
(X,T ) and (Y, T ) both factorize to the subshift(Z, T ). If α andβ are multiplicatively
independent then(Z, T ) is periodic.

Below we give a sketch of the proof, which involves the concept of an ergodic mea-
sure. Aninvariant measurefor the dynamical system(X,S) is a probability measure
µ, on theσ-algebraB(X) of Borel sets, withµ(S−1B) = µ(B) for all B ∈ B(X);
the measure isergodic if every S-invariant Borel set has measure 0 or 1. The set of
invariant measures for(X,S) is denoted byM(X,S). The system(X,S) is uniquely
ergodicif #(M(X,S)) = 1. For expository books on subshifts and/or ergodic theory,
see [37, 76, 83, 103, 79].

It is well known that the subshifts generated by primitive substitutive sequences are
uniquely ergodic [103].
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Let φ : X → Z andψ : Y → Z be two factor maps. Suppose that(Z, T ) is not
periodic. We will prove thatα andβ are multiplicatively independent.

Let µ andλ be the unique ergodic measures of(X,T ) and (Y, T ) respectively. It
is not difficult to see that(Z, T ) is also generated by a primitive substitutive sequence
and consequently is uniquely ergodic. Letδ be its unique ergodic measure. We notice
thatφµ defined byφµ(A) = µ(φ−1(A)), for all Borel setsA of Z, andψλ defined by
ψλ(A) = µ(ψ−1(A)), for all Borel setsA of Z, are invariant measures for(Z, T ). Hence
φµ = δ = ψλ. Let us give more details about these measures in order to conclude the
proof.

Theorem 6.7. [69] Let(Ω, T ) be a subshift generated by a primitive purelyγ-substitutive
sequence andm be its unique ergodic measure. Then, the measures of cylinders in Ω lie
in a finite union of geometric progressions. There exists a finite setF of positive real
numbers such that

{m(C) | C cylinder ofX} ⊂
⋃

n∈N

γ−nF .

In conjunction with the next result and using the pigeon holeprinciple we will con-
clude the proof.

Proposition 6.8. [46] Let (Ω, T ) be a subshift generated by a primitive substitutive se-
quence on the alphabetA. There exists a constantK such that for any block map
f : A2r+1 → B, we have#(f−1({u})) 6 K for all u appearing in some sequences
of f(Ω).

From these last two results we deduce that there exist two sets of numbersFX and
FY such that

{δ(C) | C cylinder ofZ} ={µ(φ−1(C)) | C cylinder ofZ}
={λ(ψ−1(C)) | C cylinder ofX}

⊂
(

⋃

n∈N

α−nFX

)

⋂

(

⋃

n∈N

β−nFY

)

.

The setsFX andFY being finite, there exist two cylinder setsU andV of Z, a ∈ FX ,
b ∈ FY andn,m, r, s four distinct positive integers, such that

aα−n = δ(U) = bβ−m andaα−r = δ(V ) = bβ−s .

Consequentlyα andβ are multiplicatively dependent.

6.5 Tilings

6.5.1 From definable setsLet A be a finite alphabet. Anarray in Nd is a mapT :

Nd → A. It can be viewed as a tiling ofRd
+. The collection of all these arrays isAN

d

.
For all x ∈ Nd, let |x| denote the sum of the coordinates ofx andB(x, r) be the set
{(y1, . . . , yd) ∈ Nd | 0 6 yi − xi < r, 1 6 i 6 d}.
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We sayT is periodic (resp. ultimately periodic) if there existsp ∈ Nd such that
T (x + p) = T (x) for all x ∈ Nd (resp. for all large enoughx). We also need another
notion of periodicity. We say thatZ ⊂ Nd isp-periodic insideX ⊂ Nd if for anyx ∈ X
with x+ p ∈ X we have

x ∈ Z if and only if x+ p ∈ Z .

We say thatZ is locally periodicif there exists a non-empty finite setV ⊂ Nd of non-zero
vectors such that for someK > max{|v| | v ∈ V } andL > 0 one has:

(∀x ∈ Nd, |x| > L)(∃v ∈ V )(Z is v-periodic insideB(x,K)) .

Observe that ford = 1, local periodicity is equivalent to ultimate periodicity.We
sayT is pseudo-periodicif for all a ∈ A, T −1(a) is locally periodic and every(d − 1)-
section ofT −1(a), sayS(i, n) = {x ∈ T −1(a) | xi = n}, 1 6 i 6 d andn ∈ N, is
pseudo-periodic (ultimately periodic whend − 1 = 1). The following criterion is due to
Muchnik, see [91] for the proof.

Proposition 6.9. LetE ⊂ Nd andT : Nd → {0, 1} be its characteristic function. The
following are equivalent:

(i) E is definable in the Presburger arithmetic;
(ii) T is pseudo-periodic;
(iii) for all a ∈ {0, 1}, there existn ∈ N, vi ∈ Nd and finite setsVi ⊂ Nd, 0 6 i 6 n

such that

T −1(a) = V0 ∪





⋃

16i6n

(

vi +
∑

v∈Vi

Nv

)



 .

Let p be a positive integer andA be a finite alphabet. Ap-substitution(or substitu-
tion if we do not need to specifyp) is a mapS : A → ABp whereBp = B(0, p) =

Πd
i=1{0, · · · , p − 1}. The substitutionS can be considered as a function fromAN

d

into
itself by setting

S((T (x)) = [S(T (y))](z), for all T ∈ AN
d

wherey ∈ Nd andz ∈ Bp are the unique vectors satisfyingx = py + z.
In the same way, we can defineS : ABpn → AB

pn+1 . We remark thatSn(a) =
S(Sn−1(a)) for all a ∈ A andn > 0. We sayT is generated by ap-substitutionif there
exist a codingφ and a fixed pointT0 of ap-substitution such thatT = φ ◦ T0.

In [30] the authors proved the following theorem, which is analogous to Theorem 3.1.

Theorem 6.10. Let p > 2 andd > 1. A setE ⊂ Nd is p-recognizable if and only if the
characteristic function ofE is generated by ap-substitution.

Hence we can reformulate the Cobham–Semenov theorem as follows [113].

Theorem 6.11(Cobham–Semenov theorem, Version 2).Let p andq be two multiplica-
tively independent integers greater or equal to2. Then, the arrayT is generated by both
a p-substitution and aq-substitution if and only ifT is pseudo-periodic.
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A dynamical proof of this can be given as for the unidimensional case, see [48] for the
primitive case.

6.5.2 Self-similar tilings In [38], a Cobham-like theorem is expressed in terms of self-
similar tilings ofRd with a proof using ergodic measures, see [116] for more aboutself-
similar tilings. From the point of view of dynamical systems, the main result in [93] is
also a Cobham-like theorem for self-similar tilings.

6.6 Toward Cobham’s theorem for the Gaussian integers

I. Kátai and J. Szabó proved in [73] that the sequences((−p+i)n)n>0 and((−p−i)n)n>0

give rise to numeration systems whose set of digits is{0, 1, . . . , p2}, p ∈ N \ {0}. It is
an exercise to check that whenp ∈ N \ {0} andq ∈ N \ {0} are different then−p + i
and−q + i are multiplicatively independent. Therefore one could expect a Cobham-type
theorem for the set of Gaussian integersG = {a + ib | a, b ∈ Z}. A subsetS ⊂ G is
periodic if there existsh ∈ G such that, for allg ∈ G, s ∈ S if and only if s + gh ∈ S.
G. Hansel and T. Safer conjectured in [65] the following:

Conjecture 6.12. Let p and q be two different positive integers andS ∈ G. Then the
following are equivalent.

(i) The setS is (−p+ i)-recognizable and(−q + i)-recognizable;
(ii) There exists a periodic setP such that the symmetric difference setS∆P is finite.

The proof that (ii) implies (i) is easy. They tried to prove the other implication using
the following (classical) steps:

(1) Dp,q =
{

(−p+i)n

(−q+i)m | n,m ∈ Z

}

is dense inC.

(2) S is syndetic
(3) S is periodic up to some finite set.

They succeeded in proving (ii) as given by the next result.

Theorem 6.13. Let p andq be two positive integers such that the setDp,q is dense inC.
LetS ⊂ G be(−p+ i)-recognizable and(−q + i)-recognizable. Then,S is syndetic.

Let us make some observations about the density of the setDp,q. Let−p+ i = aeiθ

and−q + i = beiφ.

Proposition 6.14. The following are equivalent.

(i) The setDp,q is dense inC;
(ii) The setDp,q is dense on the circle:{eiθ | θ ∈ R} ⊂ Dp,q;
(iii) The following numbers are rationally independent (or linearly dependent overQ):

ln b

ln a
,
θ

2π

ln b

ln a
− φ

2π
, 1 .
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The equivalence between (i) and (iii) is proven in [65] from an easy computation.
The equivalence between (i) and (ii) comes from the fact thatp2 + 1 and q2 + 1 are
multiplicatively independent, see [65, Prop. 2]. As an example, takep = 1 andp = 2.
Then,a =

√
2, b =

√
5, θ = 3π

4 andφ = arctan(− 1
2 ). Proving the density ofD1,2

is equivalent to proving thatln 5/ ln 2 , arctan(1/2)/π and1 are rationally independent.
In [65] the authors observe that the Four Exponential Conjecture, see [120], would imply
thatDp,q is dense inC.

Conjecture 6.15(Four Exponential Conjecture).Let{λ1, λ2} and{x1, x2} be two pairs
of rationally independent complex numbers. Then, one of thenumberseλ1x1 , eλ1x2 , eλ2x1 ,
eλ2x2 is transcendental.

6.7 Recognizability overFq[X]

Using the analogy existing betweenZ and the ring of polynomials over a finite field
Fq of positive characteristic, one can easily defineB-recognizable sets of polynomials
[106]. In [121] characterization of these sets in a convenient logical structure analogous
to Theorem 4.5 is given. A family of sets of polynomials recognizable in all polynomial
bases is described in [106, 121]. We can again conjecture a Cobham-like theorem.

7 Decidability issues

So far we have seen that ultimately periodic sets have a very special status in the context
of numeration systems (recall Proposition 2.6, Theorem 5.1or Theorems 5.17 and 5.19).
They can be described using a finite amount of data (two finite words for the preperiodic
and the periodic parts). Let us settle down once more to the usual integer base numera-
tion system. LetX ⊆ N be ak-recognizable set of integers given by a DFA accepting
repk(X). Is there an algorithmic decision procedure which permits one to decide for any
such setX , whether or notX is ultimately periodic? For an integer base, the problem
was solved positively in [70]. The main ideas are the following ones. Given a DFAA
accepting ak-recognizable setX ⊆ N, the number of states ofA gives an upper bound
on the possible index and period forX . Consequently, there are finitely many candidates
to check. For each such pair(i, p) of candidates, produce a DFA for all possible corre-
sponding ultimately periodic sets and compare it withA. Using non-deterministic finite
automata, the same problem was solved in [5]. With the formalism of first order logic
the problem becomes trivial. If a setX ⊆ N is k-recognizable, then using Theorem 4.5
it is definable by a formulaϕ(x) in 〈N,+, Vk〉 andX is ultimately periodic if and only
if (∃p)(∃N)(∀x)(x > N ∧ (ϕ(x) ↔ ϕ(x + p))). Since we have a decidable theory,
it is decidable whether this latter sentence is true [28, Prop. 8.2]. The problem can be
extended toZd and was discussed in [91]. It is solved in polynomial time in [82]. In
view of Theorem 5.1 the question is extended to any abstract numeration system. LetS
be an abstract numeration system. Given a DFA accepting anS-recognizable setX ⊆ N.
Decide whether or notX is ultimately periodic. Some special cases have been solved
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positively in [31, 11]. Using Corollary 5.3, the same question can be asked in terms of
morphisms. Given a morphismσ : A∗ → A∗ prolongable on a lettera and a coding
τ : A → B, decide whether or notτ(σ∞(a)) is ultimately periodic. It is theHD0L
(ultimate) periodicity problem. The purely substitutive case was solved independently in
[95] and [67]. Note that the general substitutive case is still open (one has to give a deci-
sion procedure for any abstract numeration system). Also see [86, 87] where decidability
questions about almost-periodicity are considered. A wordis almost periodicif factors
occurring infinitely often have a bounded distance between occurrences (but some factors
may occur only finitely often).
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20:43–46, 1986.

[96] W. Parry. On theβ-expansions of real numbers.Acta Math. Acad. Sci. Hung., 11:401–416,
1960.



On Cobham’s theorem 37
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Abstract. Let k > 2 be an integer. A setX of integers isk-recognizable if the language ofk-ary
representations of the elements inX is accepted by a finite automaton. The celebrated theorem of
Cobham from 1969 states that if a set of integers is bothk-recognizable andℓ-recognizable, then
it is a finite union of arithmetic progressions. We present several extensions of this result to non-
standard numeration systems, we describe the relationships with substitutive and automatic words
and list Cobham-type results in various contexts.
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