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1 Introduction

In this chapter we essentially focus on the representatioron-negative integers in a
given numeration system. The main role of such a system —ttikaisual integer base
k numeration system — is to replace humbers or more geneedyo$ numbers by their
corresponding representationg,, by words or by languages. First we consider integer
base numeration systems to present the main concepts luiyyrap will introduce non-
standard systems and their relationships with substitatio

Letk € N> be an integer wherl >, denotes the set of non-negative integers larger
or equal to2. The set{0, ..., k} is denoted by0, k]. If we do not allow leading zeroes
when representing numbers, the function mapping a nontivegateger onto itsk-ary
representatiomep, (n) € [0,k — 1]* is a one-to-one correspondence. In the literature,
one also finds notation likén)y, (n), or pi(n) instead ofrep,(n). In particular,0 is
assumed to be represented by the empty wokdence any seX C N is associated with
the languageep,, (X) consisting of the:-ary representations of the elementsof

It is natural to study the relation existing between thehani¢tic or number-theoretic
properties of integers and the syntactical properties@tthrresponding representations
in a given numeration system. We focus on those &ets N for which a finite automaton
can be used to decide for any given wasdover [0, k — 1] whether or notw belongs
to rep, (X). Sets having the property thatp, (X) is regulat are calledk-recogniza-
ble sets. Such a set can be considered as a particularly simplesause using the
k-ary numeration system it has a somehow elementary algaidtdescription. In the
framework of infinite-state systems verification, one alsdgithe terminology dilumber
Decision Diagranor NDD [122].

The essence of Cobham’s theorem is to express that the prdpea set to be rec-
ognizable by a finite automatastrongly dependsn the choice of the base and more
generally on the considered numeration system. Natutayfact leads to and motivates
the introduction and the study of recognizable sets in rtangard numeration systems.
Considering alternative numeration systems may provigeraeognizable sets and these
non-standard systems also have applications in computematic [59]. Last but not
least, the proof of Cobham’s theorem is non-trivial andeibn quite elaborate argu-

1We use the terminology of regular language, instead ofmatitanguage.
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ments.
Now let us state this celebrated result from 1969 and givéhalheeded details and
definitions. Several surveys have been written on the sabjecusee [25, 26, 28, 98].

Theorem 1.1(Cobham’s theorem [35])Letk, ¢ > 2 be two multiplicatively independent
integers. A setX C N is both k-recognizable and-recognizable if and only if it is
ultimately periodic.

In the various contexts that we will describe, showing thmtiimately periodic set
is recognizable is always the easy direction to prove. SeedRel.3. So we focus on the
other direction.

Definition 1.1. A subset ofN is ultimately periodidf it is the union of a finite set and a
finite number of infinite arithmetic progressions. In partar, X is ultimately periodic if
and only if there existV > 0 andp > 1 such thatforalh > N,ne X & n+pe X.
Recall that ararithmetic progressiois a set of the kindN + b := {an + b | n > 0}.

Definition 1.2. Let o, 8 > 1 be two real numbers. If the equatier” = 5™ with
m,n € N has only the trivial integer solutiom = n = 0, thena and 3 are said
to be multiplicatively independentOtherwise,a and 5 are said to benultiplicatively
dependent

Letk,¢ > 2 be two integers. Notice th&tand/ are multiplicatively independent if
and only iflog k/log ¢ is irrational. Note that fok and/ to be multiplicatively depen-
dent it is not enough thédt and/ share exactly the same prime factors occurring in their
decomposition. For instancé,and 18 are multiplicatively independent. But coprime
integers are multiplicatively independent.

The irrationality oflog &/ log ¢ is a crucial point in the proof of Cobham’s theorem
(see Subsection 5.3). Recall thavif> 0 is irrational, then the sef{nf} | n > 0}
of fractional parts of the multiples of is dense in0, 1]. For a proof of the so-called
Kronecker’s theorensee [66].

Remark 1.2. The fact for two integers to be multiplicatively dependerdin equivalence
relationt overN,. If k£ and/ are multiplicatively dependent, then there exist a minimal
g > 2 and two positive integers:, n such thatc = ¢™ and{ = ¢™. Let us give the first
(with respect to their minimal element) few equivalencests fof)t partitioningN ., :
2]on, [3]on, [5)am, [6]on, [7]om, [10]on, [11]om, [12]om, ...

Remark 1.3. We show that if a seK C N is ultimately periodic then, for akk > 2, X

is k-recognizable. In the literature, one also finds the terioigyof arecognizable set
X (without any mention to a base), meaning tiais k-recognizable for alk > 2. Note
that a finite union of regular languages is again a regulaydage. Hence it is enough to
check thatep,, (aN + b) is regular with0 < b < a. We can indeed assume thek a
because if we add or remove a finite number of words to a retariguage, we still have
a regular language. Consider a DFA havifig= [0,a — 1] as its set of states. For all
i € @Q,d e [0,k — 1], the transitions are given by

i % ki+d mod a.
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The initial state is) and the unique final state is As an example, a DFA accepting
exactly binary representations of the integers congruedthod4 is given in Figure 1.
A study of the minimal automaton recognizing such divisipitriteria expressed in an

0 0 2 3
0 N 0
Figure 1. A finite automaton acceptingp, (4N + 3).

integer base is given in [3]. See also the discussion in [P@8logue]. The fact that a
divisibility criterion exists in every base for any fixed &ier was already observed by
Pascal in [97, pp. 84-89].

2 Numeration basis

It is remarkable that the recognizability of ultimately jpelic sets extends to wider con-
texts (see Proposition 2.6 and Theorem 5.1). Let us int@difast generalization of the
integer base numeration system.

Definition 2.1. A numeration basiss a sequenc® = (U, ),>o of integers such thaf

is increasingl/y = 1 and that the seftU;+1/U; | ¢ > 0} is bounded. This latter condition
ensures the finiteness of the alphabet of digits used toseptetegers. lfv = wy - - - wy

is a word over a finite alphabet C Z then the numerical value af is

4
7TA7U(’LU) = Z w; Ui.
=0

Using the greedy algorithm [57], any integethas a uniquénormal) U-representation
repy(n) = we - --wo Which is a finite word over a minimal finite alphabet called the
canonical alphabetf U and denoted byl;;. The normal/-representation satisfies

Tay,vrepy(n)) = nandforalli € [0,¢ — 1], ma, v(w;---wo) < Uit1.

Again,rep;; (0) = e. See [85, Chapter 7] or Ch. Frougny and J. Sakarovitch’stehap
[12, Chapter 2]. A subseX C N is U-recognizablef rep;;(X) is accepted by a finite
automaton. LeB C Z be a finite alphabet. v € B* is such thatrp iy (w) > 0, then
the function mapping ontorep,, (75,u(w)) is callednormalization

Definition 2.2. A numeration basié/ is said to bdinear if there existt € N\ {0},
di,...,dy € Z, d; # 0, such that, foralh > k, U, = diUp_1 + -+ - + dxU,—k. The
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polynomial Py (X) = X* — d; X*~! — ... —dy_1 X — d}, is called thecharacteristic
polynomialof U.

Definition 2.3. Recall that &Pisot-Vijayaraghavan numbés an algebraic intege? > 1
whose Galois conjugates have modulus strictly less than\eesay thall = (U, )rn>0

is aPisot numeration systeifthe numeration basi& is linear andP;; (X) is the minimal
polynomial of a Pisot numbe#. Integer base numeration systems are particular cases of
Pisot systems. For instance, see [27] where it is shown tloat properties related to
k-recognizable setg; € N>,, can be extended to Pisot systems. In such a case, there
exists some > 0 such thatlU,, — ¢ 8| — 0, asn tends to infinity.

Example 2.1. Consider the Fibonacci sequence definedby= 1, U; = 2 andU,, 12 =
Un+1+U, foralln > 0. Aword over{0, 1} is aU-representation if and only if it belongs
to the languagd. = 1{0,01}* U {¢}. For instancel0110 is not aU-representation.
Sincer 4, 1 (10110) = 13, the normalization mapk)110 to rep;;(13) = 100000. The
characteristic polynomial of this linear numeration bésthe minimal polynomial of the
Pisot numbet1 + v/5)/2. This Pisot numeration system is presented in [123].

The following result is an easy exercise but also can beathom in a wider context.

Theorem 2.1. [115] Let U be a numeration basis. ¥ is U-recognizable, thei/ is
linear.

Definition 2.4. [13] A Bertrand numeration basi is a numeration basis satisfying the
following property:w € repy(N) if and only if, for alln € N, w0” € repy(N). Itis a
natural condition satisfied by all integer base> 2 systems. For instance, the sequence
defined byUy, = 1, U; = 3 and, for alln > 0, U,+2 = U,+1 + U, is not a Bertrand
numeration basis because;;(2) = 2, butr 4, v(20) = 6 andrep;(6) = 102.

Leta > 1 be areal number. The notion afexpansion was introduced by Parry in
[96], (also see Reényi's paper [104]). See again [85, Chafite All x € [0,1] can be
uniquely written in the following way:

T = Zana_", (2.1)

nz1

with z; = z and for alln > 1, a,, = |ax,] andz,; = {az,}, where|-] stands
for the integer part. The sequenég(x) = (an)n>1 IS thea-expansiorof + and L(«)
denotes the set of finite words having an occurrence in someeseesl, (z), z € [0, 1].
Letda (1) = (tn)n>1. If there existV > 0, p > O such that, foralh > N, ¢4, = t,
thena is said to be &arry number sometimes called g-number(for more details or
information about these numbers, see [96] or [58]). ObstraEeintegers greater or equal
to 2 are Parry numbers.

The following result relates Bertrand numeration systemfahguages defined by
some real number.

Theorem 2.2(A. Bertrand-Mathis [14]).Let U be a numeration basis. It is a Bertrand
numeration basis if and only if there exists a real number 1 such thatrep;;(N) =
L(«). Inthis case, iU is linear thena is a root of the characteristic polynomial 6f.
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Theorem 2.3(A. Bertrand-Mathis [13]).Let« > 1 be a real number. The language
L(«) is regular if and only ifo is a Parry number.

Associated with a Parry numbgr one can define the notion of beta-polynomial. For
details see [68] or [12, Chapter 2]. First we define ta@onical beta-polynomiallf
dg(1) is eventually constant and equal@o dg(1) = t1 - -t,,0%, with ¢,, # 0, then
we setGg(X) = X™ — 3" ;X™ " andr = m. Otherwise,dg(1) is eventually
periodic: dg(1) = t1 - tm(tmt1 - - tmtp)¥, With m andp being minimal. Then we
setGp(X) = X™mHp — Py xmdr—i _ xm 4 S ¢ X andr = p. Let
be a Parry number. Aextended beta-polynomiis a polynomial of the fornfz(X) =
Gs(X)(1+ X"+ -+ X"™8) X" for k,n € N.

Proposition 2.4. [68] Let U be a linear numeration basis with dominant ro@t i.e.,
limy, 00 Un41/Un = § for somes > 1. If repy, (N) is regular, theng is a Parry number.

Theorem 2.5(M. Hollander [68]). Let U be a linear numeration basis whose dominant
root /3 is a Parry number.
e If dg(1) is infinite and eventually periodic, theap;;(N) is regular if and only i/
satisfies an extended beta-polynomial for
o If ds(1) is finite of lengthm, then: if U satisfies an extended beta-polynomial
for 8 thenrepy; (N) is regular; and conversely ifep;;(N) is regular, thenU sat-
isfies either an extended beta-polynomial forHg(X), or a polynomial of the
form (X™ — 1)Ha(X).

Ultimately periodic sets are recognizable for any lineanpuation basis.

Proposition 2.6(Folklore [12, 85]).Leta, b > 0. If U = (Uy)n>0 is @ linear numeration
basis, then

¢
WZ;,U(QN+b) = {cz~~~co € Ay | chUk € aN+b}
k=0
is accepted by a DFA that can be effectively constructedattiqular, if N is U-recogni-
zable, then any ultimately periodic setlisrecognizable.

To conclude this section, consider again the integer baseration systems.

Example 2.2. The setP, = {2™ | n > 0} of powers of two is trivially2-recognizable
becauseep,(P,) = 10*. Since the difference between any two consecutive elenients
P, is of the kind2"+! — 27 = 2" P, is not ultimately periodic. As a consequence of
Cobham’s theoren¥, is for instance neithe-recognizable nos-recognizable.

One could also consider the case when the two basasd ¢ are multiplicatively
dependent. This case is much easier and can be considene@®sraise.

Proposition 2.7. Letk, ¢ > 2 be two multiplicatively dependent integers. A etC N
is k-recognizable if and only if it ig-recognizable.
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The theorem of Cobham implies that ultimately periodic seésthe only infinite sets
that arek-recognizable for everiy > 2. We have seen so far that there exist sets (like the
set P, of powers of two) that are only recognizable for some spebiises: exactly all
bases belonging to a unique equivalence class for the dgnorelatiord)t overN>,.

To see that a given infinite ordered sét= {z( < z1 < o < ---} is k-recognizable
for nobasek > 2 at all, we can use results like the following one, where theavéor of
the ratio ¢esp. difference) of any two consecutive elementsinis studied through the

guantities
Ti+1

Rx = limsup andD x = limsup (41 — ;) -
1—00 Ty i—00
Theorem 2.8(Gap theorem [36]).Letk > 2. If X C N is a k-recognizable infinite
subset oN, then eithelR x > 1 orDx < +oo0.

Corollary 2.9. Leta € Nx,. The set of primes and the spt® | n > 0} are never
k-recognizable for any integer bage> 2.

Proofs of the Gap theorem and its corollary can also be foufsil]. For more results
on primes, see also the chapter “Automata in number thedjii®handbook.

Definition 2.5. An infinite ordered seX = {z¢o < 21 < 3 < ---} such thaDx <
—+00 is said to besyndeticor with bounded gapsthere exists” > 0 such that for all
n > 0, xn+1 — z, < C. In particular, any ultimately periodic set is syndetic. €Th
converse does not hold, see for instance Example 3.1.

Remark 2.10. Note that syndeticity occurs in various contexts like incglig theory.

As an example, a subset of an Abelian grdtifs said to be syndetic if finitely many
translates of it covefs. The term “syndetic” was first quoted in [62]. Note that in]64e
following result is proved. Lety, 5 > 1 be multiplicatively independent real numbers. If
a setX C Nis a-recognizable ang-recognizable, for the Bertrand numeration systems
based respectively on the real numheendg in the sense of [14] and Theorem 2.2, then
X is syndetic.

Cobham’s original proof of Theorem 1.1 appeared in [35] ardquote [51] The
proof is correct, long and hard. It is a challenge to find a marasonable proof of this
fine theorerh Then G. Hansel proposed a simpler presentation in [68h ahe can see
[98] or the dedicated chapter in [9] for an expository préaton. Prior to these last two
references, one should read [108]. Usually a first step tegp@pbham'’s theorem is to
show the syndeticity of the considered set. See Section 5.3.

3 Automatic sequences

As explained in Corollary 3.3 presented in this section fdmmalism of k-recognizable
sets is equivalent to the onelofautomatic sequenced_et us recall briefly what they are.

2We indifferently use the terms sequence and infinite word.
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An infinite wordz = (x,,),>0 € B" over an alphabe® is said to be:-automatidf there
exists a DFAO (deterministic finite automaton with outputgothe alphabeo, k£ — 1],
(@, 0,k —1],, 0, B, T) such that, for alh > 0,

Ty = T(qo - Tepy(n)) .

The transition function is : @ x [0,k — 1] — @ and can easily be extended b x
[0,k—1]*bygq-e = gandq - wa = (¢ - w) - a. The output function is : Q@ —

B. Roughly speaking, theth term of the sequence is obtained by feeding a DFAO
with the k-ary representation of. For a complete and comprehensive expositiorkon
automatic sequences and their applications see the booWgqually use the terms of
sequences or (right-) infinite words. For more informatibowat combinatorics on words,
see [84, 85] or also J. Cassaigne and F. Nicolas’ chaptelirGhapter 4].

Definition 3.1. Leto : A* — A* be a morphismi.e., o(uv) = o(u)o(v) for all u,v €
A*. Naturally such a map can be defined 4fi. A finite or infinite wordz such that
o(x) = z is said to be dixed pointof o. A morphismo : A* — A* is completely
determined by the images of the lettersAn In particular, if there exist& > 0 such
that for alla € A, |o(a)| = k, theno is said to be ofc-uniformor simply uniform A
1-uniform morphism is called aoding If there exist a lettea € A and a wordy € AT
such thato(a) = au and moreover, ifim,_, {« [0"(a)| = +o0, theno is said to be
prolongableon a or to be asubstitution Leto : A* — A* be a morphism prolongable on
a. We have

o(a) = au, 0®(a) = auo(u), 0*(a) = auvo(u)o*(u),... .

Since for alln € N, ¢"(a) is a prefix ofc"*!1(a) and becausir™(a)| tends to infinity
whenn — +o0, the sequencé™(a)),>o converges (for the usual product topology on
words, see for instance (6.2)) to an infinite word denotedya) and given by
fe%e] L . n _ 2 3

o (a) := ngg—looo- (a) =auo(u)o®(u)o”(u)--- .
This infinite word is a fixed point of. An infinite word obtained in this way by iterating a
prolongable morphism is said to parely substitutivéor pure morphig. If o : A* — B*
is a non-erasing morphism, it can be extended to a map #8no BY as follows. If
x = xoxy - - - is aninfinite word over, then the sequence of worfts(zo - - - Zp—1))n>0
is easily seen to be convergent towards an infinite word @elts limit is denoted by
o(r) = a(xo)o(z1)o(z2)---. If x € AN is purely substitutive and if : A — Bis a
coding, then the worg = 7(x) is said to besubstitutive

Another result due to A. Cobham is the following one, see.[3B idea is to canon-
ically associated with ang-uniform morphism a DFA ove]0, & — 1].

Theorem 3.1. Letk > 2. A sequence = (x,)n>0 € B is k-automatic if and only if
there exists &-uniform morphisnv : A* — A* prolongable on a letter € A and a
coding7 : A — B such thate = 7(c°(a)).

Theorem 3.2(Eilenberg [51]). A sequence = (z,,)n>0 iS k-automatic if and only if its
k-kernelNy(z) = {(zken+d)n>0 | € = 0, 0 < d < k°} isfinite.
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Definition 3.2. Thecharacteristic sequencex € {0,1}" of a setX C N is defined by
1x(n)=1ifandonlyifn € X.

An infinite wordx € A“ is ultimately periodidf there exist two finite words € A*
andv € AT such thatr = wv”. If u = ¢, z is periodic Obviously, a sefX C N is
ultimately periodic if and only ifl x is an ultimately periodic word ovef0, 1}. In that
case, there exist two finite wordse {0,1}* andv € {0,1}* such thatl x = wv*. In
particular,|v| is a period ofX. If v andv are chosen of minimal length, thém| (resp.
|v]) is said to be thereperiodor indexof X (resp. theperiodof X). If u = ¢, X is
(purely) periodic Periodic sets are in particular ultimately periodic.

Corollary 3.3. Letk > 2. If z = (zp)n>0 € BY is a k-automatic sequence then, for
all b € B, the set{n > 0 | x,, = b} is k-recognizable. Conversely, if a s& C N is
k-recognizable, then its characteristic sequenck-sutomatic.

Theorem 3.4(Cobham’s theorem, version 2)et k,¢ > 2 be two multiplicatively in-
dependent integers. An infinite word= (z,)n>0 € BY is both k-automatic andé-
automatic if and only if it is ultimately periodic.

Remark 3.5. Using the framework ok-automatic sequences instead of the formalism of
k-recognizable sets turns out to be useful. For instancesidenthecomplexity function

of an infinite wordz which mapsrn € N onto the numbep,, (n) of distinct factors of
lengthn occurring inz. Morse—Hedlund’s theorem states thés ultimately periodic if
and only ifp,. is bounded by some constant. This result appeared first [nf960fs can

be found in classical textbooks like [9, 84].

It is also well known that for &-automatic sequence, p, € O(n), again see the
seminal paper [36]. This latter result can be used to showpitudicular sets are nat-
recognizable for any > 2: for instance, those sets whose characteristic sequiegce
has a complexity function such thatn,,, ;- p1 , (n)/n = +00. For the behavior of.,
in the substitutive case, see the survey [4] or [12, Chajter 4

Example 3.1. Iterating the morphisne : 0 — 01,1 — 10, we get theThue—Morse
word (tp)n>0 = ¢°°(0) = 0110100110010110100101100110---. For an account on
this celebrated word, see [8] and [56, Chapter 2]. It sautomatic word, thexth letter
in the word is0 if and only if rep,(n) contains an even number 6%&. This word is
generated by the DFAO represented in Figure 2. In partictilarset

0 0

' 1 '

1
Figure 2. A DFAO generating the Thue—Morse word.

t
X = {neN | repy(n) =ct- - co andZCi =0 (mod 2)}
i=0
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is 2-recognizable. The Thue—Morse word is not ultimately pgiddsee for instance [23]
or [39] where the complexity function of this word is studigatefully) and therefor&,

is k-recognizable only for thoseof the form2™, m € N> ;. Nevertheless, one can notice
that X, is syndetic.

4 Multidimensional extension and first order logic

4.1 Subsets oN?

To extend the concept éfrecognizability to subsets &, d > 2, itis natural to consider
d-tuples ofk-ary representations. To gétwvords of the same length that have to be read
simultaneously by an automaton, the shortest ones are gadtteleading zeroes. We
extend the definition ofep,, to a map of domaiiN“ as follows. Ifny, ..., n, are non-
negative integers, we consider the word

Om_l repy, (n1)| repy, (nl)

repg(ni,...,ng) = : € ([[O,k—l]]d)*
Om_lrepk(nd)‘ repk(nd)

wherem = max{|repy(n1)|,...,|rep;(nq)|}. A subsetX of N¢ is k-recognizablef

the corresponding languagep,, (X)) is accepted by a finite automaton over the alphabet
[0,k — 1] which is the Cartesian product dfcopies of[0, & — 1]. This automaton is
readingd digits at a time (one for each component): this is why we néeards of the
same length.

Example 4.1. Consider the automaton depicted in Figure 3 (the sink isemtasented).
It accepts(e, ) and all pairs of words of the kin¢0, 0u) whereu € 1{0,1}*. This
means that the s¢{2n,n) | n > 0} is 2-recognizable.

(o) ()

Figure 3. A DFA recognizing{(2n,n) | n > 0}.

Note that the notion ok-automatic sequence and Theorem 3.1 have been extended
accordingly in [111, 112] where the images by a morphism téte ared-dimensional
cubes of sizé:.

Extending the concept of ultimately periodic sets to subséN?, with d > 2, is
at first glance not so easy. We use bold face letters to repret@ments irN¢. For
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instance, one could take the following definition of a (pyyeleriodic subsef C N¢.
There exists a non-zero elemgntc N¢ such thatx € X if and only ifx + p € X.
As we will see (Remark 4.2, Proposition 6.9 and Theorem 6.t1)yrns out that this
definition does not fit to the extension of Cobham’s theorei dimensions. Therefore
we will consider sets definable ifN, 4-). Let us mentiorNivat's conjectureconnecting
such a notion of periodicity in higher dimensions with theioo of block complexity as
introduced in Remark 3.5: 1eX c Z2, if there exist positive integerns,, n, such that
px(n1,n2) < nine thenX is periodic, wherex (n1,n2) counts the number of distinct
blocks of sizen; x ny occurring inX. See [92] and in particular [102] for details and
pointers to the existing bibliography.

4.2 Logic andk-definable sets

The formalism of first order logic is probably the best suitegresent a natural exten-
sion (in the sense of Cobham’s theorem) of the definition tifaltely periodic sets in
d dimensions. See [100, 101] or the survey [16]. In Bresburger arithmetigN, +),
the variables range ov@r and we have at our disposal the connectarg, -, —, <>, the
equality symbol= and the quantifiers and3 that can only be applied to variables. This
is the reason we speak of first order logic; in second ordéc lggantifiers can be applied
to relations, and in monadic second order logic, only vdeisland unary relationge.,
sets, may be quantified. If a variable is not within the scd@eg quantifier, this variable
is said to beree Formulas are build inductively from terms and atomic folasu Here
details have been omitted, see for instance [28, Sectignfbt instance, order relations
<, <, > and> can be added to the language by noticing that y is equivalent to

(F2)(y =z + 2). (4.1)

In the same way, constants can also be added. For instanee,0 is equivalent to
(Vy)(z < y) andz = 1 is equivalent to-(z = 0) A (Vy)(—(y = 0) = (z < y)). In
general, thesuccessofunctionS(z) = y of « is defined by

(z<y) A(V2)((z < 2) = (y < 2)).

For a complete account on the interactions between firstr dode andk-recognizable
sets, see the excellent survey [28].

Remark 4.1. We mainly discuss the cas®l, +) but all developments can be made for
(Z,+,<). Note that if the variables belong Bthen it is no longer possible to defire
asin (4.1). So this order relation has to be added to thetateicThe constarit can be
defined byx + = = z.

Let o(z1,...,z4) be a formula withd free variablesey, ..., z4. Interpretingy in
(N, +) permits one to define the set dftuples of non-negative integers for which the
formula holds true:

{(re, - yra) | (N, +) = lre, - ral )
We write (N, +) = p[r1,...,7q] if o(x1,...,zq) is satisfied iN, +) when interpreting
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x; byr; foralli € {1,...,d}. For the reader having no background in logic and model
theory, the first chapters of [50] are worth reading.

Remark 4.2. The ultimately periodic sets df are exactly the sets that are definable in
the Presburger arithmetic. It is obvious that ultimatelyiqdic sets ofN are definable.
For instance, the set of even integers can be defined by = (3y)(z = y + y). Since
constants can easily be defined, it is easy to write a fornoularfy arithmetic progression.
As an example, the formula(z) = (y)(z = S(S(y + y + v))) defines the progression
3N + 2. In particular, multiplication by a fixed constant is defifeim (N, +). Note that

it is a classical result that the theory @f, +, x) is undecidable, see for instance [15].

Adding congruences modulo any integer permits quantifier elimination, which
means that any formula expressed in the Presburger arithimeiquivalent to a formula
using onlyA, Vv, =, < and congruences, see [100, 101]. Presentations can alsoie f
in [52, 80].

Theorem 4.3 (Presburger).The structure(N, +, <, (=,,)m>0) admits elimination of
guantifiers.

This result can be used to prove that the theoryNyf+) is decidable. This can be
done using the formalism of automata, see for instance [28].

Corollary 4.4. Any formulap(z) in the Presburger arithmeti¢N, +) defines an ulti-
mately periodic set df.

Let k£ > 2. We add to the structuréN, +) a functionV;, defined byV,(0) = 1
and for allz > 0, Vi (z) is the greatest power df dividing z. As an example, we
havel,(6) = 2, V5(20) = 4 andV»(2") = 2™ for all n > 0. Again the theory of
(N, +, Vi) can be shown to be decidable [28]. The next result showsd&or thek-
automatic sequences, the logical framework within theeniciructure(N, +, V;,) gives
an equivalent presentation of thaecognizable sets in any dimension. Proofs of the next
three theorems can again be found in [28] where a full acooiithe different approaches
used to prove Theorem 4.5 is presented. For Biuchi’s origiager, see [29].

Theorem 4.5(Buichi’'s theorem).Letk > 2 andd > 1. A setX C N9 is k-recognizable
if and only if it can be defined by a first order formubgizy, . . ., x4) of (N, +, V3,).

For instance the sel, introduced in Example 2.2 can be defined by the formula
o(x) = Va(xz) = x. Note that Theorem 4.5 holds for Pisot numeration systerengh
Definition 2.3, see [27] where the functidf is modified accordingly. This is partially
based on the fact that in a Pisot numeration system the nizatiah function is realized
by a finite automaton, see [58], which allows one to considiliteon of integers: first
perform addition digit-wise without any carry, then norimalthe result.

Theorem 4.6 (Cobham’s theorem, version 3let k, ¢ > 2 be two multiplicatively in-
dependent integers. A s&t C N can be defined by a first order formula {i, +, V)
and by a first order formula ifN, 4, V) if and only if it can be defined by a first order
formula in(N, +).
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This theorem still holds in higher dimensions and is calleel Cobham—-Semenov
theorem. In this respect, the notion of subseéfdefinable in the Presburger arithmetic
(N, +) is the right extension of periodicity in a multidimensiosatting. For Semenov’s
original paper, see [113].

Theorem 4.7(Cobham—-Semenov theorem)et k, ¢ > 2 be two multiplicatively inde-
pendent integers. A séf C N? can be defined by a first order formula {i¥, +, V3
and by a first order formula iqN, 4+, V) if and only if it can be defined by a first order
formula in(N, +).

Subsets oN‘ defined by a first order formula ifN, +) are characterized in [61]. The
nice criterion of Muchnik appeared first in 1991 and is givefdil]. See Proposition 6.9
for its precise statement. Using this latter characteédmata proof of Theorem 4.7 is
presented in [28]. The logical framework has given rise teess works. Let us men-
tion chronologically [118, 119] and [88, 89]. In [89, Sedtib] the authors interestingly
show how to reduce Semenov’s theorem to Cobham’s theoremwthfhg new in higher
dimensions”. Also extensions to non-standard numeragistems are considered in [99]
and [15]. In this latter paper, the Cobham-Semenov theoseprdved for two Pisot
numeration systems.

5 Numeration systems and substitutions

5.1 Substitutive sets and abstract numeration systems

In Sections 4.1 and 4.2, we have mainly extended the notioacmignizability to subsets
of N¢. Now we consider another extension of recognizability. brdllary 3.3, we have
seen that &-recognizable set has a characteristic sequence genégatedniform sub-
stitution and the application of an extra coding. It is prethsy to define sets of integers
encoded by a characteristic sequence generated by aragylsitiostitution and an extra
coding, that is whose characteristic sequence is morphis. generalization permits one
to reach a larger class of infinite words, hence a larger dgssts of integers.

Example 5.1. Consider the morphism : {a,b, c}* — {a,b, c}* given byo(a) = abec,
o(b) = bee, o(c) = cand the coding : a,b — 1,¢ — 0. We get

0% (a) = abecbececbeceeccbecceceeebeeccececechec - - -

and7(¢*°(a)) = 010010000100000010000000010000000000100 - - -. Using the special
form of the images by of b andc, it is not difficult to see that the difference between
the position of thexth b and the(n + 1)stb in > (a) is 2n + 1. Hencer (o> (a)) is the
characteristic sequence of the set of squares and it isisuivst From Corollary 2.9 the
set of squares is nevifrecognizable for any integer bake

Definition 5.1. As a natural extension of the concept of recognizabilitymey consider
setsX C N having a characteristic sequerice which is (purely) substitutive. Such a set
is said to be gpurely) substitutive setn particulark-recognizable sets are substitutive.
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With Theorem 5.2 it will turn out that the formalism of sulbgtive sets is equivalent
to the one of abstract numeration systems.

Definition 5.2. [81] An abstract numeration systeor ANSis a tripleS = (L, 4, <)

whereL is an infinite regular language over a totally ordered alghah, <). The map
repg : N — L is the one-to-one correspondence mapping N onto the(n + 1)th

word in the genealogically ordered langualgewhich is called theS-representatiorof

n. In particular, a seX C N is S-recognizableif repg(X) is regular, andN is trivially

S-recognizable becausepg(N) = L. Recall that in thegenealogical ordefalso called
radix or military order), words are first ordered by increasing length and fonde of the
same length, one uses the lexicographic ordering inducéldebgrder< on A.

Example 5.2. Consider the language = a*b* U a*c* with a < b < ¢. The first words

in L aree, a, b, c,aa, ab, ac, bb, cc, aaa, aab, aac, abb, . ... This means that for the ANS
S built on L, 0 is represented by, 1 by a, 2 by b, 3 by ¢, 4 by aa, etc. SinceL contains
exactly2n + 1 words of length: for all n > 0, we have that? is represented by for
alln > 0. In particular, the sefn? | n > 0} is S-recognizable becausé is regular. It

is well known that in a regular languadg the set of the first words of each length in the
genealogically ordered languagdés regular, see [115].

Pisot numeration systems are special cases of ANS. Indette, humeration basis
U = (Upn)n>0 defines a Pisot numeration system, thewy; (N) is regular.

Example 5.3. Consider the Fibonacci sequence and the language1{0,01}* U {¢}
defined in Example 2.1. To get the representation of an integene can either decom-
posen using the greedy algorithm or, order genealogically thedsadn L. and take the
(n + 1)th element.

Theorem 5.1.[81] LetS = (L, A, <) be an abstract numeration system. Any ultimately
periodic set isS-recognizable.

Note that in [78], it is in particular proved that this lattesult cannot be extended to
context-free languages. Specific case§-oécognizable sets are discussed in P. Lecomte
and M. Rigo’s chapter in [12, Chapter 3]. We have an extensidrheorem 3.1.

Theorem 5.2. Letz = (z,,)»>0 be an infinite word over an alphab&. This word
is substitutive if and only if there exists an abstract nuatien systensS = (L, A4, <)
such thate is S-automaticj.e., there exists a DFAQQ), A, -, {qo}, B, 7) such that for all
n 20,z =7(qo - reps(n)).

A proof of this result is given in [105, 107] and a compreheasieatment is given in
[12, Chapter 3]. In that context, we also obtain an extensfa@orollary 3.3.

Corollary 5.3. Letz = (z,,)n>0 be an infinite substitutive word over an alphatigt
There exists an ANS such that for allb € B, {n > 0 | z,, = b} is S-recognizable.
Conversely, if a sefX C N is S-recognizable, then its characteristic sequenceis
automatic.
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Corollary 5.4. A setX C N is substitutive if and only if there exists an ANSuch that
X is S-recognizable.

5.2 Cobham'’s theorem for substitutive sets

In the context of substitutive sets of integemsw could a Cobham-like theorem be ex-
pressedi.e, what is playing the role of a ba8e Assume that there exist two purely
substitutive infinite words: € A“ andy € B“ respectively generated by the morphisms
o : A* — A* prolongable oru € A andr : B* — B* prolongable orb € B, i.e,

o> (a) = z and7>°(b) = y. Consider two codingd : A — {0,1} andu : B — {0,1}
such that\(z) = u(y). This situation corresponds to the case where a set (heex by

its characteristic word) is recognizable in ta&griori different numeration systems.

If A= B andr = ¢™ for somem > 1, nothing particular can be said about the infi-
nite word\(z): iteratingo or o™ from the same prolongable letter leads to the same fixed
point. So we must introduce a notion analogous to the one dipticatively independent
bases related to the substitutianandA.

Definition 5.3. Leto : A* — A* be a substitution over an alphab&ét The matrix
M, € N4*4 associated witlr is called theincidence matrixof o and is defined by

foralla,b € A, My)ap = |0(D)]a -

A square matridM € R™*™ with entries inR> is irreducibleif, for all 4, j, there exists
k such thatM*); ; > 0. A square matrixV € R™"*" with entries iR is primitive if
there exists such that, for all, j, we have(MF), ; > 0. Similarly, a substitution over
the alphabet is irreducible (resp.primitive) if its incidence matrix is irreducible (resp.
primitive). Otherwise stated, a substitutiern:t A* — A* is primitive, if there exists an
integern > 1 such that, for alb € A, all the letters ind appear in the image of*(a).

Let us denote b the abelianisation map (or Parikh map) which maps a woover
A ={a,...,a,} onther-tuple®(|wl|,,, ..., |w|s.). The matrixM, can be defined by
its columns:

M, = (P(o(a1)) --- P(o(ar))),
and it satisfies:
forallw € A%, P(o(w)) = M,P(w) .

Remark 5.5. If a matrix M is primitive, the celebrated theorem of Perron can be used,
see standard textbooks like [72] or [60, 114]. A presentai$oalso given in [83]. To
recap some of the key point$] has a unique dominating real eigenvatue 0 and there
exists an eigenvector with positive entries associateld #itAlso, for all4, j, there exists

¢;; such thaM"), ; = ¢; ;8™ + o(8™). For instance, primitiveness &ff, implies the
existence of the frequency of any factor occurring in anydigeint ofo. Note that

if P(w) ="(p1,....p), thenjw| = > p;. (5.1)
=1
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Hence, for alln > 0, |[0"(a;)| is obtained by summing up the entries in ik column
of M7. If o is primitive then there exists soni& such thaio™(a;)| = C;5™ + o(8").
In particular, ifo is prolongable o, then|o™(a)| ~ C 3™, for someC' > 0.

In the general case of a matiM with non-negative entries, one can use the Perron—
Frobenius theorem for each of the irreducible component¥ofthey correspond to
the strongly connected components of the associated gaéguhcalled communicating
classes). Thus any non-negative maixik has a real eigenvalue which is greater or
equal to the modulus of any other eigenvalue. Weedtie dominating eigenvaluef M.
Moreover, if we exclude the case where= 1, then there exists a positive integesuch
thatMP has a dominating eigenvalu€ which is a Perron number, see [83, p. 369]. A
Perron numbetis an algebraic integer > 1 such that all its algebraic conjugates have
modulus less than. In particular, if we replace a prolongable substitutiosuch that
M, has a dominating eigenvalae> 1, with a convenient power? of o, we can assume
that the dominating eigenvalue @fis a Perron number.

Definition 5.4. Let o : A* — A* be a substitution prolongable en& A such that
all letters of A have an occurrence n™(a). Leta > 1 be the dominating eigenvalue
of the incidence matrix of. Let¢ : A — B* be a coding. We say(c>°(a)) is an
a-substitutive infinite word (with respect &). In view of Definition 5.1, this notion can
be applied to subsets ®f. If moreovers is primitive, theng(c>°(a)) is said to be a
primitive a-substitutive infinite word (w.r.tz).

Observe thak-automatic infinite words arke-substitutive infinite words.

Example 5.4. Consider the substitutioa defined byo(a) = aa0a, 0(0) = 01 and
o(1) = 10. Its dominating eigenvalue & It is prolongable both on, 0 and1. The fixed
point z of o starting with0 is the Thue-Morse sequence (see Example 3.1). Definition
5.4 does not implies thatis 3-substitutive becausedoes not appear in. But the fixed
pointy of o starting witha is 3-substitutive.

Example 5.5. Consider the so-callefribonacci word which is the unique fixed point of
o:ar»ab,b— ac,c— a. See [117, 56]. The incidence matrix®is

11 1
M,=(1 0 0
010

One can check tha¥I? contains only positive entries. So the matrix is primitivest
ar ~ 1.839 be the unique real root of the characteristic polynomidl® + X2 + X + 1

of M. The Tribonacci wordl" = abacabaab - - - is primitive ap-substitutive. Letr :

a — 1,b,c — 0 be a coding. The word(T) is the characteristic sequence of a primitive
ap-substitutive set of integer%),2,4,6,7,...}.

To explain the substitutive extension of Cobham’s theoreeneed the following
definition.

Definition 5.5. Let S be a set of prolongable substitutions antle an infinite word. If
x is ana-substitutive infinite word w.r.t. a substitutienbelonging taS, thenz is said to
be a-substitutive with respect 8.
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Let us consider the following Cobham-like statement dependn two setsS andS’
of prolongable substitutions. It is useful to describe dwologically known results gener-
alizing Cobham'’s theorem in terms of substitutions leadinthpe most general statement
for all substitutions.

Statement(S,S’). Let S andS’ be two sets of prolongable substitutions. keand
be two multiplicatively independent Perron numbers. ket A“ whereA is a finite
alphabet. Then the following are equivalent:

(1) the infinite wordr is botha-substitutive w.r.tS and3-substitutive w.r.tS’;
(2) theinfinite wordr is ultimately periodic.

Note that this statement excludesubstitutionsi.e., substitutions with a dominating
eigenvalue equal tb, because Perron numbers are larger tharhe case of -substitutive
infinite words will be mentioned in Subsection 5.6. Also netthat the substitutions we
are dealing with can berasing i.e., at least one letter is sent onto the empty word. But
from a result in [34, 9, 71], we can assume that the subsiitatare non-erasing. Note
thata anda* are multiplicatively dependent.

Proposition 5.6. [49] Let = be ana-substitutive infinite word. Then, there exists an
integerk > 1 such thatr is o*-substitutive with respect to a non-erasing substitution.

The implication (2)=- (1) in the above general statement is not difficult to obtain a
mentioned in Remark 1.3 for the uniform situation.

Proposition 5.7. [47] Letx be an infinite word over a finite alphabet ande a Perron
number. Ifz is periodic (resp. ultimately periodic) thenis primitivea-substitutive (resp.
a-substitutive).

Definition 5.6. Leto : A* — A* andr : B* — B* be two substitutions. We say that
projectson r if there exists a coding : A — B such that

poo=T0¢. (5.2)

The implication (1)=- (2) in Statement&, S’) is known in many cases described
below:

(i) WhenS = &' is the set ofuniform substitutions, this is the classical theorem of
Cobham.

(ii) In[53] S. Fabre proves the statement whkiis the set of uniform substitutions and
S’ is a set of non-uniform substitutions related to some nanesrd numeration
systems.

(i) When S = &' is the set oprimitive substitutionsthe statement is proved in [44].
The proof is based on a characterization of primitive stilitste sequences using
the notion of return word [43].

(iv) WhenS = &’ is the set ofsubstitutions projecting on primitive substitutiqriise
statement is proved in [45]. This result is applied to gelimadii). Using a char-
acterization ofU-recognizable sets of integers for a Bertrand numeratisistba
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[54], the main result of [45] extends Cobham'’s theorem fanedarge family of
non-standard numeration systems. This latter result dedwa result obtained pre-
viously in [15] for Pisot numeration systems.

(v) Definition 5.8 and Theorem 5.17 describe the situatioenels = S’ = Sgooa
(defined later). It includes all known and previously ddsedi situations for substi-
tutions.

(vi) In[42], Statement§, S’) is proven for the most general case thafiandS’ are
both the set of all substitutions. The final argumentis basealfine study of return
words for non-primitive substitutive sequences.

Example 5.6. The Tribonacci wordl" is purely substitutive but i&-automatic for no
integerk > 2. Proceed by contradiction. Assume that there exists agénte> 2 such
that T is k-automatic. TherT" is bothk-substitutive and primitivevr-substitutive. By
Theorem 5.177 must be ultimately periodic but it is not the case. The factomplexity
of T is pr(n) = 2n + 1. By the Morse—Hedlund theorem, see Remark 3:5s not
ultimately periodic.

Let L(x) be the set of all factors of the infinite woxd In [55], the following general-
ization of Cobham’s theorem is proved.

Theorem 5.8. Letk, ¢ > 2 be two multiplicatively independent integers. kebe ak-
automatic infinite word ang be a/-automatic infinite word. I1f.(z) C L(y), thenx is
ultimately periodic.

The same result is valid in the primitive case.

Theorem 5.9. [44] Let z andy be respectively a primitivei-substitutive infinite word
and a primitive 8-substitutive infinite word such thdi(z) = L(y). If « and g are
multiplicatively independent, thenandy are periodic.

Note that under the hypothesis of Theorem 5.8ndy are primitive substitutive in-
finite words. ThusL(xz) = L(y) wheneverL(z) C L(y). Observe that if; is the fixed
point starting witha andx the fixed point starting witl of the substitutionr defined in
Example 5.4, thet.(x) C L(y) butz is not ultimately periodic.

In Sections 5.3 and 5.4 we give the main arguments to proversemt Sgo0d, Sgood)-

5.3 Density, syndeticity and bounded gaps

The proofs of most of the generalizations of Cobham'’s thaaee divided into two parts.

(i) Dealing with a subseX of integers, we have to prove thatis syndetic. Equiva-
lently, dealing with an infinite word:, we have to prove that the letters occurring
infinitely many times inc appear with bounded gaps.

(ii) Inthe second part of the proof, the ultimate periodi@f X or x has to be carried
out.
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This section is devoted to the description of the main arqusihat lead to the com-
plete treatment of (i).

In the original proof of Cobham one of the main arguments & tsk and ¢ are
multiplicatively independent (we refer to Theorem 1.1) ge{k"/¢™ | n,m € N} is
dense in0, +oc0). In the uniform case these powers refer to the length of tratiés of
the substitutions. Indeed, suppaese A* — A* is ak-uniform substitution. Then for any
a € Awe havelo™(a)| = k™. Unsurprisingly, to be able to treat the non-uniform case, i
is important to know that the set

i <)

is dense in0, +oo), for somea, b € A. We explain below thalg™(a)| and|r™(b)| are
governed by the dominating eigenvalue of their incidenctines. First we focus on part
(i) and consider infinite words.

5.3.1 The length of the iterates The length of the iterates are described in the following
lemma. Note that it includes erasing substitutions andtgubiens with a dominating
eigenvalue equal tb. Observe that for the substitutiendefined by0 — 001 and1 — 11

we havelo™(0)] = (n + 2)2"~1 and|s™(1)| = 2" showing that the situation is different
from the uniform case. It can easily be described using th@afonormal form of the
incidence matrixM,. Discussion of the following result can be found in [12, Satt
4.7.3].

Lemma 5.10(Chapter 111.7 in [110]).Leto : A — A* be a substitution. For alt € A
one of the two following situations occur

(1) there existsV € N such that for alln > N, |c™(a)| = 0, or,
(2) there existi(a) € N and real numbers(a), 6(a) such that

@)

_———— =1.
n—+oo C(a,) nd(a) G(a)”

Moreover, in the situatiorf2), for all i € {0,...,d(a)} there exists a letteb € A
appearing ino (a) for somej € N and such that

: o™ ()]
1 ——— = 1.

n—EPoo C(b) nt 9((1)"
Definition 5.7. Let o be a non-erasing substitution. For alE A, the pair(d(a), 8(a))
defined in Lemma 5.10 is called tigeowth typeof a. If (d, 0) and(e, 8) are two growth
types, we say thatd, 0) is less than(e, 8) (or (d,0) < (e, 8)) wheneved < Sor,0 = 3
andd < e.

Consequently if the growth type af € A is less than the growth type 6fc A then
lim,, 400 [0™(a)|/]c™(b)| = 0. We say that € A is agrowing letterif (d(a),0(a)) >
(0, 1) or equivalently, iflim,,—, y o |0 (a)| = +o0.

We set© := max{f(a) | a € A}, D := max{d(a) | Va € A : 6(a) = ©} and
Apmaz :={a € A | 0(a) = ©,d(a) = D}. The dominating eigenvalue &, is ©. We
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say that the letters od,,,.. areof maximal growthand that(D, ©) is thegrowth typeof

o. Consequently, we say that a substitutive infinite wgrnd (D, ©)-substitutiveif the
underlying substitution is of growth type, ©). Observe that, due to Lemma 5.10, any
substitutive sequence (®, O©)-substitutive for some paitD, ©).

Observe thati® = 1, then in view of the last part of Lemma 5.10, there existsadtle
one non-growing letter of growth typ@®, 1). Otherwise stated, if a letter has polynomial
growth, then there exists at least one non-growing lettensgquently is growing(i.e.,
all its letters are growing) if and only #(a) > 1 for all a € A. We define

n—1
Ao i A" =R, ug - Up—1 > ZC(%‘) La,, (i),
=0

wherec : A — Ry isdefinedin Lemma5.10. From Lemma 5.10 we deduce the fallgwi
lemma.

Lemma 5.11. For all u € A*, we havdim,,_,  » [0"(u)|/nP O™ = A\, (u).
We say that the word € A* is of maximal growthf A, (u) # 0.

Corollary 5.12. Leto be a substitution of growth tygé, ©). For all & > 1, the growth
type ofa* is (D, ©F).

5.3.2 Letters and words appear with bounded gapsRecall that the first step for Cob-
ham'’s theorem is to prove that the letters occurring infipitaany times appear with
bounded gaps. In our context, this implies the same propertywords. Moreover, we

can relax the multiplicative independence hypothesis @epto includel-substitutions.

Note thatl anda > 1 are multiplicatively dependent.

Theorem 5.13.[49] Letd,e € N\ {0} anda, 8 € [1,+00) such that(d, o) # (e, 3)
and satisfying one of the following three conditions:

(i) «andg are multiplicatively independent;
(i) o,8>1andd #e;
(i) (a,B) # (1,1)and,f =1ande # 0, or,« = 1 andd # 0.
Let C be a finite alphabet. I € C“ is both(d, «)-substitutive ande, 3)-substitutive
then the words occurring infinitely many timesdmppear with bounded gaps.

The main argument used to prove this in [49] is the following.

Theorem 5.14. Letd, e € Nanda, § € [1,+00). The set

n,,d
Q{a o |n,mEN}

Bmme

is dense irf0, +c0) if and only if one of the following three conditions holds:
(i) «andg are multiplicatively independent;
(i) o, 8> 1andd #e;
(i) p=1ande #0,0r,a=1andd # 0.
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Sketch of the proof of Theorem 5.1\8/e only consider the case whereands are multi-
plicatively independent.

Leto : A* — A* be a substitution prolongable on a lettérhaving growth type
(d,«). LetT : B* — B* be a substitution prolongable on a lettérhaving growth
type (e, 5). Let¢p : A — C andy : B — C be two codings such that(c>(a’)) =
P(r°° (b)) = z. Using Proposition 5.6 we may assume thaand are non-erasing.
Suppose there is a letterhaving infinitely many occurrences inbut that appears with
unbounded gaps. Then the lettersgin' ({a}) appear with unbounded gaps. To avoid
extra technicalities (a complete treatment is considardd9]), we assume that there is
a letter ing~=*({a}) having maximal growth. Then, it is quite easy to construat,dl
n € N, a wordw, of lengthc;n?a™, appearing iny at the indexcan?a™, that does not
contain any letter of=*({a}). On the other hand, using a kind of pumping lemma for
substitutions, one can show that there is a lettep of ({a}) in 2 at the indexczn®s™.
Therefore, using Theorem 5.14, the letigappears in a worg(w,,) for somen. This is
not possible.

Now let us explain how to extend this result for a single ketitewords. It uses what
is called in [103] thesubstitutions of the words of length Let« be a word of lengtm
occurring infinitely often inz. To prove that: appears with bounded gapsinit suffices
to prove that the lettet appears with bounded gaps in the infinite wore: {0, 1}
defined by

f'_{ 1, ifxi---xi+n_1:u;
*7 1 0, otherwise

Let A™ be the set of words of lengthover A. The infinite wordy(™ = (y; - - - yi1n_1)i>0
over the alphabet™ is a fixed point of the substitution, : (A™)* — (A™)* defined, for
all (ay ---ap) in A™, by

Un((al . an)) = (bl . bn)(bg .. 'bn+1) . (b|0(a1)‘ .. .b‘g(al)‘+n71)

whereo (a1 - - - a,) = by - - - by For details, see Section V.4 in [103].

Letp : A — A* be the coding defined by((by ---b,,)) = by forall (by---b,) €
A", We havep o 0, = o o p, and therp o ¥ = o* o p. Hence, ifo is of growth type
(d, a) theny™ is (d, o)-substitutive. Letf : A — {0,1} be the coding defined by

1, it by by =g
f((br---bp)) = { 0, otherwise

Itis easy to see that(y(™) = t, hencet is (d, o)-substitutive. Then one proceeds in the
same way withr and uses the result for letters to conclude the proof. O

5.4 Ultimate periodicity

Definition 5.8. Leto : A* — A* be a substitution. If there exists a sub-alphabet A
such that for alb € B, o(b) € B*, then the substitution : B* — B* defined by
the restrictionr(b) = o(b), for all b € B, is asub-substitutiorof o. Note thato is in
particular a sub-substitution of itself.

The substitutiornr havinga as dominating eigenvalue is‘good” substitution if it
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has aprimitive sub-substitution whose dominating eigenvalueisSo let us stress the
fact that to be a “good” substitution, the sub-substitutias to be primitive and have the
same dominating eigenvalue as the original substitutioa.|&\S,,,q denote the set of

good substitutions.

Remark 5.15. For all growing substitutions, there exists an integérsuch that* has
a primitive sub-substitution. Hence by taking a convenwer ofo, the substitution
can always be assumed to have a primitive sub-substitution.

Note that primitive substitutions and uniform substitndoare good substitutions.
Now consider the substitution : {a,0,1}* — {a,0,1}* given byo : a — @a0,0 —
01,1 — 0. Its dominating eigenvalue and it has only one primitive sub-substitution
(0 — 01, 1 — 0) whose dominating eigenvalue ($ + v/5)/2, hence it is not a good
substitution.

Remark 5.16. Leto : A* — A* and7 : B* — B* be two substitutions such that
projects orr, recall (5.2) for the definition of projection. There exiatsodingy : A — B
such thatp o 0 = 7 0 ¢. Note thatp o 6™ = 7™ o ¢. If 7 is primitive, then it follows that
o belongs taSgs04-

Theorem 5.17. Let @« and 8 be two multiplicatively independent Perron nhumbers. Let
x € A¥ whereA is a finite alphabet. Then the following are equivalent:

(i) the infinite wordy is botha-substitutive w.r.tSg.0q and G-substitutive W.r.tSgo0q;

(ii) the infinite wordr is ultimately periodic.

Proof. Leto : B* — B* (resp.7 : C* — C™) be a substitution ib,..q havinga (resp.
B) as its dominating eigenvalue andresp.«’) be a coding such that = ¢(c°°(b)) for
someb € B (resp.x = ¢(7°°(c)) for somec € C).

Let us first suppose that both substitutions are growinghigway, taking a power if
needed, we can suppose that they have primitive sub-gqutivstis.

By Theorem 5.13, the factors occurring infinitely many tirimes appear with bounded
gaps. Hence for any primitive and growing sub-substitgi®@rand7 of ¢ and ofr re-
spectively, we have(L(z)) = (L(T)) = L. Using Theorem 5.9 it follows that is
periodic,i.e., there exists a shortest wotd appearing infinitely many times in, such
thatL = L(u*). Thusu appears with bounded gaps. 71, be the set of return words
to u. A word w is areturn wordto u if wu € L(z), u is a prefix ofwu andu has ex-
actly two occurrences iwu. Sinceu appears with bounded gaps, the &gt is finite.
There exists an intege¥ such that all wordsvu € L(zyzyy1---) appear infinitely
many times inx for all w € R,. Hence these words appear with bounded gaps in
We sett = zyz 41 --- and we will prove that is periodic. Consequently would be
ultimately periodic. We can suppose thais a prefix oft. Thent is a concatenation of
return words tou. Letw be a return word ta:. It appears with bounded gaps hence it
appears in somé(c"(a)), wherez is a primitive and growing sub-substitution, and there
exist two wordsp andg, and an integei such thatvu = pu‘q. As |u| is the least period
of L it must be thatou = u’. It follows thatt = u*.

If, for example,o is non-growing, then a result of J.-J. Pansiot [94] asshesdither
by modifying in a suitable way and ¢ (in that casex could be replaced by a power
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of a) we can suppose is growing or L(c°°(b)) contains the language of a periodic
infinite word. We have treated the first case before. For thermbcase it suffices to use
Theorem 5.13. O

Supposex and 5 are multiplicatively independent real numbers and thés a a-
substitutive infinite word w.r.tSg.0q andy is a g-substitutive infinite word w.r.tSg04q
satisfyingL(x) C L(y). Then the conclusion of Theorem 5.8 is far from true. It seffic
to look at Example 5.4 and the observation made after Thebrém

Remark 5.18. The Statementq, S’) remains open whe#® is the set of substitutions
which are not good. Nevertheless there are cases where vgagamore. For example, if
x is botha-substitutive angs-substitutive (witho and 3 being multiplicatively indepen-
dent), andL(x) contains the language of a periodic sequence then, fromréheb.13,
we deduce that is ultimately periodic.

Moreover, as we will see in the next section, this statemefdshtrue in the purely
substitutive context.

5.5 The case of fixed points

Now let restrict ourselves to the purely substitutive cais¢his setting Cobham’s theorem
holds true. Note that in the statement of the following resuland 5 are necessarily
Perron numbers. Moreover, since the substitutions areiggopthena and 5 must be
larger than one.

Theorem 5.19.Leto : A* — A* andr : A* — A* be two non-erasing growing substi-
tutions prolongable o € A with respective dominating eigenvaluesind 5. Suppose
that all letters ofA appear inc®(a) and in7°°(a) and thato and 8 are multiplicatively
independent. If: = 0°°(a) = 7°°(a), thenz is ultimately periodic.

Proof. Thanks to Remark 5.15, we may assume thais a primitive sub-substitution.
Using Theorem 5.13, the letters appearing infinitely oftenappear with bounded gaps.
Letz : A — A be a primitive sub-substitution of. Letc € A. Suppose that there
exists a letteb, appearing infinitely many times in, which does not belong td. Then
the wordo™(c) = @"(c) does not contaih andb could not appear with bounded gaps.
Consequently all letters (and in particular a letter of meadigrowth) appearing infinitely
often inz belong toA. Hencez also hasy as dominating eigenvalue ands a “good”
substitution. In the same wayis a “good” substitution. Theorem 5.17 concludes the
proof. O

5.6 Back to numeration systems

Let S be an abstract numeration system. There is no reason fouliséitsitions describ-
ing characteristic words af-recognizable sets (see Corollary 5.4) to be primitive. To
obtain a Cobham type theorem for families of abstract nutiseraystems, one has to
interpret Theorem 5.17 in this formalism.
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5.6.1 Polynomially growing abstract numeration systemsHere we only mention the
following result. The paper [40] is also of interest. It islisdknown that the growth func-
tion counting the number of words of lengthin a regular language is eithpolynomial
i.e, in O(n*) for some integet or exponentigli.e., in Q(6™) for somed > 1.

Proposition 5.20. [49] LetS = (L, A, <) (resp. T = (M, B, <)) be an abstract nu-
meration system whetg is a polynomial regular language (resp\/ is an exponential
regular language). A seX of integers is botlS-recognizable and -recognizable if and
only if X is ultimately periodic.

5.6.2 Bertrand basis andw,-substitutive words LetU be a Bertrand numeration basis
such thatrep;;(N) = L(«) wherea is a Parry number which is not an integer. In [54]
a substitution denoted hy,, is defined. The importance of this substitution is justified
by Theorem 5.21. Ifl,(1) = ¢1---t,0%, ¢, # 0, thenw, is defined on the alphabet

{1,...,n} by

1— 112, ... . n—1—1"1n n— 1.

)

If do(1) =t1 - tn(tntitnta - - tnrm)*, Wheren andm are minimal and wherg, 1 +
tnt2 + -+ them # 0, thenw, is defined on the alphabét, - - - ,n + m} by

T 192, .. n+m— 1w 1"t (n4m), n+m Intm(n 4+ 1).

In both cases the substitutian, is primitive and hasy as dominating eigenvalue. A
substitution that projects (see Definition 5.6 xanis called aw,-substitutiorand we call
each infinite word which is the image under a coding of a fixddtpaf aw,-substitution
aw,,-substitutivenfinite word (@-automatic infinite word in [54]).

Theorem 5.21. [54, Corollary 1]Let U be a Bertrand numeration basis such that
repy(N) = L(a) wherea is a Parry number. A seX C N is U-recognizable if and
only if its characteristic sequendey is w,-substitutive.

Remark 5.16 and Theorem 5.17 imply the following result.

Theorem 5.22. [45] Let U and V' be two Bertrand numeration systems. letnd
B be two multiplicatively independent Parry numbers such tiea;;(N) = L(«) and
repy (N) = L(B). A setX C N is U-recognizable and -recognizable if and only iX
is ultimately periodic.

6 Cobham’s theorem in various contexts

6.1 Regular sequences

Regular sequences as presented in [6, 7, 9] are a gendaalipfitautomatic sequences
for sequences taking infinitely many values. Many examplasioh sequences are given
in the first two references. Also see [41] for a generalizatibthe notion of automaticity
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in the framework of group actions. L& be a commutative ring. Leét > 2. Consider

a sequence = (x,),>0 taking values in som&-module. If theR-module generated
by all sequences in thekernel N () is finitely generated (recall Theorem 3.2) then the
sequence is said to bg R, k)-regular.

Theorem 6.1(Cobham-Bell theorem [10])Let R be a commutative ring Let k, ¢ be
two multiplicatively independent integers. If a sequence R" is both (R, k)-regular
and(R, ¢)-regular, then it satisfies a linear recurrence over

6.2 Algebraic setting and quasi-automatic functions
In [32] G. Christol characterizegrecognizable sets in terms of formal power series.

Theorem 6.2. Let p be a prime number anii,, be the field withp elements. A subset
A C Nis p-recognizable if and only if (X) = > ., X™ € F,[[X]] is algebraic over
Fp(X).

This was applied to Cobham’s theorem in [33] to obtain antaigie version.

Theorem 6.3. Let A be a finite alphabety ¢ AY, and, K; and K, be two finite fields
with different characteristics. Let; : A — K; andas : A — K5 be two one-to-one
maps. Iff(X) = 3., cyoa(za)X" € Ki[[X]] is algebraic overk; (X) and f(X) =
> nen @2(xn) X™ € Ko[[X]] is algebraic overk» (X) then f(X) is rational.

Quasi-automatic functions are introduced by Kedlaya ir].[#lso see [75] where
Christol's theorem is generalized to Hahn's generalizedgycseries. In this algebraic
setting, an extension of Cobham’s theorem is proved by Adawmski and Bell in [1].
Details are given in the chapter “Automata in number theoifithis handbook.

6.3 Real numbers and verification of infinite-state systems

Sets of numbers recognized by finite automata arise wheryznglsystems with un-
bounded mixed variables taking integer or real values. &foeg systems such as timed
or hybrid automata are considered [17]. One needs to dedalagstructures representing
sets manipulated during the exploration of infinite statteys. For instance, it is often
needed to compute the set of reachable configurations ofesegstem. Lekt > 2 be an
integer. Considering separately integer and fractiongkpa real numbet > 0 can be
decomposed as

d +oo
r=Y k' +Y ek e el0k—1], i<d, (6.1)
1

1=0 i=
and gives rise to the infinite worg; - - - ¢ * c_1c_o -+ - over[0,k — 1] U {x} which is
a k-ary representatiorof z. Note that rational numbers of the kipdk™ have twok-ary

3Note that in [6] the ground rind? is assumed to be Noetherian (every ideaRiris finitely generated), but
this extra assumption is not needed in the above statement.
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representations, one ending with and one with(k — 1)*. For the representation of
negative elements, one can consider basemplements or signed number representa-
tions [77], the sign being determined by the most significkgit which is thusd or k — 1
(and this digit may be repeated an arbitrary number of tifes) definition of Biichi and
Muller automata, see the first part of this handbook.

Definition 6.1. A setX C R is k-recognizabléf there exists a Buichi automaton accept-
ing all thek-ary representations of the elementsiin Such an automaton is calledRzal
Number Automatoor RNA

These notions extend naturally to subset®6fnd toReal Vector Automatar RVA
Also the Biichi theorem 4.5 holds for a suitable struc{i®eZ, +, <, Vi), see [22].

Theorem 6.4. [21] If X C R% is definable by a first-order formula ifR, Z, +, <), then
X written in basek > 2 is accepted by a weak deterministic RMA

Weakness means that each strongly connected compondntarfitains only accept-
ing states or only non-accepting states.

Theorem 6.5. [18] Let &,/ > 2 be two multiplicatively independent integers. Xf C
R is bothk- and ¢-recognizable by two weak deterministic RVA, then it is défmin
(R, Z,+,<).

The extension of the Cobham—-Semenov theorem for subs@$ of this setting is
discussed in [20], see also [24] for a comprehensive pragent The case of two coprime
bases was first considered in [18]. Surprisingly, if the iplittatively independent bases
k,¢ > 2 share the same prime factors, then there exists a subBethatt is bothk- and
¢-recognizable but not definable {R, Z, +, <), see [19]. This shows a main difference
between recognizability of subsets of real numbers writtdmasek for (general) Biichi
automata and weak deterministic RVA. Though written in a plately differentlanguage,
a similar result was independently obtained in [2]. Thiselapaper is motivated by the
study of some fractal sets.

6.4 Dynamical systems and subshifts

In this section we would like to express a Cobham-type theadreterms of dynamical
systems called substitutive subshifts. Theorem 5.9 willesp as a direct corollary of
these developments.

We first need some definitions.

A dynamical systens a pair(X,S) whereX is a compact metric space arla
continuous map fronX onto itself. The dynamical systef, S) is minimalwhenever
X and the empty set are the onfiyinvariant closed subsets d&f, that is,S(X) = X.
We say that a minimal syste(X, .5) is periodicwheneverX is finite.

Let (X, S) and(Y,T) be two dynamical systems. We say tliat T) is afactor of
(X, S) if there is a continuous and onto map X — Y suchthatpo S =T o ¢ (¢ is
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called afactor may). If ¢ is one-to-one we say thatis anisomorphismand that( X, .5)
and(Y, T') areisomorphic

Let A be an alphabet. We endad with the infinite product of the discrete topolo-
gies. It is a metric space where the metric is given by

d(z,y) = 2% with n = inf{k | zx # yr}, (6.2)
wherez = (z,,)n>0 andy = (y,»)n>0 are two elements afi’. A subshifton A is a pair
(X,T|x) whereX is a closedl'-invariant subset o\’ andT is theshift transformation
T:AY — Aw, (acn),@o ad ($n+1)n20-

Letu be a word overd. The sefu]x = {r € X | z¢- - z),—1 = u} is acylinder.
The family of these sets is a base of the induced topologyXonWhen there is no
misunderstanding, we write] andT" instead ofiu] x and7)x.

Letxz € A¥. The set{y € A% | L(y) C L(z)} is denoted)(z). It is clear that
(Q(x),T) is a subshift. We say th#f)(z), T') is thesubshift generatetly . Whenz is
a sequence, we ha¥®(z) = {T™z | n € N}. Observe thatQ(x), T") is minimal if and
only if = is uniformly recurrent, i.e., all its factors occur infiriteften in = and for each
factoru of z, there exists a constaif such that the distance between two consecutive
occurrences of; in z is bounded by¥.

Let ¢ be a factor map from the subsh{fX, T') on the alphabe#l onto the subshift
(Y,T) on the alphabeB3. Herex|; ; denotes the word; ---z;, i < j. The Curtis—
Hedlund-Lyndon theorem [83, Thm. 6.2.9] asserts thit a sliding block code there
exists anr-block mapf : A" — B such that(é¢(z)); = f(2};itr—1)) foralli € N
andz € X. We shall say thaf is ablock map associated i and thatf definesp. If
u = upuy - - - un—1 IS aword of lengtm > r we definef (u) by (f(u))i = f(upiyr—1))

i €{0,1,---,n —r+ 1}. Let C denote the alphabet” andZ = {(z};r4i—1])iz0 |
(xn)n>0 € X}. Itis easy to check that the subsHiff, T') is isomorphic to( X, T') and
that f induces a -block map (a coding) fromd’ onto B which defines a factor map from
(Z,T)onto(Y,T).

We can now state a Cobham-type theorem for subshifts genbstsubstitutive se-
guences. Observe that it implies Theorem 5.9 and StaterSefit)whenS = &' is the
set of primitive substitutions.

Theorem 6.6. Let (X, T) and (Y, T) be two subshifts generated respectively by a prim-
itive a-substitutive sequence and by a primitives-substitutive sequengge Suppose
(X,T) and (Y, T) both factorize to the subshiftZ, T"). If « and 3 are multiplicatively
independent the(Z, T') is periodic.

Below we give a sketch of the proof, which involves the conadan ergodic mea-
sure. Aninvariant measurdor the dynamical systemiX, .S) is a probability measure
u, on theo-algebraB(X) of Borel sets, withu(S—'B) = w(B) for all B € B(X);
the measure igrgodicif every S-invariant Borel set has measure 0 or 1. The set of
invariant measures forX, S) is denoted byM (X, .S). The system X, .S) is uniquely
ergodicif #(M(X,S)) = 1. For expository books on subshifts and/or ergodic theory,
see [37, 76, 83, 103, 79].

It is well known that the subshifts generated by primitivéstitutive sequences are
uniquely ergodic [103].
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Let¢ : X — Zandy : Y — Z be two factor maps. Suppose th{a, T") is not
periodic. We will prove thaty and3 are multiplicatively independent.

Let 4 and A be the unique ergodic measures(af, T') and (Y, T') respectively. It
is not difficult to see thatZ, T") is also generated by a primitive substitutive sequence
and consequently is uniquely ergodic. liebe its unique ergodic measure. We notice
thatou defined bypu(A) = u(¢~1(A)), for all Borel sets4 of Z, andy\ defined by
PA(A) = u(yp~1(A)), for all Borel setsA of Z, are invariant measures fox, T'). Hence
ou = 6 = Y. Let us give more details about these measures in order wumtmthe
proof.

Theorem 6.7.[69] Let (€2, T') be a subshift generated by a primitive purehgubstitutive
sequence angh be its unique ergodic measure. Then, the measures of ciiid@ lie
in a finite union of geometric progressions. There exists itefet 7 of positive real
numbers such that

{m(C) | C cylinder of X'} C U v F.

neN

In conjunction with the next result and using the pigeon hwlaciple we will con-
clude the proof.

Proposition 6.8. [46] Let (Q2, T') be a subshift generated by a primitive substitutive se-
guence on the alphabet. There exists a constarit’ such that for any block map
f ATt — B, we have#(f~'({u})) < K for all v appearing in some sequences

of f(Q).
From these last two results we deduce that there exist tvgoodetumbersFy and
Fy such that
{6(C) | C cylinderof Z} ={u(¢~(C)) | C cylinder of Z}
={\(~(C)) | C cylinder of X }
c (U a‘"}'x> N (U ﬁ‘”]—‘y> |
neN neN

The setsFx and Fy being finite, there exist two cylinder seisandV of 7, a € Fx,
b € Fy andn,m,r, s four distinct positive integers, such that

aa™" = 5(U) = b5~ andaa" = 6(V) = b~ .

Consequently and5 are multiplicatively dependent.

6.5 Tilings

6.5.1 From definable setsLet A be a finite alphabet. Aarray in N is a map7 :
N? — A. It can be viewed as a tiling &4 . The collection of all these arrays it"".
For allx € N¢, let |x| denote the sum of the coordinatesxofind B(x,r) be the set
{(y1,..yya) ENY O <Ly —a; <7, 1 <i < d}.



On Cobham'’s theorem 29

We say7 is periodic (resp. ultimately periodig if there existsp € N¢ such that
T(x +p) = T(x) for all x € N? (resp. for all large enougk). We also need another
notion of periodicity. We say that N is p-periodic insideX ¢ N¢if foranyx € X
with x + p € X we have

x € Zifandonlyifx+pe 7.

We say thatZ is locally periodicif there exists a non-empty finite sétc N¢ of non-zero
vectors such that for son€ > max{|v| | v € V} andL > 0 one has:

(vx € N4, |x| > L)(3v € V)(Z is v-periodic insideB(x, K)) .

Observe that fori = 1, local periodicity is equivalent to ultimate periodicityVe
say7T is pseudo-periodidf for all a € A, 7~!(a) is locally periodic and everyd — 1)-
section of 7 ~!(a), sayS(i,n) = {x € T '(a) | z; = n}, 1 <i < dandn € N, is
pseudo-periodic (ultimately periodic whdn- 1 = 1). The following criterion is due to
Muchnik, see [91] for the proof.

Proposition 6.9. Let E ¢ N? and7 : N¢ — {0,1} be its characteristic function. The
following are equivalent:
(i) Eis definable in the Presburger arithmetic;
(i) 7T is pseudo-periodic;
(i) forall a € {0,1}, there exist» € N, v; € N¢ and finite setd; c N9, 0 <i < n

such that
T Ya) = VoU ( U (vi—l— > Nv>) :

1<isn vev;

Let p be a positive integer and be a finite alphabet. A-substitution(or substitu-
tion if we do not need to specify) is a mapS : A — AB» whereB, = B(0,p) =
¢, {o,---,p — 1}. The substitutiors can be considered as a function frot* into
itself by setting

S(T(x)) = [S(T(y))](z), forall T e AN

wherey € N? andz € B, are the unique vectors satisfying= py + z.

In the same way, we can defirfe: AP — AP+ We remark thatS™(a) =
S(S"Y(a)) foralla € Aandn > 0. We sayT is generated by a-substitutionif there
exist a codingp and a fixed poinf, of a p-substitution such that = ¢ o 7.

In [30] the authors proved the following theorem, which isl@gous to Theorem 3.1.

Theorem 6.10. Letp > 2 andd > 1. A setE C N is p-recognizable if and only if the
characteristic function of is generated by a-substitution.

Hence we can reformulate the Cobham—-Semenov theorem ew$dil13].
Theorem 6.11(Cobham—-Semenov theorem, Version Rgt p and ¢ be two multiplica-

tively independent integers greater or equabtarhen, the array/” is generated by both
a p-substitution and g-substitution if and only iff” is pseudo-periodic.
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A dynamical proof of this can be given as for the unidimenal@ase, see [48] for the
primitive case.

6.5.2 Self-similar tilings In [38], a Cobham-like theorem is expressed in terms of self-
similar tilings of R? with a proof using ergodic measures, see [116] for more akeltit
similar tilings. From the point of view of dynamical systentise main result in [93] is
also a Cobham-like theorem for self-similar tilings.

6.6 Toward Cobham’s theorem for the Gaussian integers

I. Katai and J. Szab6 proved in [73] that the sequelices+:)™) >0 and((—p—1)™)n>0
give rise to numeration systems whose set of digitis, ..., p?}, p € N\ {0}. Itis
an exercise to check that whene N\ {0} andq € N\ {0} are different then-p + ¢
and—q + ¢ are multiplicatively independent. Therefore one couldesta Cobham-type
theorem for the set of Gaussian integérs= {a + ib | a,b € Z}. A subsetS C G is
periodicif there existsh € G such that, foraly € G, s € Sifandonly ifs + gh € S.
G. Hansel and T. Safer conjectured in [65] the following:

Conjecture 6.12. Let p and ¢ be two different positive integers arftl € G. Then the
following are equivalent.

(i) The setS is (—p + i)-recognizable and—gq + ¢)-recognizable;

(ii) There exists a periodic sdt such that the symmetric difference $&k P is finite.

The proof that (ii) implies (i) is easy. They tried to provethther implication using
the following (classical) steps:

(1) Dpy = {((:5:)); | n,m € Z} is dense irC.
(2) Sis syndetic
(3) Sis periodic up to some finite set.

They succeeded in proving (ii) as given by the next result.

Theorem 6.13. Letp andq be two positive integers such that the g&t, is dense irC.
LetS C G be(—p + i)-recognizable and—q + 7)-recognizable. Therfy is syndetic.

Let us make some observations about the density of thBset Let —p + i = ae®’
and—q + i = be*?.

Proposition 6.14. The following are equivalent.
(i) The setD,, , is dense irC;
(i) The setD, , is dense on the circlefe? | § € R} C D, ,;
(iii) The following numbers are rationally independent (ordarly dependent ovep):

Inb 6 Inb &

Ina’ 2rlna 27’
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The equivalence between (i) and (iii) is proven in [65] from easy computation.
The equivalence between (i) and (ii) comes from the fact that 1 andq¢? + 1 are
multiplicatively independent, see [65, Prop. 2]. As an egbantakep = 1 andp = 2.
Then,a = v2,b = /5,0 = 3T and¢ = arctan(—3). Proving the density oD »
is equivalent to proving thdh 5/1n2 , arctan(1/2) /7 and1 are rationally independent.
In [65] the authors observe that the Four Exponential Cdajecsee [120], would imply

thatD,, , is dense irC.

Conjecture 6.15(Four Exponential Conjecture).et{\;, Ao} and{z1, z2} be two pairs
of rationally independent complex numbers. Then, one ofihgbers: 171, er12 eA2@1
e?272 js transcendental.

6.7 Recognizability overF,[ X]

Using the analogy existing betwe& and the ring of polynomials over a finite field
IF, of positive characteristic, one can easily defif@ecognizable sets of polynomials
[106]. In [121] characterization of these sets in a convatri@gical structure analogous
to Theorem 4.5 is given. A family of sets of polynomials recizgble in all polynomial
bases is described in [106, 121]. We can again conjecturéhdo-like theorem.

7 Decidability issues

So far we have seen that ultimately periodic sets have a ypemia status in the context
of numeration systems (recall Proposition 2.6, Theorenobheorems 5.17 and 5.19).
They can be described using a finite amount of data (two finitelg/for the preperiodic
and the periodic parts). Let us settle down once more to thaliisteger base numera-
tion system. LetX C N be ak-recognizable set of integers given by a DFA accepting
rep, (X). Is there an algorithmic decision procedure which permits i decide for any
such setX, whether or notX is ultimately periodic? For an integer base, the problem
was solved positively in [70]. The main ideas are the follogvbnes. Given a DFA
accepting &-recognizable seX C N, the number of states of gives an upper bound
on the possible index and period f&r. Consequently, there are finitely many candidates
to check. For each such pdir, p) of candidates, produce a DFA for all possible corre-
sponding ultimately periodic sets and compatre it withUsing non-deterministic finite
automata, the same problem was solved in [5]. With the fasmabf first order logic
the problem becomes trivial. If a sa&t C N is k-recognizable, then using Theorem 4.5
it is definable by a formule(x) in (N, +, V,) and X is ultimately periodic if and only

if 3p)3EN)(Vx)(z = N A (e(x) <> o(x + p))). Since we have a decidable theory,
it is decidable whether this latter sentence is true [28pP80d2]. The problem can be
extended tdZ¢ and was discussed in [91]. It is solved in polynomial time82][ In
view of Theorem 5.1 the question is extended to any absttanenation system. Lef

be an abstract numeration system. Given a DFA acceptidr@tognizable sek’ C N.
Decide whether or noX is ultimately periodic. Some special cases have been solved
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positively in [31, 11]. Using Corollary 5.3, the same questtan be asked in terms of
morphisms. Given a morphism : A* — A* prolongable on a letted and a coding

7 : A — B, decide whether or not(c>°(a)) is ultimately periodic. It is theHDOL
(ultimate) periodicity problemThe purely substitutive case was solved independently in
[95] and [67]. Note that the general substitutive case Iisagien (one has to give a deci-
sion procedure for any abstract numeration system). Als¢&e® 87] where decidability
guestions about almost-periodicity are considered. A vimalmost periodiaf factors
occurring infinitely often have a bounded distance betweeniwences (but some factors
may occur only finitely often).
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Abstract. Let k > 2 be an integer. A seX of integers isk-recognizable if the language bfary
representations of the elementsinis accepted by a finite automaton. The celebrated theorem of
Cobham from 1969 states that if a set of integers is otbcognizable and-recognizable, then

it is a finite union of arithmetic progressions. We presentrd extensions of this result to non-
standard numeration systems, we describe the relatiahship substitutive and automatic words
and list Cobham-type results in various contexts.
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beta-polynomial, 5 maximal, 19
canonical alphabet, 4 growth type, 19
characteristic less, 19

polynomial, 5

sequence, 8 HDOL (ultimate) periodicity problem, 29
Cobham theorem, 2
code incidence matrix, 15

sliding block, 25 integer
coding, 8 multiplicatively dependent, 3
complexity function, 9 multiplicatively independent, 3
constant length invariant

morphism, 8 measure, 25
cylinder, 25 irreducible

matrix, 15

decision problem substitution, 15

HDOL (ultimate) periodicity problem,

29 k-recognizable set, 2
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k-kernel, 8
Kronecker's theorem, 3

letter-to-letter
morphism, 8
linear numeration basis, 4

map
abelianisation, 15
Parikh, 15
matrix
incidence, 15
irreducible, 15
primitive, 15
maximal growth, 19
word, 19
measure
ergodic, 26
invariant, 25
uniquely ergodic, 26
military order, 13
minimal
dynamical system, 25
morphism
constant length, 8
fixed point, 8
letter-to-letter, 8
prolongable, 8
Morse-Hedlund theorem, 9
multiplicatively
dependent, 3
independent, 3

NDD, 2
Nivat's conjecture, 10
normalization, 4
number
beta-number
B-number, 5
Parry, 5
Perron, 15
Pisot, 4

Number Decision Diagram, 2

numeration basis
Bertrand, 5
numeration basis, 4
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linear, 4
numeration system
abstract, 13

order
genealogical, 13
military, 13
radix, 13

p-substitution, 27
Parikh map, 15
Parry number, 5
period, 8
periodic
array, 27
dynamical system, 25
inside X, 27
locally periodic, 27
word, 8
Perron
number, 15
theorem, 15
Perron—Frobenius’ theorem, 15
Pisot
number, 4
numeration system, 4
preperiod, 8
Presburger arithmetic, 11
primitive
matrix, 15
substitution, 15
substitutive w.r.to, 15
progression
arithmetic, 3
prolongable morphism, 8
purely substitutive word, 8

radix order, 13
Real Number Automaton, 24
Real Vector Automaton, 24
recognizable set, 3
regular

sequence, 23
representation

S-, 13

normal, 4
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U-,4
return word, 21
RNA, 24
RVA, 24

sequence
automatic, 7
set
k-recognizable, 2
k-recognizable, 10, 24
locally periodic, 27
periodic insideX, 27
purely substitutive, 13
recognizable, 3
S-recognizable, 13
substitutive, 13
syndetic, 7
U-recognizable, 4
ultimately periodic, 3
shift transformation, 25
sliding block code, 25
sub-substitution, 21
subshift, 25
substitution, 8
erasing, 16
good, 21
growing, 19
irreducible, 15
wq-Substitution, 23
primitive, 15
projection, 17
sub-substitution, 21
substitutive w.r.tS, 16
substitutive w.r.to, 15
substitutive word, 8
successor, 11
syndetic set, 7

theorem

Kronecker, 3

Perron, 15

Perron—Frobenius, 15
Thue—Morse word, 9
Tribonacci word, 16

ultimately periodic, 3

F. Durand, M. Rigo

array, 27
word, 8
uniquely ergodic

measure, 26

variable
free, 11

word
almost periodic, 29
automatic, 7
characteristic, 8
maximal growth, 19
we-Substitutive, 23
periodic, 8

primitive substitutive w.r.to, 15

return, 21
substitutive, 8

purely, 8
substitutive w.r.tS, 16
substitutive w.r.to, 15
Thue—Morse, 9
Tribonacci, 16
ultimately periodic, 8



