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Abstract

The Casson invariant is a topological invariant of closed oriented 3-
manifolds. It is an integer that counts the SU(2)-representations of the
fundamental group of these manifolds in a sense introduced by Casson
in 1985. Its first properties allowed Casson to solve famous problems in
3-dimensional topology.

The Casson invariant can also be independently defined in a com-
binatorial way as a function of Alexander polynomials of framed links
presenting the 3-manifolds. It has numerous interesting properties: It be-
haves nicely under most topological mutations such as orientation reversal,
connected sum, surgery, regluing along surfaces... This makes it easy to
compute and to use. The Casson invariant contains the Rohlin invariant of
%—homology spheres, that is the signature of any smooth spin 4-manifold
bounded by such a sphere. It is also explicitly related to quantum invari-
ants and is the first finite type invariant in the sense of Ohtsuki. (This
Ohtsuki notion of finite type invariants for 3-manifolds is analogous to the
Vassiliev notion for knots.)

This talk will be a general presentation of the Casson invariant where
its newest properties and developments will be emphasized.
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1 Introduction

The Casson invariant is the simplest topological invariant of 3-manifolds among
the invariants introduced after 1984. It interacts with many domains of mathe-
matics. Casson defined it using the differential topology of SU (2)-representation
spaces. It can be extended in the spirit of this definition using symplectic ge-
ometry [W, CLM, C]. It can also be defined using infinite-dimensional analysis
and gauge theory [Ta]: it is the Euler characteristic of the Floer homology [BD].
Its natural connections with the structure of the mapping class group have
been investigated in a series of articles of S. Morita [Mo2] who interpreted it
as a certain secondary invariant associated with the first characteristic class of
surface bundles. Its relationship with quantum invariants [Mu], links it to quan-
tum physics; and the Dedekind sums which often show up in the study of its
topological properties show that it even interacts with arithmetic.

Here, with the aim of being as elementary as possible, we will present
a combinatorial definition of the Casson invariant, and describe most of its
topological properties.

2 Surgery presentations of 3-manifolds

Here, all the manifolds are compact and oriented (unless otherwise mentioned).
Boundaries are oriented with the ”outward normal first” convention. We usually
work with topological manifolds, but since any topological manifold of dimension
less or equal than 3 has exactly one C'*°-structure (see [Ku]), we will sometimes
make incursions in the smooth category. Manifolds are always considered up to
oriented homeomorphism and embeddings and homeomorphisms are considered
up to ambient isotopy.

Given a 3-manifold M, a knot K of M -that is an embedding of the circle
S! in the interior of M-, and a parallel u of K -that is a closed curve on the
boundary of a tubular neighborhood T'(K) of K which runs parallel to K-, we
can define the manifold x(M; (K, u)) obtained from M by surgery on K with
respect to p by the following construction: remove the interior of T'(K) from
M and replace it by another solid torus D? x S' glued along the boundary
OT(K) of T(K) by a homeomorphism from 9T (K) to D? x S' which maps
to OD? x {1}.

X(M; (K, p)) = M\ T(K) Upr(ry~op2xst D* x S*

Note that x(M; (K, u)) is well-defined. Indeed, it is obtained by first gluing
a thickened disk to M \ T(K) along an annulus around p in 0T (K') and by next
filling in the resulting sphere S$? in the boundary by a standard 3-ball B?.

(K, ) is called a framed knot. A collection of disjoint framed knots is called
a framed link. Surgery on framed links is the natural generalization of surgery on
framed knots. The surgery is performed on each component of the link. A first



motivation for taking this operation in consideration is the following theorem
which is proved in a very elegant way in [Ro].

Theorem 2.1 (Lickorish [Li], Wallace [W] 1960) Any closed (i.e. compact,
connected, without boundary) 3-manifold can be obtained from the standard 3-
sphere S® by surgery on a framed link.

We now define linking numbers to help parametrizing surgeries. Let J
and K be two disjoint knots in a 3-manifold M which are rationnally null-
homologous (i.e. null in Hy(M;Q)). Then there is a closed surface ¥ embedded
in M \ T'(K') whose boundary lies in 0T (K') and is homologous to d[K] in T'(K)
for some nonzero d € Z; and the linking number of J and K, lk(J,K), is
unambiguously defined as the algebraic intersection number of J and ¥ divided
out by d. It is symmetric.

For R =7Z,Q or Z/2Z, a 3-manifold with the same R-homology H.(.; R)
as S% is called an R-sphere. When M is a Q-sphere, the isotopy class in T (K)
of the characteristic curve p of the surgery is specified by the linking number
of p and K in M and the framed knot (K, u) is also denoted by (K,lk(K, u)).
In particular, a framed link in S® is a link of S® each component of which is

equipped by an integer.
@+1

Figure 1: A surgery presentation of the Poincaré sphere (see [R])

A second motivation for studying surgeries is the Kirby calculus which
relates two surgery presentations of the same 3-manifold. Following is the Fenn
and Rourke version of the Kirby calculus:

Theorem 2.2 (Fenn-Rourke [FR], Kirby [K] 1978) Any two framed links
of S® presenting the same 3-manifold can be obtained from each other by a finite
number of FR-moves, w.r.t. the following description of FR-mouves.

Let L be a framed link in S? such that a component U of L is a trivial
knot U equipped with a parallel p; satisfying [k(U, uiy) = € = £1. Consider a
cylinder I x D? embedded in S3 \ T(U) so that I x S* is embedded in 8T (U).
Let 7 be the homeomorphism of S2\ T'(U) which is the identity outside the
cylinder, and which twists the cylinder around its axis so that py is mapped
to the meridian of U. Clearly, 7(L \ U) presents the same 3-manifold as L does
(where we think of framed links as links equipped with curves to give a meaning



to 7(L \ U)). We define a FR-move as the operation described above which
transforms L into 7(L \ U) or its inverse. It is easy to see that such a move does
not change the presented manifold.

According to the above theorem, in order to define an invariant of closed 3-
manifolds, it suffices to find a function of surgery presentations invariant under
FR-moves. For lack of good candidates, this process had not been used before
1988. Since, with the invasion of quantum invariants, there is a lot of 3-manifolds
invariants which have been proved to be invariant using this simple principle
([RT], [W],...) but for most of them a topological interpretation is still to be
found. Here, I propose first to introduce such an invariant function and next
to give the topological interpretation of the invariant of 3-manifolds it yields: a
generalization of the Casson invariant.

3 A combinatorial definition of the Casson in-
variant.

In order to introduce our invariant function F, we need some notation. Let L =
(K;)ien be a framed link in a Q-sphere M, K; = (K, ui) = (K;, lk(ui, K;)).
N ={1,...,n} is the set of indices of the components of L. For a subset I of N,
L = (K;)ier- E(L) = [;; = lk(1i, K;)]i,j=1,....n denotes the symmetric linking
matriz of L. b= (L) (resp. b*t(L)) is the number of negative (resp. positive)
eigenvalues of F(L). signature(E(L)) = b7 (L) — b~ (L). For a Z-module A, |A]
denotes the order of A, that is its cardinality if A is finite and 0 otherwise. Note
that
H, (M3 )| = (=1)" ) det(B(L))|Hy (M)

(Unless otherwise mentioned, the homology coefficients are the integers.)
Now, we can set:

Fu(L)=(-1)"® > det(E(Ly\;)e(Ly)
ICN,I#£0

I H (¢ (M L) signaturge(E(L))
with i
o) =1 00| (&0 + 5 La(En))

where Lg(L) and ((L) are described below.

Lg(L) is the following homogeneous polynomial in the coefficients of the
linking matrix. Let G be a graph whose vertices are indexed by N; for an edge
e of G whose ends are indexed by ¢ and j, we set [k(L;e) = £;;. Next we define
Ik(L;G) as the product running over all edges e of G of the Ik(L;e). Now,
Lg(L) is the sum of the lk(L;G) running over all graphs G whose vertices are



the elements of N and whose underlying spaces have the form of a figure eight
made of two oriented distinguished circles (North and South) with one common
vertex.

The coefficient ¢ can be defined from the several-variable Alexander poly-
nomial A (as defined and normalized in [Ha] and [BL2] or in Section 6 below)
for several component links and from the classical Alexander polynomial A of
knots which is the order of the H; of the infinite cyclic covering of M \ K, viewed
as a natural Z[t,#~!]-module, normalized in such a way that A(1) > 0 and A is
symmetric.

&(n) (1) A (L)(L, .., 1) .
L SHERAT )W) + G (14 o) =1

where O (K4 ) = |Hy (M)|/|Torsion(Hy (M \ K1))] is the order of the class
of Ky in |Hy(M)|. Tt is one if M is a Z-sphere.
We can now state the theorem:

Theorem 3.1 ([L3]) There exists a rational topological invariant A of closed
3-manifolds such that for any framed link L in S3,

A(x(S* L)) = Fgs(L)
The so-defined A-invariant satisfies the more general surgery formula:

Property 1 For any framed link H in a Q-sphere M,

oy H (M H))|

The principle of the proof of the theorem is very simple. According to the
Fenn and Rourke version of the Kirby theorem, it suffices to show the invariance
of F under a FR-move; and the function F is a function of homological invariants
of the exterior of the framed link whose variation under a homeomorphism of
this exterior can be followed (with some combinatorial efforts). See [L3].

The proof of the general surgery formula rests on the same remark. Take
a surgery presentation L of the Q-sphere M. By transversality, we may assume
that H is disjoint of the link L made of the cores of the new solid tori glued
by the surgery. Then the surgery presentation H can be seen in S®. (Again we
think of it as a link equipped with characteristic curves) and the equality to be
shown is:

_ Hi(x(M;H))|

Fgs(HC S?’)UL) = WFsg(L) + Fr(H)

where both sides are functions of homological invariants of

S3\(HUL)=M\ (HUL)



equipped with the surgery curves.

Because of the form of the surgery formula, it is easy to compare the
A-invariant with the Rohlin invariant for Z/2Z-spheres. Before stating the com-
parison property, let us give a definition of this invariant discovered in 1952. A
spin structure on a smooth manifold of dimension greater or equal than 3 is a
homotopy class of trivializations of its tangent bundle over its 2-skeleton. (See
[Mi2] for other definitions.) The Rohlin invariant o of a Z/2Z-sphere M is the
signature mod 16 of (the intersection form on the Hs of) a smooth spin (i.e.
equipped with a spin structure) 4-manifold bounded by M.

Property 2 For any Z/2Z-sphere M,
o(M) = 8|H1(M)|A(M) mod 16

To a surgery presentation (L C S?) of a 3-manifold M, we may associate
the following natural 4-manifold Wy, bounded by M: Wy, is constructed from
the standard 4-dimensional ball B* by gluing 2-handles D? x D? to each com-
ponent of the tubular neighborhood of L, T(L) C S* = 0B*, with respect to
the trivialization given by the characteristic curves (which allows to identify
a component of T(L) to (D* x S' C D? x D?)). Wy, is next smoothed in a
standard way. The linking matrix E(L) is the matrix of the intersection form
on Hy (W) w.r.t. the basis of Hy(W7,) associated to its handle decomposition
above. A necessary and sufficient condition for Wi, to be spin is that the di-
agonal of E(L) is even (see [GM1, p.43]), and this can always be realized by
FR moves (see [Kal]). In this case, it is easy to check that when det(E(L)) is
odd (that is when M is a Z/2Z-sphere), 8|det(E(L))|Fgs (L) — signature(E(L))
belongs to 16Z . This proves the congruence with the Rohlin invariant stated
above; and a few classical easy arguments show that this also gives a proof of
the original Rohlin theorem asserting that the signature of a closed smooth spin
4-manifold is divisible by 16 (this Rohlin theorem yields the well-definedness of
the Rohlin invariant as a direct corollary) (see [L3, Sec. 6.3]).

The following properties of the A-invariant can also be checked very easily:

Property 3 For any closed 3-manifold M, the A-invariant of the manifold —M
obtained from M by orientation reversal satisfies:

N=M) = (~1) 041\ (u1)
where 31 (M) is the first Betti number of M.

Property 4 For any two closed 3-manifolds M, and Ms, the A-invariant of

their connected sum My§Mo def M\ B3 Ugz M> \ B? satisfies

MM 8M>) = |Hy (M2)|N(My) + [H1(M1)|A(Ma)



But the main property of A is that it can be expressed in terms of previously
known invariants:

Property 5 Let M be a closed 3-manifold.
o If i (M) > 4, then

A(M) =0

o If B1(M) = 3, let (a,b,c) be a basis of H*(M) and let U denote the cup
product, then

A(M) = |Torsion(H; (M))|(a U bU ¢)([M])?

o If 51(M) =2, let ([F],[G]) be a basis of Hy(M), represent it by two closed
surfaces F and G embedded in general position in M, call vy their oriented
intersection, call 7' the parallel of v w.r.t. the trivialization of the normal
bundle of v induced by F and G.

A(M) = —[Torsion(H, (M))|1k(7,7)

o If 81 (M) =1, let A(M) be the Alexander polynomial of M, that is (again)
the order of the Hy of the infinite cyclic covering of M, viewed as a nat-
ural Z[t,t=']-module, normalized in such a way that A(M)(1) > 0 and
A(M)(t) = AM)(t).

_ AY(M)(1) _ [Torsion(Hy (M)

A(M) 2 12

o If B1(M) =0 (i.e. if M is a Q-sphere), then A(M) is the Casson- Walker
invariant of M. More precisely, if M is a Z-sphere, \(M) is the Casson
invariant of M as normalized in [AM, GM2], and in general, if \w denotes
the normalization of the Walker invariant used in [W],

_ [ Hi(M)]

AM) = =

Aw (M)

It is now time to describe the Casson invariant of Z-spheres as introduced
by Casson in 1985.

4 The Casson invariant after Casson

Let M be a Z-sphere, A. Casson defined A(M) as an algebraic number of conju-
gacy classes of irreducible SU (2)-representations of 7y (M) in the following way.
(Details can be found in [AM] or [GM2]).



As any closed 3-manifold, M can be decomposed into two handlebodies A
and B glued along a genus g surface ¥ = 94 = —0B. (A handlebody is a regular
neighborhood of a wedge of circles in a 3-manifold.) Such a decomposition M =
A Uyx, B is called a Heegaard splitting of M.

For a topological space X, call R(X) the space of SU(2)-representations
of the discrete group m(X) equipped with the compact open topology. The
subspace of R(X) consisting of irreducible representations is an open set in R(X)
denoted by R(X). When 7 (X) is a free group of rank g, for example, when
X=A or B, R(X) has a natural smooth structure which makes it diffeomorphic
to SU(2)9 = (53)9. R(X) also has a natural smooth structure. Namely, call ¥,
the surface obtained from ¥ by removing an open disk, choose a basepoint of X,
on 9%, and call (9 : R(Z.) — S?) the evaluation of a representation of R(3.) at
OY,. The restriction of d to R(X,.) is a submersion. Thus, R(X) = R(2,)Nd~" (1)
becomes a natural smooth (6g — 3)-submanifold of R(E,). Let X = A, B, S or
Y., the free smooth action of SO(3) = SU(2)/{—1,1} by right conjugation on
R(X) identifies R(X) with the total space of a principal SO(3)-bundle whose
base is a smooth open manifold denoted by R(X). R(X) is the space of conjugacy
classes of irreducible SU(2)-representations of m (X).

The inclusions of ¥, into A and B identify R(A) and R(B) with submani-
folds of R(X.), and the Van Kampen theorem identifies R(M) with R(A)NR(B).

Since M is a Z-sphere, the only reducible SU(2)-representation of 7y (M) is
the trivial one, pp, and it can be shown that R(A) and R(B) intersect transver-
sally at po. Thus, R(A)NR(B) and hence R(A)NR(B) are compact. Therefore,
an isotopy with compact support perturbing the inclusion of R(A) into R(E)
can make R(A) transverse to R(B) inside R(X). Now, since R(A) and R(B)
are of complementary dimension in R(E), their intersection is a finite number
of points which can be given signs (+1) or (-1) once R(A), R(B) and R(X) are
oriented. The sum of these signs is denoted by < R(A), R(B) > pesy- 1618, up
to sign, twice the Casson invariant.

In order to suppress the sign indetermination we must specify orientations.
SU(2), R(A), R(B) and R(X.) are oriented arbitrarily. SO(3) is oriented by the
double covering SU(2) — SO(3). R(X) is oriented as the fiber of & with the
convention (base ® fiber). Once R(X) is oriented, R(X) is oriented as the base
of a SO(3)-bundle with the convention (base @& fiber). It can be shown that the
(classical) algebraic intersection number < R(A), R(B) >g(s,) is +1.

Now, with all the notations above, we can state Casson’s original definition
of .

(-1)9 < R(A),R(B) >z
2 < R(A),R(B) >g(s.)

A(M) =

Casson proved the invariance of A using the Reidemeister-Singer theorem
which asserts that two Heegaard splittings of the same manifold become iso-
morphic after a finite number of stabilizations (that are connected sums with



the genus one Heegaard splitting of S?), and following the transformation of the
above definition under a stabilization.
Casson’s theorem was:

Theorem 4.1 (Casson, 1985) There exists an integral topological invariant
A of Z-spheres such that:

1. If the trivial representation is the only representation of w1 (M) into SU(2),
then \(M) = 0.

2. A\(=M) = —A(M),
3. A(MigMs) = A(My) + A(Ma).

4. For any knot K in a homology sphere M, for any e = +1,

(M5 (K, 2)) = A(M) + SA(K)"(1).

5. o(M) = 8\(M) mod 16.

The immediate corollaries of this theorem, ‘The Rohlin invariant of a ho-
motopy sphere is null.” and ‘The Rohlin invariant of an amphicheral Z-sphere
is null.” answered two long-unsolved questions in low-dimensional topology and
allowed Casson to show the existence of a topological 4-manifold which cannot
be triangulated (see [AM]) as a simplicial complex.

Note that the first assertion of the theorem is a direct corollary of Casson’s
definition of A. The second and third assertions can also be proved very easily
from this definition. Since any Z-sphere can be obtained from S® by a sequence
of surgeries on knots framed by +1 (see [GM2]), and because an analogous
surgery formula was known for the Rohlin p-invariant y = £, the fifth assertion
is a direct consequence of the surgery formula. Thus, the only difficulty in the
proof of Casson’s theorem (in addition to inventing this definition...) is to prove
the surgery formula from the definition above.

To prove the surgery formula Casson proved the following lemma. A bound-
ary link is a link whose components bound disjoint surfaces in the ambient
manifold; T denotes the trefoil knot in S® pictured in Figure 1.

Lemma 4.2 Let v be a rational invariant of Z-spheres such that: For any 2-
component boundary link L in a Z-sphere M whose components are framed by

+1:
> v(x(M;Lp) =0
I1c{1,2}

Then

v(x(M; (K,¢e))) = v(M) + %A(K)”(l)(V(X(SS; (T,1))) — v(5%))



Then he computed A\(x(S?; (T, 1))) = 1 and proved that A satisfied the hy-
pothesis of the lemma from his definition. In fact, it is possible [GM2] to compute
the Casson invariant of Seifert fibered Z-spheres with 3 exceptional fibers, and
the variation of the Casson invariant under a surgery along a knot bounding
an unknotted genus one Seifert surface directly from Casson’s definition. Both
computations give A\(x(S?; (T, 1))).

Remark 4.3 In [Lin], X. S. Lin proved that the signature of a knot can also
be obtained by counting some SU(2)-representations of the m; of its exterior
‘4 la Casson’. Like Casson’s comparison of his representation number with the
Rohlin invariant, Lin’s proof that his representation number coincides with the
signature is not direct. In both cases, it would be interesting to have a more
direct identification.

Note also that Lemma 4.2 provides a nice characterization of the Casson
invariant. In the same spirit, it can be shown [L5]:

Property 6 Any two Z-spheres which have the same Casson invariant can
be obtained from one another by a sequence of surgeries on knots with trivial
Alezander polynomial framed by +1.

In 1988, K. Walker [W] used the stratified symplectic structure of the rep-
resentation spaces [Go] to give a complete generalization of Casson’s work to
Q-spheres. In this case, reducible representations can not be ignored, and basic
differential topology does not suffice anymore to provide a powerful generaliza-
tion. (A weaker generalization of the Casson invariant to Q-spheres had been
proposed by S. Boyer and A. Nicas [BN].). Furthermore, K. Walker gave a very
nice proof based on Kirby calculus that his one-component surgery formula gives
a consistent definition of his invariant Ay .

Next, S. Cappell, R. Lee and E. Miller [CLM] generalized Walker’s defi-
nition to other Lie groups like SU(n), but they have not yet found interesting
properties for their invariants. C. Curtis [C] studied the SO(3), U(2), Spin(4)
and SO(4)-invariants more precisely and proved that they are functions of the
Walker SU (2)-invariant.

Of course, the combinatorial extension of the Casson invariant described
in Section 3 is also a development of Casson’s work. Indeed, without Walker’s
generalization of the Casson theorem above, and Boyer-Lines’s work [BL1] the
author would not have been able to find the general surgery formula of Prop-
erty 1. In their work independent from Walker’s, S. Boyer and D. Lines gave
a combinatorial definition of the restriction of the Walker invariant Ay to ho-
mology lens spaces, they proved a two-component surgery formula formula for
the Casson invariant, they exhibited the first part F; of the surgery function F,
the combination of the coefficients ¢, and they proved that (A(x(S?;.)) — Fy)
is invariant under link homotopy. It must also be mentioned that the surgery
formula for algebraically split links, that are links whose components do not
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algebraically link each other, is due to Hoste [Ho| to close this section about the
Casson work and some of its developments.

5 Further topological properties of the Casson
invariant

Since the Alexander-Conway polynomial is a well-understood knot invariant,
it is easy to apply the surgery formula satisfied by A in order to compute the
A-invariant of any manifold presented by surgery [L2, L1], in order to study
the behaviour of A under other topological mutations as in [D, Ki, Wo] or in
Properties 7, 8 and 9 described below, or in order to compare A with other
invariants as H. Murakami did to prove that the Walker invariant is equal to a
function of the Reshetikhin and Turaev invariants that he appropriately defined
[Mul].

Remark 5.1 In [O1], T. Ohtsuki generalized Murakami’s work and renormal-
ized the Reshetikhin and Turaev invariants into an invariant series of Q-spheres
whose first coefficients are |H; (.)| and A. It would be interesting to know whether
the other coefficients of this series are related to Casson-type invariants. To study
his series, Ohtsuki [O2] defined the notion of finite type invariant for Z-spheres.
This notion is analogous to the notion of Vassiliev invariants of knots. Say that
a rational invariant v of Z-spheres is of AS-type (resp. of B-type) less or equal
than n if for any (n + 1)-component algebraically split (resp. boundary link) L
in a Z-sphere M whose components are framed by +1:

Y v(x(M;Lp) =0

Ic{1,...,n+1}

Note that Casson’s lemma (4.2) proves that the B-type 1 invariants are
exactly the degree 1 polynomials in A while the Hoste surgery formula [Ho]
shows that A is of AS-type 3. In fact, it is proved that the AS-type is always a
multiple of 3, and it is conjectured (proved ?) that the two mentioned notions of
finite type invariants coincide and that the AS-type is three times the B-type.
It is not hard to see that for any integer n, a degree n polynomial in A is an
invariant of B-type n and of AS-type 3n. Thus, the polynomials in A\ are nice
prototypes for finite type invariants. But, T. T. Q. Le proved [Le] that they
are not the only ones. It would be interesting to place the SU(n)-invariants of
Cappell, Lee and Miller among these finite type invariants.

It is worth mentioning the existence of some variants of the surgery formula
(Property 1), that have not yet been mentioned to avoid introducing too many
notations. Note that in the surgery definition, we do not need the characteristic
curve i of the surgery to be parallel to the knot K. Any non-separating simple
closed curve of OT(K) can play the role of the characteristic curve, and the
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surgery defined by such a curve is (sometimes) called a rational surgery. The
surgery formula extends naturally to rational surgeries. For surgeries starting
from Z-spheres the surgery function F can be expressed only in terms of linking
numbers and one-variable Alexander-Conway polynomials. (See [L3].)

There are also some formulae for the Casson invariant of p-fold branched
cyclic coverings. For a link L in a Z-sphere M, let R,(M; L) be the p-fold cyclic
covering of M branched along L, obtained from the covering of the exterior of
L associated with the ‘linking number with L modulo p’ by filling it in by solid
tori whose meridians are sent to old meridians of L.

Property 7 (Hoste [Ho]) Let K be a knot in o Z-sphere M. Let D. K be the
untwisted double of K with an e-clasp, then

A(Ry(M; D-K)) = pA(M) + epA"(K)(1)

The following Mullins property relates the Walker invariant of 2-fold branched
coverings to the Jones polynomial V' and the oriented signature o of links:

Property 8 (Mullins [Mul]) Let L be a link in S* such that Ry(S3; L) is a
Q-sphere, then
L) _Vi)(=1)
A 30y = 2 _

To prove this formula, Mullins studied the variation of A\ (R2(S®;L))
under a crossing change of L. Owing to the fact that the 2-fold branched covering
of the ball of the crossing change is a solid torus, such a crossing change induces
a surgery on Ry (S®;L).

For other p-fold cyclic branched coverings, a crossing change induces a
handlebody replacement. This leads us to the following natural question. What
can we say about A(A Uy B) for a Q-sphere obtained by gluing two pieces A
and B along a genus g surface X7

Our partial answer is the following property of A [L4]. A Q-handlebody is
a 3-manifold with the same rational homology as a standard handlebody. For
a 3-manifold A with boundary, the kernel £4 of the map from H;(0A4;Q) to
H,(4;Q) induced by the inclusion is called the Lagrangian of A.

Property 9 Let A, A', B and B' be four Q-handlebodies such that A, OA’,
—0B and —0B' are identified via orientation-preserving homeomorphisms with
a genus g surface X. Assume that Lo = L and Lg = L and that LANLpg =
{0} inside H1(%; Q). Then

Aw(A Us B) - Aw(AI Usy B) - Aw(A Us B,) + Aw(AI Us B,) = R(A,AI, B, Bl)

where R(A, A’, B, B"), described below in general, is zero if g < 2.
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Before describing R(A, A’, B, B') in general, note that, for g =0 and A’ = B’ =
B2, this property is nothing but the additivity of Ay under connected sum. The
genus one formula, when A’ and B’ are solid tori, is the splicing formula, shown
by several authors [BN, FM] for the Casson invariant, and generalized by Fujita
to the Walker invariant [F]. In this case, starting with AUy, B, there is a unique
way of filling in A with a solid torus B’ having the right Lagrangian, A’ U B
and A’ U B’ are similarly well-determined, and the Walker invariant of the lens
space A’ U B’ is a known Dedekind sum.

Now, let us decribe R(A, A’, B, B') under the hypotheses of Property 9.
The isomorphism 044/ from Ha(A Uy —A’; Q) to £4 which maps the homology
class of a surface S of AUy —A’ (transverse to dA) to the class of (S N A)
carries the algebraic intersection defined on /\3 Hy(AUy, —A’; Q) to a form Z 4/
defined on /\3 L 4. Define Zgp: similarly. Let (au,...,a4) and (61,...,3,) be
two bases for L4 and Lp, respectively, that are dual for the intersection form
<,>xn on X (< ai,ﬁ]’ >n= 5”) Then

R(A,A',B,B') = —4 > Tan(ai Naj Nag)Ipp (Bi A Bj A Br)
{33 k}C {1,000}

Remark 5.2 Let (X, £4) be a closed, connected surface equipped with a ratio-
nal Lagrangian (as above). In [S], D. Sullivan proved that any integral form on
A’ (Hy(%;Z) N £4) may be realized as a Za 4+ for two standard handlebodies A
and A’ with boundary ¥ and Lagrangian £ 4.

A gplitting A Uy B of a Q-sphere induces the following function Agp on
the Torelli group of ¥. The Torelli group is the group of the (isotopy classes of)
homeomorphisms of ¥ which induce the identity on H;(X). For a homeomor-
phism f of the Torelli group, AUy B denotes the manifold obtained by replacing
the (underlying) identification jg : ¥ — —0B by jp o f.

(Aw(A Uf B) — Aw(A Us B))

DN | =

AaB(f) =

As adirect corollary of Property 9, we see that Aag(gof)—Aan(9)—Aas(f)
is a function of the evaluations of the Johnson homomorphism at f and g (see [J,
Second definition, p.170] for a definition of the Johnson homomorphism which is
a homomorphism from the Torelli group to A* H'()). With completely differ-
ent methods (based mainly on Johnson’s study of the Torelli group), S. Morita
proved this corollary for Heegaard splittings of Z-spheres [Mo, Theorem 4.3],
but he did not think that it extended to general embeddings [Mo, Remark 4.7].

The above corollary also proves that, when AUB is a Z-sphere the function
pap induced by the Rohlin p-invariant p = Z defines a homomorphism from the
Torelli group to Z/2Z. These homomorphisms were first studied by J. Birman
and R. Craggs [BC], they are the so-called Birman-Craggs homomorphisms.
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It is worth mentioning that the best natural generalization of Property 9
that may be expected for the generalized Casson invariant of Section 3 is true
[L4]. This generalized Casson invariant also admits a homogeneous definition
via Kontsevich integrals [LMMO]. Both of these properties together with the
homogeneous surgery formula enhance the naturality of the generalization of A
proposed in Section 3.

To prove Property 9, we first find a sequence of simple surgeries on links
transforming A into A’ and staying among the Q-handlebodies with Lagrangian
L. Then we apply the surgery formula of [L3, BL1] to these surgeries and we
analyse how the involved formulae depend on B when B varies among the Q-
handlebodies with boundary —9A and with fixed Lagrangian.

This analysis led us [L4] to construct a tautological generalization of Alexan-
der polynomials to 3-manifolds with boundary which may be useful to prove
other properties of the Casson invariant. We conclude this article with a brief
presentation of this function called the Alexander function which will allow us
to define the normalized several variable Alexander polynomial.

6 More about Alexander polynomials: the Alexan-
der function
All the assertions of this section are proved in [L4, Section 3]. Here, A denotes

a connected 3-manifold with non-empty boundary and with non-negative genus
g=g(A) =1—x(A). As denotes the group ring:

H, (A
Ag=7|— 1\
A [Torsion(Hl (4)) ]
Recall that Ay = @, _mw Zexp(r) as a Z-module, that its multipli-

orsion

cation sends (exp(zx),exp(y)) o exp(r + y), and that the units of A4 are its
elements of the form texp(z € H;(A)/Torsion).

The maximal free abelian covering of A is denoted by A and the cov-
ering map from A to A by ps. We fix a basepoint % in A. The A4-module
Hl(/i,pzl(*); Z) is denoted by H 4.

Definition 6.1 The Alexander function A4 of A is the A -morphism
9
Ay : /\ Ha—> Ay
which is defined up to a (global) multiplication by a unit of A 4 as follows. Take
a presentation of H 4 over A4 with (r+ g) generators 1, .., Vr+, and r relators

p1,---,pr (which are A4-linear combinations of the 7;). Let 4 = u1 A ... Ay,
be an element of A\? H 4. Then A4 (@) is defined by the equality:

14



Aa(@)y=pNi
where p = p1A...Apr, ¥ = V1AL . .AYryg, the u; are represented as combinations
of the 7;, and the exterior products are to be taken in A" (@:;g AAfyi).

Of course, A4(i) is just the order of the A4-module H4/(DAsu;). But,
hopefully, some of the properties of A4 mentioned below will convince the reader
that it may be interesting to work with a fixed normalization of A 4.

Fix a preferred lift o of « in A. Let & denote the boundary map from H 4
to Ho(p;' (%)) = Aa[*o] = Aa. Once a normalization of Ay is fixed, A4 satisfies
the easy property:

For any v = (v1,...,vy) € H%, for any u € H 4,

9
> 0w A () = Aa(®)d(u)
i=1 v
where 0 =vi A...Avgand 9(35) =v1 A  Avimt AuA DT AL A Y.
This property shows that the next property of the Alexander function gives
a consistent definition of the Reidemeister torsion 7 (which yields the Alexander
polynomial). If A is a link exterior, then for any element u of H 4,

Aa(u) = 0(u)7(A)

If A is a several component link exterior, then 7(A) belongs to A 4, it is defined
up to a multiplication by a unit of Ay4.
In fact, a well-chosen multiplication by an element of the form e:vp(%x)

makes the Reidemeister torsion satisfy 7(4) = £7(A) where the conjugation
sends exp(x) to exp(—z) [Mi]. Thus, the Reidemeister torsion is an element
defined up to sign in Z[%H;(A)/Torsion] C Z[H;(A; Q)]. The choice of an ori-
entation O of the vector space H; (4; R)® Ha(A; R) suppresses the sign indeter-
mination and allows one to define 7(A4, 0) € Z[H1(A; Q)] unambiguously. (See
[T, L3].) If A is the exterior of an n-component link L in a Q-sphere M, such
an orientation Oy, is unambiguously defined by a basis of Hy(4;R) ® H2(4;R)
of the form (my,...,my, 0T (K1),...,0T(K,—1)) where m; and 0T (K;) denote
the oriented meridian and the boundary of the tubular neighborhood of the i**
component of L, respectively.

Note that for a general A, a basis M = {my,...,m,} of H;(A;Q) induces
the natural ring inclusion ¢ from Z[H;(A; Q)] into the ring Q[[z1, ..., x,]] of
formal series in the z;: Y (exp(m;)) = exp(x;).

In particular, if A is the exterior of a several component link L in a Q-
sphere M, then we use the natural basis M of the meridians of L to define the
Alexander series

D(L) = b (r(M\ T (L), 0r1))

15



which is equivalent to the several variable Alexander polynomial

— — — n—1 D(L)
A(L) (t1 = exp(x1), ..., tn = exp(zy)) = (—1) A

In general, a morphism ¥, allows us to define the order of an element
of A4 as the order of its image under 1o(. It does not depend on M. Sim-
ilarly, we will speak of the low degree parts of the elements of A 4. Indeed,
the information required to compute the coefficients ¢ of the surgery formula
(Property 1) is contained in the low-degree parts of Alexander functions im-
ages. Thus, it is worth noting that the degree 0 part of A4 (%) is e(A4(4)) =
|Hy(A)/(®Zpas(u;))|, and that the order of A4 (@) is greater or equal than the
dimension of Hy(4;Q)/(®Qpax(u;)). The Alexander function also satisfies the
following interesting property which relates the low degree parts of some of its
images to algebraic intersections.

Proposition 6.2 For any (A, £, m), where A is a Q-handlebody whose boundary
is equipped with two systems of curves £ = (€1,...,¢;) and m = (mq,...,mg)
as in Figure 2, such that the homology classes of the ¢; generate L 4,

AA(m(ﬁ)) = e(Aa(h) Y Tas, (b Al A (exp(ms) = 1) + O(2)

m
k i=1

where O(2) makes up for an element of A4 of order greater or equal than 2, and
3¢ is the standard handlebody with boundary OA where the £; bound disks.

A 123 Ly
i?\ i i]\ ! i ‘(\ i

Figure 2: Two systems of curves on A

Recall that 7 is defined in Section 5. Though /; denotes the curve /;, its
homology class, and the class of a lifting of the curve ¢; (joined to the basepoint)
in H 4, depending on the context, the statement is unambiguous.

It is also worth observing the natural good behaviour of Alexander func-
tions under the two operations: (1) Adding a 2-handle to A, (2) Performing a
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connected sum along the boundary of two 3-manifolds A and B. A lot of proper-
ties of Alexander polynomials can be derived from this natural behaviour. More
generally, if A is a submanifold of the interior of a 3-manifold B, in order to
compute Ag, it is enough to know B\ A, A4 and the inclusion from dA into
B\ A.

Let us use these remarks to be more specific about the sign determination
of the Alexander series.

Let L = (Ki)ieqi,...g} be a link in a Q-sphere M. g > 2. Consider a
regular neighborhood of a graph made of the K; and paths joining them to the
basepoint. This is a handlebody which is a connected sum along boundaries
of the T'(K;). Removing the interior of this handlebody from M yields a Q-
handlebody A whose boundary is equipped with the meridians m; and some
longitudes ¢; of the K; which sit there as in Figure 2. We let §; denote the
boundary of the genus one subsurface of 9 A with connected boundary containing
m; and ¢;.

Then, up to units of the form exp(z € %Hl (A)/Torsion), for any j, k €

{1,...,9}, R
Aa(0(52))
a(my)

D(L) = sign(e(Aa(m)))yr (

Now, the definition of the coefficient f is complete and we know enough
about the surgery formula. Thus, we can apply it together with the helpful
formalism introduced above, and we are hopefully ready to discover more prop-
erties for the Casson invariant.
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