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1 IntroductionThe Casson invariant is the simplest topological invariant of 3-manifolds amongthe invariants introduced after 1984. It interacts with many domains of mathe-matics. Casson de�ned it using the di�erential topology of SU(2)-representationspaces. It can be extended in the spirit of this de�nition using symplectic ge-ometry [W, CLM, C]. It can also be de�ned using in�nite-dimensional analysisand gauge theory [Ta]: it is the Euler characteristic of the Floer homology [BD].Its natural connections with the structure of the mapping class group havebeen investigated in a series of articles of S. Morita [Mo2] who interpreted itas a certain secondary invariant associated with the �rst characteristic class ofsurface bundles. Its relationship with quantum invariants [Mu], links it to quan-tum physics; and the Dedekind sums which often show up in the study of itstopological properties show that it even interacts with arithmetic.Here, with the aim of being as elementary as possible, we will presenta combinatorial de�nition of the Casson invariant, and describe most of itstopological properties.2 Surgery presentations of 3-manifoldsHere, all the manifolds are compact and oriented (unless otherwise mentioned).Boundaries are oriented with the "outward normal �rst" convention. We usuallywork with topological manifolds, but since any topological manifold of dimensionless or equal than 3 has exactly one C1-structure (see [Ku]), we will sometimesmake incursions in the smooth category. Manifolds are always considered up tooriented homeomorphism and embeddings and homeomorphisms are consideredup to ambient isotopy.Given a 3-manifold M , a knot K of M -that is an embedding of the circleS1 in the interior of M -, and a parallel � of K -that is a closed curve on theboundary of a tubular neighborhood T (K) of K which runs parallel to K-, wecan de�ne the manifold �(M ; (K;�)) obtained from M by surgery on K withrespect to � by the following construction: remove the interior of T (K) fromM and replace it by another solid torus D2 � S1 glued along the boundary@T (K) of T (K) by a homeomorphism from @T (K) to @D2 � S1 which maps �to @D2 � f1g.�(M ; (K;�)) =M n T (K) [@T (K)�@D2�S1 D2 � S1Note that �(M ; (K;�)) is well-de�ned. Indeed, it is obtained by �rst gluinga thickened disk toM n T (K) along an annulus around � in @T (K) and by next�lling in the resulting sphere S2 in the boundary by a standard 3-ball B3.(K;�) is called a framed knot . A collection of disjoint framed knots is calleda framed link. Surgery on framed links is the natural generalization of surgery onframed knots. The surgery is performed on each component of the link. A �rst2



motivation for taking this operation in consideration is the following theoremwhich is proved in a very elegant way in [Ro].Theorem 2.1 (Lickorish [Li], Wallace [W] 1960) Any closed (i.e. compact,connected, without boundary) 3-manifold can be obtained from the standard 3-sphere S3 by surgery on a framed link.We now de�ne linking numbers to help parametrizing surgeries. Let Jand K be two disjoint knots in a 3-manifold M which are rationnally null-homologous (i.e. null in H1(M ;Q)). Then there is a closed surface � embeddedinM n T (K) whose boundary lies in @T (K) and is homologous to d[K] in T (K)for some nonzero d 2 Z; and the linking number of J and K, lk(J;K), isunambiguously de�ned as the algebraic intersection number of J and � dividedout by d. It is symmetric.For R = Z;Q or Z=2Z, a 3-manifold with the same R-homology H�(:;R)as S3 is called an R-sphere. When M is a Q-sphere, the isotopy class in @T (K)of the characteristic curve � of the surgery is speci�ed by the linking numberof � and K in M and the framed knot (K;�) is also denoted by (K; lk(K;�)).In particular, a framed link in S3 is a link of S3 each component of which isequipped by an integer. +1Figure 1: A surgery presentation of the Poincar�e sphere (see [R])A second motivation for studying surgeries is the Kirby calculus whichrelates two surgery presentations of the same 3-manifold. Following is the Fennand Rourke version of the Kirby calculus:Theorem 2.2 (Fenn-Rourke [FR], Kirby [K] 1978) Any two framed linksof S3 presenting the same 3-manifold can be obtained from each other by a �nitenumber of FR-moves, w.r.t. the following description of FR-moves.Let L be a framed link in S3 such that a component U of L is a trivialknot U equipped with a parallel �U satisfying lk(U; �U) = " = �1. Consider acylinder I �D2 embedded in S3 n T (U) so that I � S1 is embedded in @T (U).Let � be the homeomorphism of S3 n T (U) which is the identity outside thecylinder, and which twists the cylinder around its axis so that �U is mappedto the meridian of U . Clearly, �(L nU) presents the same 3-manifold as L does(where we think of framed links as links equipped with curves to give a meaning3



to �(L n U)). We de�ne a FR-move as the operation described above whichtransforms L into �(LnU) or its inverse. It is easy to see that such a move doesnot change the presented manifold.According to the above theorem, in order to de�ne an invariant of closed 3-manifolds, it su�ces to �nd a function of surgery presentations invariant underFR-moves. For lack of good candidates, this process had not been used before1988. Since, with the invasion of quantum invariants, there is a lot of 3-manifoldsinvariants which have been proved to be invariant using this simple principle([RT], [W],. . . ) but for most of them a topological interpretation is still to befound. Here, I propose �rst to introduce such an invariant function and nextto give the topological interpretation of the invariant of 3-manifolds it yields: ageneralization of the Casson invariant.3 A combinatorial de�nition of the Casson in-variant.In order to introduce our invariant function F, we need some notation. Let L =(Ki)i2N be a framed link in a Q-sphere M , Ki = (Ki; �i) = (Ki; lk(�i;Ki)).N = f1; : : : ; ng is the set of indices of the components of L. For a subset I of N ,LI = (Ki)i2I . E(L) = [`ij = lk(�i;Kj)]i;j=1;:::;n denotes the symmetric linkingmatrix of L. b�(L) (resp. b+(L)) is the number of negative (resp. positive)eigenvalues of E(L). signature(E(L)) = b+(L) � b�(L). For a Z-module A, jAjdenotes the order of A, that is its cardinality if A is �nite and 0 otherwise. Notethat jH1(�(M ;L))j = (�1)b�(L)det(E(L))jH1(M)j(Unless otherwise mentioned, the homology coe�cients are the integers.)Now, we can set:FM (L) = (�1)b�(L) XI�N;I 6=; det(E(LNnI))�(LI )+jH1(�(M ;L))j signature(E(L))8with �(LI ) = jH1(M)j�~�(LI) + (�1)]I24 L8(LI)�where L8(L) and ~�(L) are described below.L8(L) is the following homogeneous polynomial in the coe�cients of thelinking matrix. Let G be a graph whose vertices are indexed by N ; for an edgee of G whose ends are indexed by i and j, we set lk(L; e) = `ij . Next we de�nelk(L;G) as the product running over all edges e of G of the lk(L; e). Now,L8(L) is the sum of the lk(L;G) running over all graphs G whose vertices are4



the elements of N and whose underlying spaces have the form of a �gure eightmade of two oriented distinguished circles (North and South) with one commonvertex.The coe�cient ~� can be de�ned from the several-variable Alexander poly-nomial � (as de�ned and normalized in [Ha] and [BL2] or in Section 6 below)for several component links and from the classical Alexander polynomial � ofknots which is the order of the H1 of the in�nite cyclic covering ofM nK, viewedas a natural Z[t; t�1]-module, normalized in such a way that �(1) > 0 and � issymmetric.~�(L) = ( (�1)n�1 @n�@t1:::@tn (L)(1; : : : ; 1) if n > 1OM (K1)2jH1(M)j�00(K1)(1) + (�1)24 �1 + 1OM (K1)2 � if n = 1where OM (K1) = jH1(M)j=jTorsion(H1(M nK1))j is the order of the classof K1 in jH1(M)j. It is one if M is a Z-sphere.We can now state the theorem:Theorem 3.1 ([L3]) There exists a rational topological invariant � of closed3-manifolds such that for any framed link L in S3,�(�(S3;L)) = FS3(L)The so-de�ned �-invariant satis�es the more general surgery formula:Property 1 For any framed link H in a Q-sphere M ,�(�(M ;H)) = jH1(�(M ;H))jjH1(M)j �(M) + FM (H)The principle of the proof of the theorem is very simple. According to theFenn and Rourke version of the Kirby theorem, it su�ces to show the invarianceof F under a FR-move; and the function F is a function of homological invariantsof the exterior of the framed link whose variation under a homeomorphism ofthis exterior can be followed (with some combinatorial e�orts). See [L3].The proof of the general surgery formula rests on the same remark. Takea surgery presentation L of the Q-sphere M . By transversality, we may assumethat H is disjoint of the link L̂ made of the cores of the new solid tori gluedby the surgery. Then the surgery presentation H can be seen in S3. (Again wethink of it as a link equipped with characteristic curves) and the equality to beshown is: FS3((H � S3) [ L) = jH1(�(M ;H))jjH1(M)j FS3(L) + FM (H)where both sides are functions of homological invariants ofS3 n (H [ L) =M n (H [ L̂)5



equipped with the surgery curves.Because of the form of the surgery formula, it is easy to compare the�-invariant with the Rohlin invariant for Z=2Z-spheres. Before stating the com-parison property, let us give a de�nition of this invariant discovered in 1952. Aspin structure on a smooth manifold of dimension greater or equal than 3 is ahomotopy class of trivializations of its tangent bundle over its 2-skeleton. (See[Mi2] for other de�nitions.) The Rohlin invariant � of a Z=2Z-sphere M is thesignature mod 16 of (the intersection form on the H2 of) a smooth spin (i.e.equipped with a spin structure) 4-manifold bounded by M .Property 2 For any Z=2Z-sphere M ,�(M) = 8jH1(M)j�(M) mod 16To a surgery presentation (L � S3) of a 3-manifold M , we may associatethe following natural 4-manifold WL bounded by M : WL is constructed fromthe standard 4-dimensional ball B4 by gluing 2-handles D2 �D2 to each com-ponent of the tubular neighborhood of L, T (L) � S3 = @B4, with respect tothe trivialization given by the characteristic curves (which allows to identifya component of T (L) to (D2 � S1 � D2 � D2)). WL is next smoothed in astandard way. The linking matrix E(L) is the matrix of the intersection formon H2(WL) w.r.t. the basis of H2(WL) associated to its handle decompositionabove. A necessary and su�cient condition for WL to be spin is that the di-agonal of E(L) is even (see [GM1, p.43]), and this can always be realized byFR moves (see [Ka]). In this case, it is easy to check that when det(E(L)) isodd (that is when M is a Z=2Z-sphere), 8jdet(E(L))jFS3(L)� signature(E(L))belongs to 16Z . This proves the congruence with the Rohlin invariant statedabove; and a few classical easy arguments show that this also gives a proof ofthe original Rohlin theorem asserting that the signature of a closed smooth spin4-manifold is divisible by 16 (this Rohlin theorem yields the well-de�nedness ofthe Rohlin invariant as a direct corollary) (see [L3, Sec. 6.3]).The following properties of the �-invariant can also be checked very easily:Property 3 For any closed 3-manifold M , the �-invariant of the manifold �Mobtained from M by orientation reversal satis�es:�(�M) = (�1)�1(M)+1�(M)where �1(M) is the �rst Betti number of M .Property 4 For any two closed 3-manifolds M1 and M2, the �-invariant oftheir connected sum M1]M2 def= M1 nB3 [S2 M2 nB3 satis�es�(M1]M2) = jH1(M2)j�(M1) + jH1(M1)j�(M2)6



But the main property of � is that it can be expressed in terms of previouslyknown invariants:Property 5 Let M be a closed 3-manifold.� If �1(M) � 4, then �(M) = 0� If �1(M) = 3, let (a; b; c) be a basis of H1(M) and let [ denote the cupproduct, then �(M) = jTorsion(H1(M))j(a [ b [ c)([M ])2� If �1(M) = 2, let ([F ]; [G]) be a basis of H2(M), represent it by two closedsurfaces F and G embedded in general position in M , call 
 their orientedintersection, call 
0 the parallel of 
 w.r.t. the trivialization of the normalbundle of 
 induced by F and G.�(M) = �jTorsion(H1(M))jlk(
; 
0)� If �1(M) = 1, let �(M) be the Alexander polynomial of M , that is (again)the order of the H1 of the in�nite cyclic covering of M , viewed as a nat-ural Z[t; t�1]-module, normalized in such a way that �(M)(1) > 0 and�(M)(t) = �(M)(t�1).�(M) = �00(M)(1)2 � jTorsion(H1(M))j12� If �1(M) = 0 (i.e. if M is a Q-sphere), then �(M) is the Casson-Walkerinvariant of M . More precisely, if M is a Z-sphere, �(M) is the Cassoninvariant ofM as normalized in [AM, GM2], and in general, if �W denotesthe normalization of the Walker invariant used in [W],�(M) = jH1(M)j2 �W (M)It is now time to describe the Casson invariant of Z-spheres as introducedby Casson in 1985.4 The Casson invariant after CassonLetM be a Z-sphere, A. Casson de�ned �(M) as an algebraic number of conju-gacy classes of irreducible SU(2)-representations of �1(M) in the following way.(Details can be found in [AM] or [GM2]).7



As any closed 3-manifold, M can be decomposed into two handlebodies Aand B glued along a genus g surface � = @A = �@B. (A handlebody is a regularneighborhood of a wedge of circles in a 3-manifold.) Such a decompositionM =A [� B is called a Heegaard splitting of M .For a topological space X , call R(X) the space of SU(2)-representationsof the discrete group �1(X) equipped with the compact open topology. Thesubspace of R(X) consisting of irreducible representations is an open set in R(X)denoted by ~R(X). When �1(X) is a free group of rank g, for example, whenX=A or B, R(X) has a natural smooth structure which makes it di�eomorphicto SU(2)g �= �S3�g. ~R(�) also has a natural smooth structure. Namely, call ��the surface obtained from � by removing an open disk, choose a basepoint of ��on @�� and call (@ : R(��)! S3) the evaluation of a representation of R(��) at@��. The restriction of @ to ~R(��) is a submersion. Thus, ~R(�) = ~R(��)\@�1(1)becomes a natural smooth (6g � 3)-submanifold of ~R(��). Let X = A;B;� or��, the free smooth action of SO(3) = SU(2)=f�1; 1g by right conjugation on~R(X) identi�es ~R(X) with the total space of a principal SO(3)-bundle whosebase is a smooth open manifold denoted by R̂(X). R̂(X) is the space of conjugacyclasses of irreducible SU(2)-representations of �1(X).The inclusions of �� into A and B identify R(A) and R(B) with submani-folds of R(��), and the Van Kampen theorem identi�es R(M) with R(A)\R(B).SinceM is a Z-sphere, the only reducible SU(2)-representation of �1(M) isthe trivial one, �0, and it can be shown that R(A) and R(B) intersect transver-sally at �0. Thus, ~R(A)\ ~R(B) and hence R̂(A)\ R̂(B) are compact. Therefore,an isotopy with compact support perturbing the inclusion of R̂(A) into R̂(�)can make R̂(A) transverse to R̂(B) inside R̂(�). Now, since R̂(A) and R̂(B)are of complementary dimension in R̂(�), their intersection is a �nite numberof points which can be given signs (+1) or (-1) once R̂(A), R̂(B) and R̂(�) areoriented. The sum of these signs is denoted by < R̂(A); R̂(B) >R̂(�). It is, upto sign, twice the Casson invariant.In order to suppress the sign indetermination we must specify orientations.SU(2), R(A), R(B) and R(��) are oriented arbitrarily. SO(3) is oriented by thedouble covering SU(2) ! SO(3). ~R(�) is oriented as the �ber of @ with theconvention (base� fiber). Once R(X) is oriented, R̂(X) is oriented as the baseof a SO(3)-bundle with the convention (base� fiber). It can be shown that the(classical) algebraic intersection number < R(A); R(B) >R(��) is �1.Now, with all the notations above, we can state Casson's original de�nitionof �. �(M) = (�1)g2 < R̂(A); R̂(B) >R̂(�)< R(A); R(B) >R(��)Casson proved the invariance of � using the Reidemeister-Singer theoremwhich asserts that two Heegaard splittings of the same manifold become iso-morphic after a �nite number of stabilizations (that are connected sums with8



the genus one Heegaard splitting of S3), and following the transformation of theabove de�nition under a stabilization.Casson's theorem was:Theorem 4.1 (Casson, 1985) There exists an integral topological invariant� of Z-spheres such that:1. If the trivial representation is the only representation of �1(M) into SU(2),then �(M) = 0:2. �(�M) = ��(M):3. �(M1]M2) = �(M1) + �(M2):4. For any knot K in a homology sphere M , for any " = �1,�(�(M ; (K; "))) = �(M) + "2�(K)00(1):5. �(M) = 8�(M) mod 16:The immediate corollaries of this theorem, `The Rohlin invariant of a ho-motopy sphere is null.' and `The Rohlin invariant of an amphicheral Z-sphereis null.' answered two long-unsolved questions in low-dimensional topology andallowed Casson to show the existence of a topological 4-manifold which cannotbe triangulated (see [AM]) as a simplicial complex.Note that the �rst assertion of the theorem is a direct corollary of Casson'sde�nition of �. The second and third assertions can also be proved very easilyfrom this de�nition. Since any Z-sphere can be obtained from S3 by a sequenceof surgeries on knots framed by �1 (see [GM2]), and because an analogoussurgery formula was known for the Rohlin �-invariant � = �8 , the �fth assertionis a direct consequence of the surgery formula. Thus, the only di�culty in theproof of Casson's theorem (in addition to inventing this de�nition...) is to provethe surgery formula from the de�nition above.To prove the surgery formula Casson proved the following lemma. A bound-ary link is a link whose components bound disjoint surfaces in the ambientmanifold; T denotes the trefoil knot in S3 pictured in Figure 1.Lemma 4.2 Let � be a rational invariant of Z-spheres such that: For any 2-component boundary link L in a Z-sphere M whose components are framed by�1: XI�f1;2g �(�(M ;LI )) = 0Then �(�(M ; (K; "))) = �(M) + "2�(K)00(1)(�(�(S3; (T; 1)))� �(S3))9



Then he computed �(�(S3; (T; 1))) = 1 and proved that � satis�ed the hy-pothesis of the lemma from his de�nition. In fact, it is possible [GM2] to computethe Casson invariant of Seifert �bered Z-spheres with 3 exceptional �bers, andthe variation of the Casson invariant under a surgery along a knot boundingan unknotted genus one Seifert surface directly from Casson's de�nition. Bothcomputations give �(�(S3; (T; 1))).Remark 4.3 In [Lin], X. S. Lin proved that the signature of a knot can alsobe obtained by counting some SU(2)-representations of the �1 of its exterior`�a la Casson'. Like Casson's comparison of his representation number with theRohlin invariant, Lin's proof that his representation number coincides with thesignature is not direct. In both cases, it would be interesting to have a moredirect identi�cation.Note also that Lemma 4.2 provides a nice characterization of the Cassoninvariant. In the same spirit, it can be shown [L5]:Property 6 Any two Z-spheres which have the same Casson invariant canbe obtained from one another by a sequence of surgeries on knots with trivialAlexander polynomial framed by �1.In 1988, K. Walker [W] used the strati�ed symplectic structure of the rep-resentation spaces [Go] to give a complete generalization of Casson's work toQ-spheres. In this case, reducible representations can not be ignored, and basicdi�erential topology does not su�ce anymore to provide a powerful generaliza-tion. (A weaker generalization of the Casson invariant to Q-spheres had beenproposed by S. Boyer and A. Nicas [BN].). Furthermore, K. Walker gave a verynice proof based on Kirby calculus that his one-component surgery formula givesa consistent de�nition of his invariant �W .Next, S. Cappell, R. Lee and E. Miller [CLM] generalized Walker's de�-nition to other Lie groups like SU(n), but they have not yet found interestingproperties for their invariants. C. Curtis [C] studied the SO(3), U(2), Spin(4)and SO(4)-invariants more precisely and proved that they are functions of theWalker SU(2)-invariant.Of course, the combinatorial extension of the Casson invariant describedin Section 3 is also a development of Casson's work. Indeed, without Walker'sgeneralization of the Casson theorem above, and Boyer-Lines's work [BL1] theauthor would not have been able to �nd the general surgery formula of Prop-erty 1. In their work independent from Walker's, S. Boyer and D. Lines gavea combinatorial de�nition of the restriction of the Walker invariant �W to ho-mology lens spaces, they proved a two-component surgery formula formula forthe Casson invariant, they exhibited the �rst part F1 of the surgery function F,the combination of the coe�cients ~� , and they proved that (�(�(S3; :)) � F1)is invariant under link homotopy. It must also be mentioned that the surgeryformula for algebraically split links, that are links whose components do not10



algebraically link each other, is due to Hoste [Ho] to close this section about theCasson work and some of its developments.5 Further topological properties of the CassoninvariantSince the Alexander-Conway polynomial is a well-understood knot invariant,it is easy to apply the surgery formula satis�ed by � in order to compute the�-invariant of any manifold presented by surgery [L2, L1], in order to studythe behaviour of � under other topological mutations as in [D, Ki, Wo] or inProperties 7, 8 and 9 described below, or in order to compare � with otherinvariants as H. Murakami did to prove that the Walker invariant is equal to afunction of the Reshetikhin and Turaev invariants that he appropriately de�ned[Mu].Remark 5.1 In [O1], T. Ohtsuki generalized Murakami's work and renormal-ized the Reshetikhin and Turaev invariants into an invariant series of Q-sphereswhose �rst coe�cients are jH1(:)j and �. It would be interesting to know whetherthe other coe�cients of this series are related to Casson-type invariants. To studyhis series, Ohtsuki [O2] de�ned the notion of �nite type invariant for Z-spheres.This notion is analogous to the notion of Vassiliev invariants of knots. Say thata rational invariant � of Z-spheres is of AS-type (resp. of B-type) less or equalthan n if for any (n+ 1)-component algebraically split (resp. boundary link) Lin a Z-sphere M whose components are framed by �1:XI�f1;:::;n+1g �(�(M ;LI)) = 0Note that Casson's lemma (4.2) proves that the B-type 1 invariants areexactly the degree 1 polynomials in � while the Hoste surgery formula [Ho]shows that � is of AS-type 3. In fact, it is proved that the AS-type is always amultiple of 3, and it is conjectured (proved ?) that the two mentioned notions of�nite type invariants coincide and that the AS-type is three times the B-type.It is not hard to see that for any integer n, a degree n polynomial in � is aninvariant of B-type n and of AS-type 3n. Thus, the polynomials in � are niceprototypes for �nite type invariants. But, T. T. Q. Le proved [Le] that theyare not the only ones. It would be interesting to place the SU(n)-invariants ofCappell, Lee and Miller among these �nite type invariants.It is worth mentioning the existence of some variants of the surgery formula(Property 1), that have not yet been mentioned to avoid introducing too manynotations. Note that in the surgery de�nition, we do not need the characteristiccurve � of the surgery to be parallel to the knot K. Any non-separating simpleclosed curve of @T (K) can play the role of the characteristic curve, and the11



surgery de�ned by such a curve is (sometimes) called a rational surgery. Thesurgery formula extends naturally to rational surgeries. For surgeries startingfrom Z-spheres the surgery function F can be expressed only in terms of linkingnumbers and one-variable Alexander-Conway polynomials. (See [L3].)There are also some formulae for the Casson invariant of p-fold branchedcyclic coverings. For a link L in a Z-sphereM , let Rp(M ;L) be the p-fold cycliccovering of M branched along L, obtained from the covering of the exterior ofL associated with the `linking number with L modulo p' by �lling it in by solidtori whose meridians are sent to old meridians of L.Property 7 (Hoste [Ho]) Let K be a knot in a Z-sphere M . Let D"K be theuntwisted double of K with an "-clasp, then�(Rp(M ;D"K)) = p�(M) + "p�00(K)(1)The following Mullins property relates the Walker invariant of 2-fold branchedcoverings to the Jones polynomial V and the oriented signature � of links:Property 8 (Mullins [Mul]) Let L be a link in S3 such that R2(S3;L) is aQ-sphere, then �W (R2(S3;L)) = �(L)4 � V 0(L)(�1)6V (L)(�1)To prove this formula, Mullins studied the variation of �W (R2(S3;L))under a crossing change of L. Owing to the fact that the 2-fold branched coveringof the ball of the crossing change is a solid torus, such a crossing change inducesa surgery on R2(S3;L).For other p-fold cyclic branched coverings, a crossing change induces ahandlebody replacement. This leads us to the following natural question. Whatcan we say about �(A [� B) for a Q-sphere obtained by gluing two pieces Aand B along a genus g surface �?Our partial answer is the following property of � [L4]. A Q-handlebody isa 3-manifold with the same rational homology as a standard handlebody. Fora 3-manifold A with boundary, the kernel LA of the map from H1(@A;Q) toH1(A;Q) induced by the inclusion is called the Lagrangian of A.Property 9 Let A, A0, B and B0 be four Q-handlebodies such that @A, @A0,�@B and �@B0 are identi�ed via orientation-preserving homeomorphisms witha genus g surface �. Assume that LA = LA0 and LB = LB0 and that LA\LB =f0g inside H1(�;Q). Then�W (A[� B)� �W (A0 [� B)� �W (A [� B0) + �W (A0 [� B0) = R(A;A0; B;B0)where R(A;A0; B;B0), described below in general, is zero if g � 2.12



Before describing R(A;A0; B;B0) in general, note that, for g = 0 and A0 = B0 =B3, this property is nothing but the additivity of �W under connected sum. Thegenus one formula, when A0 and B0 are solid tori, is the splicing formula, shownby several authors [BN, FM] for the Casson invariant, and generalized by Fujitato the Walker invariant [F]. In this case, starting with A[�B, there is a uniqueway of �lling in A with a solid torus B0 having the right Lagrangian, A0 [ Band A0 [B0 are similarly well-determined, and the Walker invariant of the lensspace A0 [ B0 is a known Dedekind sum.Now, let us decribe R(A;A0; B;B0) under the hypotheses of Property 9.The isomorphism @AA0 from H2(A[��A0;Q) to LA which maps the homologyclass of a surface S of A [� �A0 (transverse to @A) to the class of @(S \ A)carries the algebraic intersection de�ned on V3H2(A[��A0;Q) to a form IAA0de�ned on V3 LA. De�ne IBB0 similarly. Let (�1; : : : ; �g) and (�1; : : : ; �g) betwo bases for LA and LB , respectively, that are dual for the intersection form<;>� on � (< �i; �j >�= �ij). ThenR(A;A0; B;B0) = �4 Xfi;j;kg�f1;:::;gg IAA0(�i ^ �j ^ �k)IBB0(�i ^ �j ^ �k)Remark 5.2 Let (�;LA) be a closed, connected surface equipped with a ratio-nal Lagrangian (as above). In [S], D. Sullivan proved that any integral form onV3(H1(�;Z)\LA) may be realized as a IAA0 for two standard handlebodies Aand A0 with boundary � and Lagrangian LA.A splitting A [� B of a Q-sphere induces the following function �AB onthe Torelli group of �. The Torelli group is the group of the (isotopy classes of)homeomorphisms of � which induce the identity on H1(�). For a homeomor-phism f of the Torelli group, A[f B denotes the manifold obtained by replacingthe (underlying) identi�cation jB : � �! �@B by jB � f .�AB(f) = 12(�W (A [f B)� �W (A [� B))As a direct corollary of Property 9, we see that �AB(g�f)��AB(g)��AB(f)is a function of the evaluations of the Johnson homomorphism at f and g (see [J,Second de�nition, p.170] for a de�nition of the Johnson homomorphism which isa homomorphism from the Torelli group to V3H1(�)). With completely di�er-ent methods (based mainly on Johnson's study of the Torelli group), S. Moritaproved this corollary for Heegaard splittings of Z-spheres [Mo, Theorem 4.3],but he did not think that it extended to general embeddings [Mo, Remark 4.7].The above corollary also proves that, when A[B is a Z-sphere the function�AB induced by the Rohlin �-invariant � = �8 de�nes a homomorphism from theTorelli group to Z=2Z. These homomorphisms were �rst studied by J. Birmanand R. Craggs [BC], they are the so-called Birman-Craggs homomorphisms.13



It is worth mentioning that the best natural generalization of Property 9that may be expected for the generalized Casson invariant of Section 3 is true[L4]. This generalized Casson invariant also admits a homogeneous de�nitionvia Kontsevich integrals [LMMO]. Both of these properties together with thehomogeneous surgery formula enhance the naturality of the generalization of �proposed in Section 3.To prove Property 9, we �rst �nd a sequence of simple surgeries on linkstransforming A into A0 and staying among the Q-handlebodies with LagrangianLA. Then we apply the surgery formula of [L3, BL1] to these surgeries and weanalyse how the involved formulae depend on B when B varies among the Q-handlebodies with boundary �@A and with �xed Lagrangian.This analysis led us [L4] to construct a tautological generalization of Alexan-der polynomials to 3-manifolds with boundary which may be useful to proveother properties of the Casson invariant. We conclude this article with a briefpresentation of this function called the Alexander function which will allow usto de�ne the normalized several variable Alexander polynomial.6 More about Alexander polynomials: the Alexan-der functionAll the assertions of this section are proved in [L4, Section 3]. Here, A denotesa connected 3-manifold with non-empty boundary and with non-negative genusg = g(A) = 1� �(A). �A denotes the group ring:�A = Z � H1(A)Torsion(H1(A))�Recall that �A = Lx2 H1(A)Torsion Z exp(x) as a Z-module, that its multipli-cation sends (exp(x); exp(y)) to exp(x + y), and that the units of �A are itselements of the form �exp(x 2 H1(A)=Torsion).The maximal free abelian covering of A is denoted by ~A and the cov-ering map from ~A to A by pA. We �x a basepoint ? in A. The �A-moduleH1( ~A; p�1A (?);Z) is denoted by HA.De�nition 6.1 The Alexander function AA of A is the �A-morphismAA : ĝ HA �! �Awhich is de�ned up to a (global) multiplication by a unit of �A as follows. Takea presentation of HA over �A with (r+g) generators 
1; : : : ; 
r+g and r relators�1; : : : ; �r (which are �A-linear combinations of the 
i). Let û = u1 ^ : : : ^ ugbe an element of VgHA. Then AA(û) is de�ned by the equality:14



AA(û)
̂ = �̂ ^ ûwhere �̂ = �1^: : :^�r, 
̂ = 
1^: : :^
r+g , the ui are represented as combinationsof the 
j , and the exterior products are to be taken in Vr+g �Lr+gi=1 �A
i�.Of course, AA(û) is just the order of the �A-module HA=(��Aui). But,hopefully, some of the properties of AA mentioned below will convince the readerthat it may be interesting to work with a �xed normalization of AA.Fix a preferred lift ?0 of ? in ~A. Let @ denote the boundary map from HAto H0(p�1A (?)) = �A[?0] = �A. Once a normalization of AA is �xed, AA satis�esthe easy property:For any v = (v1; : : : ; vg) 2 HgA, for any u 2 HA,gXi=1 @(vi)AA(v̂( uvi )) = AA(v̂)@(u)where v̂ = v1 ^ : : : ^ vg and v̂( uvi ) = v1 ^ : : : ^ vi�1 ^ u ^ vi+1 ^ : : : ^ vg .This property shows that the next property of the Alexander function givesa consistent de�nition of the Reidemeister torsion � (which yields the Alexanderpolynomial). If A is a link exterior, then for any element u of HA,AA(u) = @(u)�(A)If A is a several component link exterior, then �(A) belongs to �A, it is de�nedup to a multiplication by a unit of �A.In fact, a well-chosen multiplication by an element of the form exp( 12x)makes the Reidemeister torsion satisfy �(A) = ��(A) where the conjugationsends exp(x) to exp(�x) [Mi]. Thus, the Reidemeister torsion is an elementde�ned up to sign in Z[ 12H1(A)=Torsion] � Z[H1(A;Q)]. The choice of an ori-entation O of the vector space H1(A;R)�H2(A;R) suppresses the sign indeter-mination and allows one to de�ne �(A;O) 2 Z[H1(A;Q)] unambiguously. (See[T, L3].) If A is the exterior of an n-component link L in a Q-sphere M , suchan orientation OL is unambiguously de�ned by a basis of H1(A;R)�H2(A;R)of the form (m1; : : : ;mn; @T (K1); : : : ; @T (Kn�1)) where mi and @T (Ki) denotethe oriented meridian and the boundary of the tubular neighborhood of the ithcomponent of L, respectively.Note that for a general A, a basisM = fm1; : : : ;mng of H1(A;Q) inducesthe natural ring inclusion  M from Z[H1(A;Q)] into the ring Q[[x1; : : : ; xn]] offormal series in the xi:  M(exp(mi)) = exp(xi).In particular, if A is the exterior of a several component link L in a Q-sphere M , then we use the natural basisM of the meridians of L to de�ne theAlexander series D(L) =  M(�(Mn �T (L);OL))15



which is equivalent to the several variable Alexander polynomial�(L) (t1 = exp(x1); : : : ; tn = exp(xn)) = (�1)n�1 D(L)jH1(M)jIn general, a morphism  M allows us to de�ne the order of an elementof �A as the order of its image under  M. It does not depend on M. Sim-ilarly, we will speak of the low degree parts of the elements of �A. Indeed,the information required to compute the coe�cients ~� of the surgery formula(Property 1) is contained in the low-degree parts of Alexander functions im-ages. Thus, it is worth noting that the degree 0 part of AA(û) is "(AA(û)) =jH1(A)=(�ZpA�(ui))j, and that the order of AA(û) is greater or equal than thedimension of H1(A;Q)=(�QpA�(ui)). The Alexander function also satis�es thefollowing interesting property which relates the low degree parts of some of itsimages to algebraic intersections.Proposition 6.2 For any (A; `;m), where A is a Q-handlebody whose boundaryis equipped with two systems of curves ` = (`1; : : : ; `g) and m = (m1; : : : ;mg)as in Figure 2, such that the homology classes of the `i generate LA,AA(m̂( `jmk )) = "(AA(m̂)) gXi=1 IA�`(`i ^ `j ^ `k)(exp(mi)� 1) +O(2)where O(2) makes up for an element of �A of order greater or equal than 2, and�` is the standard handlebody with boundary @A where the `i bound disks.`1 m1 m2`2 `g mgFigure 2: Two systems of curves on @ARecall that I is de�ned in Section 5. Though `i denotes the curve `i, itshomology class, and the class of a lifting of the curve `i (joined to the basepoint)in HA, depending on the context, the statement is unambiguous.It is also worth observing the natural good behaviour of Alexander func-tions under the two operations: (1) Adding a 2-handle to A, (2) Performing a16



connected sum along the boundary of two 3-manifolds A and B. A lot of proper-ties of Alexander polynomials can be derived from this natural behaviour. Moregenerally, if A is a submanifold of the interior of a 3-manifold B, in order tocompute AB , it is enough to know B nA, AA and the inclusion from @A intoB nA.Let us use these remarks to be more speci�c about the sign determinationof the Alexander series.Let L = (Ki)i2f1;:::;gg be a link in a Q-sphere M . g � 2. Consider aregular neighborhood of a graph made of the Ki and paths joining them to thebasepoint. This is a handlebody which is a connected sum along boundariesof the T (Ki). Removing the interior of this handlebody from M yields a Q-handlebody A whose boundary is equipped with the meridians mi and somelongitudes `i of the Ki which sit there as in Figure 2. We let �i denote theboundary of the genus one subsurface of @A with connected boundary containingmi and `i.Then, up to units of the form exp(x 2 12H1(A)=Torsion), for any j; k 2f1; : : : ; gg, D(L) = sign("(AA(m̂))) L AA(�̂(mj�k ))@(mj) !Now, the de�nition of the coe�cient ~� is complete and we know enoughabout the surgery formula. Thus, we can apply it together with the helpfulformalism introduced above, and we are hopefully ready to discover more prop-erties for the Casson invariant.
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