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Newtonian fluids : constant viscosity

Non-Newtonian fluids: viscosity depends on the shear rate
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Newtonian fluids : constant viscosity

Non-Newtonian fluids: viscosity depends on the shear rate

We are interested in determining the viscosity function by a
non-invasive method.

France-Taiwan Joint Conference, CIRM, March 25-28, 2008 – p. 2/41



Navier-Stokes Equations

∂tu+ u · ∇u = div(µSym(∇u)− pI) in R
3 (1)

and
divu = 0 in R

3, (2)

where u = (u1, u2, u3)T is the velocity and p is the pressure,

Sym(∇u) =
1

2
(∇u+∇uT ).

µ > 0: viscosity function

Eq (2): incompressibility condition
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When µ is a positive constant, (1) and (2) are reduced to the
following familiar form:

{
∂tu+ u · ∇u− µ∆u+∇p = 0,

divu = 0.
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When µ is a positive constant, (1) and (2) are reduced to the
following familiar form:

{
∂tu+ u · ∇u− µ∆u+∇p = 0,

divu = 0.

If u is time-independent, then (1), (2) become:
{

div(µSym(∇u))−∇p− u · ∇u = 0,

divu = 0.
(4)
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We are interested in the following inverse problem:
identification of µ in (3) by overdetermined data.
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We are interested in the following inverse problem:
identification of µ in (3) by overdetermined data.

This problem is nonlinear2

France-Taiwan Joint Conference, CIRM, March 25-28, 2008 – p. 5/41



We are interested in the following inverse problem:
identification of µ in (3) by overdetermined data.

This problem is nonlinear2 (nonlinear inverse problem for
nonlinear equation)
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Mathematical setup

Ω: open and bounded in R
3 with ∂Ω ∈ C∞

Consider the boundary value problem:




div(µSym(∇u)− pI)− u · ∇u = 0 in Ω,

divu = 0 in Ω,

u = f on ∂Ω,

(5)

where f is appropriately chosen and satisfies
∫

∂Ω
f · nds = 0, (6)

where n is the unit outer normal of ∂Ω.
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Assume that a solution to (5) exists and the trace

σµ(u, p)n|∂Ω

is well defined, where

σµ(u, p) := µSym(∇u)− pI

.
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Assume that a solution to (5) exists and the trace

σµ(u, p)n|∂Ω

is well defined, where

σµ(u, p) := µSym(∇u)− pI

.

Physically, σµ(u, p)n|∂Ω is the Cauchy forces acting on the
boundary ∂Ω.
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Define the set of Cauchy data for (5):

S̃µ = {(u|∂Ω, σµn|∂Ω) : u solves (5)}
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Define the set of Cauchy data for (5):

S̃µ = {(u|∂Ω, σµn|∂Ω) : u solves (5)}

Solution to (5) is not necessarily unique. So we do not use
the map from Dirichlet data to Neumann data.
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Define the set of Cauchy data for (5):

S̃µ = {(u|∂Ω, σµn|∂Ω) : u solves (5)}

Solution to (5) is not necessarily unique. So we do not use
the map from Dirichlet data to Neumann data.

IP: determine µ from S̃µ
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Define the set of Cauchy data for (5):

S̃µ = {(u|∂Ω, σµn|∂Ω) : u solves (5)}

Solution to (5) is not necessarily unique. So we do not use
the map from Dirichlet data to Neumann data.

IP: determine µ from S̃µ

First study the uniqueness question:

S̃µ1
= S̃µ2

⇒ µ1 = µ2 ?
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Theorem 1 [X. Li and W.] Assume that µ1(x), µ2(x) ∈ C
n0(Ω)

for n0 ≥ 8 and

∂αµ1(x) = ∂αµ2(x) ∀ x ∈ ∂Ω, |α| ≤ 1. (7)

If S̃µ1
= S̃µ2

then µ1 = µ2.

We can remove assumption (7) for some domains Ω.

Theorem 2 [Boundary determination] Let ∂Ω be convex with
nonvanishing Gauss curvature. If S̃µ1

= S̃µ2
then

µ1(x) = µ2(x) and ∇µ1(x) · n = ∇µ2(x) · n for all x ∈ ∂Ω.
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Putting together Theorem 1 and 2 gives

Theorem 3 Let ∂Ω be convex with nonvanishing Gauss
curvature. Assume that µ1(x) and µ2(x) are two viscosity
functions satisfying µ1, µ2 ∈ C

n0(Ω) for n0 ≥ 8. If S̃µ1
= S̃µ2

then µ1 = µ2.

The restriction on the geometry of Ω is due to the
compatibility condition (6). This is a global restriction on the
Dirichlet data.
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Strategies
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Strategies

nonlinear2

linearization → nonlinear
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Strategies

nonlinear2

linearization → nonlinear

Observation: scaling u = εvε and p = εqε, then (vε, qε)
satisfies

{
div(µSym(∇vε))−∇qε − εvε · ∇vε = 0,

divvε = 0.
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Strategies

nonlinear2

linearization → nonlinear

Observation: scaling u = εvε and p = εqε, then (vε, qε)
satisfies

{
div(µSym(∇vε))−∇qε − εvε · ∇vε = 0,

divvε = 0.

Taking ε→ 0, we expect that vε → v0, qε → q0 and (v0, q0)
satisfies {

div(µSym(∇v0))−∇q0 = 0,

divv0 = 0.
(11)
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Eq.(8) is the Stokes system (linear). The Stokes system has
its own Cauchy data on the boundary defined by

Sµ = {(v0|∂Ω, σµ(v0, q0)n|∂Ω) : (v0, q0) solves (8)}.
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Eq.(8) is the Stokes system (linear). The Stokes system has
its own Cauchy data on the boundary defined by

Sµ = {(v0|∂Ω, σµ(v0, q0)n|∂Ω) : (v0, q0) solves (8)}.

Question: S̃µ1
= S̃µ2

⇒ Sµ1
= Sµ2

?
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Of course, the answer will be yes!
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Of course, the answer will be yes!

But, why and how?
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Of course, the answer will be yes!

But, why and how?

Consider the boundary value problem:




div(µSym(∇uε)− pεI)− uε · ∇uε = 0 in Ω,

divuε = 0 in Ω,

uε = εφ on ∂Ω

(14)

with φ satisfying the compatibility condition (6).
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Let (u
(j)
ε , p

(j)
ε ) be solutions of (12) corresponding to µj,

j = 1, 2. If S̃µ1
= S̃µ2

, then

u
(1)
ε |∂Ω = u

(2)
ε |∂Ω

and
σµ1

(u
(1)
ε , p

(1)
ε )n|∂Ω = σµ2

(u
(2)
ε , p

(2)
ε )n|∂Ω.
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Let (u
(j)
ε , p

(j)
ε ) be solutions of (12) corresponding to µj,

j = 1, 2. If S̃µ1
= S̃µ2

, then

u
(1)
ε |∂Ω = u

(2)
ε |∂Ω

and
σµ1

(u
(1)
ε , p

(1)
ε )n|∂Ω = σµ2

(u
(2)
ε , p

(2)
ε )n|∂Ω.

Dividing by ε:

ε−1u
(1)
ε |∂Ω = ε−1u

(2)
ε |∂Ω

and

ε−1σµ1
(u

(1)
ε , p

(1)
ε )n|∂Ω = ε−1σµ2

(u
(2)
ε , p

(2)
ε )n|∂Ω.
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Let ε→ 0 then we get that

v
(1)
0 |∂Ω = v

(2)
0 |∂Ω

and
σµ1

(v
(1)
0 , q

(1)
0 )n|∂Ω = σµ2

(v
(2)
0 , q

(2)
0 )n|∂Ω,

where (v
(j)
0 , q

(j)
0 ) are solutions of Stokes system (8)

corresponding to µj, j = 1, 2.

In other words, Sµ1
= Sµ2

.
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Our job is to make sense of this formal procedure.
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Our job is to make sense of this formal procedure.

Intuition: the small parameter ε appears in the term with
lower derivatives. Not a "singular perturbation problem"
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Our job is to make sense of this formal procedure.

Intuition: the small parameter ε appears in the term with
lower derivatives. Not a "singular perturbation problem"

Rigorously, we set uε = εv0 + vε and pε = εq0 + qε, where
(v0, q0) is a solution to the Stokes system. The task is to
show that (vε, qε) exists and

vε

ε
→ 0,

pε

ε
→ 0

as ε→ 0 in some nice space.
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Inverse problem for the Stokes system

Now the inverse problem for the Navier-Stokes equations
can be solved if we can solve the same problem for the
Stokes equations, i.e., we want to prove

Sµ1
= Sµ2

⇒ µ1 = µ2.

This is indeed true.
Theorem 4 [Heck-Li-W] Assume that µ1(x), µ2(x) ∈ C

n0(Ω)
for n0 ≥ 8 and

∂αµ1(x) = ∂αµ2(x) ∀ x ∈ ∂Ω, |α| ≤ 1. (15)

If Sµ1
= Sµ2

then µ1 = µ2.
Remark 5 As before, the boundary restriction (15) can be
removed if ∂Ω has nonvanishing Gauss curvature.
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Ideas in proving Theorem 4
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Ideas in proving Theorem 4

Green’s formula:
Sµ1

= Sµ2
⇒

∫

Ω
(µ1 − µ2)Sym(∇u1) · Sym(∇u2)dx = 0, (17)

where (uj , pj) (j = 1, 2) is the solution of
{

div(µjSym(∇uj))−∇pj = 0 in Ω,

divuj = 0 in Ω.
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Ideas in proving Theorem 4

Green’s formula:
Sµ1

= Sµ2
⇒

∫

Ω
(µ1 − µ2)Sym(∇u1) · Sym(∇u2)dx = 0, (18)

where (uj , pj) (j = 1, 2) is the solution of
{

div(µjSym(∇uj))−∇pj = 0 in Ω,

divuj = 0 in Ω.

So the strategy now is to find enough u1 and u2 plugging
into the identity such that we can conclude µ1 − µ2 = 0.

France-Taiwan Joint Conference, CIRM, March 25-28, 2008 – p. 18/41



We will look for special u of the form

u = eix·ζur,

where ζ ∈ C
3 satisfying ζ · ζ = 0 and we have a good control

of ur in terms of the size of ζ (so-called complex
geometrical optics solutions).

France-Taiwan Joint Conference, CIRM, March 25-28, 2008 – p. 19/41



We will look for special u of the form

u = eix·ζur,

where ζ ∈ C
3 satisfying ζ · ζ = 0 and we have a good control

of ur in terms of the size of ζ (so-called complex
geometrical optics solutions).

This is no easy task because the Stokes system is strongly
coupled in the leading order and two equations are in
different orders.
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A New System

Stokes equation for
(u, p)

−−−−− →
A new system for

(w, f)

| ↑ |

|
relationship between

(u, p) and (w, f)
|

↓ ↓ ↓

Special solutions of
the Stokes equation

← −−−−−
Special solutions of

the new system

Setting

u = µ−1/2w + µ−1∇f − f∇µ−1
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Let

(
w

f

)
solve

∆

(
w

f

)
+ A1(x)

(
∇f

divw

)
+ A0(x)

(
w

f

)
= 0

with

A1(x) =

(
−2µ1/2∇2µ−1 −µ−1∇µ

0 µ1/2

)
.

The form of A0 is not important.
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Then
u = µ−1/2w + µ−1∇f − f∇µ−1

and
p = div(µ1/2w) + 2∆f

solve the Stokes system.
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Then
u = µ−1/2w + µ−1∇f − f∇µ−1

and
p = div(µ1/2w) + 2∆f

solve the Stokes system.

The idea of deriving the new system is motivated by a
similar reduction for the elasticity. One key observation is
that the identity does not contain the pressure p.
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Not so technical part

Choice of ζ: Let l, α and β be pairwise orthogonal vectors in
R

3 with |α| = |β| = 1. Let θ = α + iβ. For τ ≫ 0, we set

ζ1(τ) =
l

2
+

√
τ2 −

|l|2

4
α+ iτβ

ζ2(τ) = −
l

2
+

√
τ2 −

|l|2

4
α− iτβ
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Construction of special solutions

(
w1

f1

)
= eix·ζ1

(
r1

s1

)
,

(
r1

s1

)
= C1(x, θ)g1(θ · x) +O(τ−1)

where C1 is a solution of

−2θ·∇C1(x, θ) =

(
−2µ

1/2
1 ∇

2µ−1
1 −µ−1

1 ∇µ1

0 µ
1/2
1

)(
03×3 θ

θT 0

)
C1(x, θ)

and g1(z) is an arbitrary polynomial of z.
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(
w2

f2

)
= eix·ζ2

(
r2

s2

)
,

(
r2

s2

)
= C2(x, θ̄)g2(θ̄ · x) +O(τ−1)

where C2 is a solution of

−2θ̄·∇C2(x, θ̄) =

(
−2µ

1/2
2 ∇

2µ−1
2 −µ−1

2 ∇µ2

0 µ
1/2
2

)(
03×3 θ̄

θ̄T 0

)
C2(x, θ̄)

and g2(z̄) is an arbitrary polynomial of z̄.
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Define
uj = µ

−1/2
j wj + µ−1

j ∇fj − f∇µ
−1
j

Denote

H(u1, u2) =

∫

Ω
(µ1 − µ2)Sym(∇u1) · Sym(∇u2)dx

Then the leading term in the express H(u1, u2) is of order 2
in τ . We will prove that µ can be determined uniquely from

lim
τ→∞

τ−2H(u1, u2) = 0 (19)
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Very technical part

In view of (19), using the technique of ∂ equations
(introduced by Eskin), and a little bit luck, we can show that

µ1 = µ2.

France-Taiwan Joint Conference, CIRM, March 25-28, 2008 – p. 27/41



Reconstruction of obstacle

Let Ω ⊂ R
n, n = 2, 3, be an open bounded domain with

smooth boundary. Assume that D is a subset of Ω such that
D ⊂ Ω and Ω \D is connected.





div(µSym(∇u))−∇p = 0 in Ω \D,

divu = 0 in Ω \D,

u = 0 on ∂D,

u = f ∈ H1/2(∂Ω) on ∂Ω,

(20)

where ∫

∂Ω
f · nds = 0.

France-Taiwan Joint Conference, CIRM, March 25-28, 2008 – p. 28/41



For this problem, we are interested in the determination of
D from the set of measurements

{u|∂Ω, σ(u, p)n|∂Ω}.
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For this problem, we are interested in the determination of
D from the set of measurements

{u|∂Ω, σ(u, p)n|∂Ω}.

Question: how can we actually reconstruct D?
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For this problem, we are interested in the determination of
D from the set of measurements

{u|∂Ω, σ(u, p)n|∂Ω}.

Question: how can we actually reconstruct D?

Following is a reconstruction method proposed by
Heck-Uhlmann-W.
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Ideas

Energy inequalities

Let (u0, p0) be a solution of




div(µS(∇u0))−∇p0 = 0 in Ω,

divu0 = 0 in Ω,

u0 = f on ∂Ω.

(21)

(solution to the system without obstacle). Then

∫
D |Sym(∇u0)|

2dx

≤ 〈σ(u, p)n− σ(u0, p0)n, f〉

≤ C
( ∫

D |Sym(∇u0)|
2dx+

∫
D |u0|

2dx
)
.
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Plugging some special solutions to the unperturbed system
into the energy inequalities will reveal the information of D.
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Plugging some special solutions to the unperturbed system
into the energy inequalities will reveal the information of D.

What kind of special solutions are useful?
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Plugging some special solutions to the unperturbed system
into the energy inequalities will reveal the information of D.

What kind of special solutions are useful?

Try complex geometrical optics solutions!

France-Taiwan Joint Conference, CIRM, March 25-28, 2008 – p. 31/41



CGO solutions
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CGO solutions

As before, using the new system:

P

(
w

g

)
:= ∆

(
w

g

)
+ A1(x)

(
∇g

divw

)
+ A0(x)

(
w

g

)
= 0. (23)

(u0 = µ−1/2w + µ−1∇g − (∇µ−1)g)
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CGO solutions

As before, using the new system:

P

(
w

g

)
:= ∆

(
w

g

)
+ A1(x)

(
∇g

divw

)
+ A0(x)

(
w

g

)
= 0. (24)

(u0 = µ−1/2w + µ−1∇g − (∇µ−1)g)

Look for
u0 = e−φ/hv (h≪ 1)

for appropriate phase function φ and amplitude v. (complex
WKB)
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Choice of phase function φ is tricky.
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Choice of phase function φ is tricky.

Let us denote
φ = ϕ+ iψ.
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Choice of phase function φ is tricky.

Let us denote
φ = ϕ+ iψ.

ϕ is required to satisfy the following condition: if
a(x, ξ) = |ξ|2 − |ϕ′

x|
2 and b(x, ξ) = 2ϕ′

x · ξ, then

{a, b}(x, ξ) = 0 when a(x, ξ) = b(x, ξ) = 0.

(limiting Carleman weight)
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ut,h = et/hu0 = e(t−ϕ)/heiψ/hv is also a solution.
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ut,h = et/hu0 = e(t−ϕ)/heiψ/hv is also a solution.

Using the input Dirichlet data:

ft,h = ut,h|∂Ω

and measure σ(u, p)n|∂Ω (output).
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ut,h = et/hu0 = e(t−ϕ)/heiψ/hv is also a solution.

Using the input Dirichlet data:

ft,h = ut,h|∂Ω

and measure σ(u, p)n|∂Ω (output).

Denote
E(t, h) = 〈σ(u, p)n− σ(u0, p0)n, ft,h〉.
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ut,h = et/hu0 = e(t−ϕ)/heiψ/hv is also a solution.

Using the input Dirichlet data:

ft,h = ut,h|∂Ω

and measure σ(u, p)n|∂Ω (output).

Denote
E(t, h) = 〈σ(u, p)n− σ(u0, p0)n, ft,h〉.

E(t, h) is completely determined by boundary
measurements.
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The behavior of E(t, h) as h→ 0 will provide us a way to
determine ∂D.
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The behavior of E(t, h) as h→ 0 will provide us a way to
determine ∂D.

Behavior of ut,h

ut,h ↑ ∞ as h→ 0 for ϕ > t

ut,h ↓ 0 as h→ 0 for ϕ < t
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In view of the energy inequalities,
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In view of the energy inequalities,

E(t, h) ↓ 0 if D ⊂ {ϕ < t}
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In view of the energy inequalities,

E(t, h) ↓ 0 if D ⊂ {ϕ < t}

E(t, h) ↑ ∞ if D ∩ {ϕ > t} 6= ∅
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In view of the energy inequalities,

E(t, h) ↓ 0 if D ⊂ {ϕ < t}

E(t, h) ↑ ∞ if D ∩ {ϕ > t} 6= ∅

So we can determine whether the level surface ϕ = t

touches ∂D from the behavior of E(t, h).
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Two cases:
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Two cases:

ϕ = x · ω: level surfaces are planes or lines⇒ one can
determine the convex hull of D (Ikehata’s enclosure
method).
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Two cases:

ϕ = x · ω: level surfaces are planes or lines⇒ one can
determine the convex hull of D (Ikehata’s enclosure
method).

ϕ = log |x− x0| and t = log s: level surfaces are spheres or
circles⇒ determine some non-convex parts of D (Ide,
Isozaki, Nakata, Siltanen, Uhlmann).
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Two cases:

ϕ = x · ω: level surfaces are planes or lines⇒ one can
determine the convex hull of D (Ikehata’s enclosure
method).

ϕ = log |x− x0| and t = log s: level surfaces are spheres or
circles⇒ determine some non-convex parts of D (Ide,
Isozaki, Nakata, Siltanen, Uhlmann).

Both cases work for our problem here.
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Problems in 2 dim

One is able to determine more information of D by using
CGO with more general phase functions. Why? We have
rich conformal structures in 2 dim.

We can construct CGO with general phases for systems like

PU := ∆xU + A1(x)∂x1
U + A2(x)∂x2

U +Q(x)U = 0 in Ω,
(25)

where ∆x = ∂2
x1

+ ∂2
x2

and A1, A2, Q are n× n. This system
includes the conductivity equation, the isotropic elasticity,
the Stokes system etc.
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How it works?
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How it works?

Let y = ρ(x) = y1(x1, x2) + iy2(x1, x2) be a conformal map.
Define U(x) = V (y(x)), we have
(
∂x1

∂x2

)
U = J(x)

(
∂y1

∂y2

)
V
∣∣∣
y=ρ(x)

and ∆xU = ∆yV |ρ
′(x)|2,

where

J(x) =

(
∂x1

y1 ∂x1
y2

∂x2
y1 ∂x2

y2

)
.
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How it works?

Let y = ρ(x) = y1(x1, x2) + iy2(x1, x2) be a conformal map.
Define U(x) = V (y(x)), we have
(
∂x1

∂x2

)
U = J(x)

(
∂y1

∂y2

)
V
∣∣∣
y=ρ(x)

and ∆xU = ∆yV |ρ
′(x)|2,

where

J(x) =

(
∂x1

y1 ∂x1
y2

∂x2
y1 ∂x2

y2

)
.

The form of P does not change under the conformal
transform.
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So we can first construct CGO with linear phase, i.e.,
y1 + iy2, and perform conformal transform. Thus we have
CGO with phases y1(x1, x2) + iy2(x1, x2) = ϕ(x) + iψ(x).
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So we can first construct CGO with linear phase, i.e.,
y1 + iy2, and perform conformal transform. Thus we have
CGO with phases y1(x1, x2) + iy2(x1, x2) = ϕ(x) + iψ(x).

We have lots of choices of ϕ whose level curves will give us
more information about ∂D.
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So we can first construct CGO with linear phase, i.e.,
y1 + iy2, and perform conformal transform. Thus we have
CGO with phases y1(x1, x2) + iy2(x1, x2) = ϕ(x) + iψ(x).

We have lots of choices of ϕ whose level curves will give us
more information about ∂D.

"Scientists discover the world that exists; engineers create the world that
never was." – Theodore Von Karman
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merci beaucoup
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