Identification of viscosity in an incompressible fluid

Jenn-Nan Wang

Department of Mathematics
National Taiwan University

Newtonian fluids : constant viscosity

Newtonian fluids : constant viscosity

Non-Newtonian fluids: viscosity depends on the shear rate

Newtonian fluids : constant viscosity

Non-Newtonian fluids: viscosity depends on the shear rate

We are interested in determining the viscosity function by a non-invasive method.

Navier-Stokes Equations

$$
\begin{equation*}
\partial_{t} u+u \cdot \nabla u=\operatorname{div}(\mu \operatorname{Sym}(\nabla u)-p I) \quad \text { in } \quad \mathbb{R}^{3} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div} u=0 \quad \text { in } \quad \mathbb{R}^{3}, \tag{2}
\end{equation*}
$$

where $u=\left(u^{1}, u^{2}, u^{3}\right)^{T}$ is the velocity and p is the pressure,

$$
\operatorname{Sym}(\nabla u)=\frac{1}{2}\left(\nabla u+\nabla u^{T}\right) .
$$

$\mu>0$: viscosity function
Eq (2): incompressibility condition

When μ is a positive constant, (1) and (2) are reduced to the following familiar form:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \cdot \nabla u-\mu \Delta u+\nabla p=0 \\
\operatorname{div} u=0
\end{array}\right.
$$

When μ is a positive constant, (1) and (2) are reduced to the following familiar form:

$$
\left\{\begin{array}{l}
\partial_{t} u+u \cdot \nabla u-\mu \Delta u+\nabla p=0 \\
\operatorname{div} u=0
\end{array}\right.
$$

If u is time-independent, then (1), (2) become:

$$
\left\{\begin{array}{l}
\operatorname{div}(\mu \operatorname{Sym}(\nabla u))-\nabla p-u \cdot \nabla u=0 \tag{4}\\
\operatorname{div} u=0
\end{array}\right.
$$

We are interested in the following inverse problem: identification of μ in (3) by overdetermined data.

We are interested in the following inverse problem: identification of μ in (3) by overdetermined data.

This problem is nonlinear ${ }^{2}$

We are interested in the following inverse problem: identification of μ in (3) by overdetermined data.

This problem is nonlinear ${ }^{2}$ (nonlinear inverse problem for nonlinear equation)

Mathematical setup

Ω : open and bounded in \mathbb{R}^{3} with $\partial \Omega \in C^{\infty}$
Consider the boundary value problem:

$$
\left\{\begin{array}{l}
\operatorname{div}(\mu \operatorname{Sym}(\nabla u)-p I)-u \cdot \nabla u=0 \text { in } \Omega, \tag{5}\\
\operatorname{div} u=0 \text { in } \Omega, \\
u=f \text { on } \partial \Omega,
\end{array}\right.
$$

where f is appropriately chosen and satisfies

$$
\begin{equation*}
\int_{\partial \Omega} f \cdot \mathbf{n} d s=0, \tag{6}
\end{equation*}
$$

where \mathbf{n} is the unit outer normal of $\partial \Omega$.

Assume that a solution to (5) exists and the trace

$$
\left.\sigma_{\mu}(u, p) \mathbf{n}\right|_{\partial \Omega}
$$

is well defined, where

$$
\sigma_{\mu}(u, p):=\mu \operatorname{Sym}(\nabla u)-p I
$$

Assume that a solution to (5) exists and the trace

$$
\left.\sigma_{\mu}(u, p) \mathbf{n}\right|_{\partial \Omega}
$$

is well defined, where

$$
\sigma_{\mu}(u, p):=\mu \operatorname{Sym}(\nabla u)-p I
$$

Physically, $\left.\sigma_{\mu}(u, p) \mathbf{n}\right|_{\partial \Omega}$ is the Cauchy forces acting on the boundary $\partial \Omega$.

Define the set of Cauchy data for (5):

$$
\widetilde{S}_{\mu}=\left\{\left(\left.u\right|_{\partial \Omega},\left.\sigma_{\mu} \mathbf{n}\right|_{\partial \Omega}\right): u \text { solves (5) }\right\}
$$

Define the set of Cauchy data for (5):

$$
\widetilde{S}_{\mu}=\left\{\left(\left.u\right|_{\partial \Omega},\left.\sigma_{\mu} \mathbf{n}\right|_{\partial \Omega}\right): u \text { solves (5) }\right\}
$$

Solution to (5) is not necessarily unique. So we do not use the map from Dirichlet data to Neumann data.

Define the set of Cauchy data for (5):

$$
\widetilde{S}_{\mu}=\left\{\left(\left.u\right|_{\partial \Omega},\left.\sigma_{\mu} \mathbf{n}\right|_{\partial \Omega}\right): u \text { solves (5) }\right\}
$$

Solution to (5) is not necessarily unique. So we do not use the map from Dirichlet data to Neumann data.
IP: determine μ from \widetilde{S}_{μ}

Define the set of Cauchy data for (5):

$$
\widetilde{S}_{\mu}=\left\{\left(\left.u\right|_{\partial \Omega},\left.\sigma_{\mu} \mathbf{n}\right|_{\partial \Omega}\right): u \text { solves (5) }\right\}
$$

Solution to (5) is not necessarily unique. So we do not use the map from Dirichlet data to Neumann data.
IP: determine μ from \widetilde{S}_{μ}
First study the uniqueness question:

$$
\widetilde{S}_{\mu_{1}}=\widetilde{S}_{\mu_{2}} \Rightarrow \mu_{1}=\mu_{2} ?
$$

Theorem 1 [X. Li and W.] Assume that $\mu_{1}(x), \mu_{2}(x) \in C^{n_{0}}(\bar{\Omega})$ for $n_{0} \geq 8$ and

$$
\partial^{\alpha} \mu_{1}(x)=\partial^{\alpha} \mu_{2}(x) \quad \forall x \in \partial \Omega,|\alpha| \leq 1 .
$$

If $\widetilde{S}_{\mu_{1}}=\widetilde{S}_{\mu_{2}}$ then $\mu_{1}=\mu_{2}$.
We can remove assumption (7) for some domains Ω.
Theorem 2 [Boundary determination] Let $\partial \Omega$ be convex with nonvanishing Gauss curvature. If $\widetilde{S}_{\mu_{1}}=\widetilde{S}_{\mu_{2}}$ then $\mu_{1}(x)=\mu_{2}(x)$ and $\nabla \mu_{1}(x) \cdot \mathbf{n}=\nabla \mu_{2}(x) \cdot \mathbf{n}$ for all $x \in \partial \Omega$.

Putting together Theorem 11 and 2 gives

Theorem 3 Let $\partial \Omega$ be convex with nonvanishing Gauss curvature. Assume that $\mu_{1}(x)$ and $\mu_{2}(x)$ are two viscosity functions satisfying $\mu_{1}, \mu_{2} \in C^{n_{0}}(\bar{\Omega})$ for $n_{0} \geq 8$. If $\widetilde{S}_{\mu_{1}}=\widetilde{S}_{\mu_{2}}$ then $\mu_{1}=\mu_{2}$.

The restriction on the geometry of Ω is due to the compatibility condition (6). This is a global restriction on the Dirichlet data.

Strategies

Strategies

$\frac{\text { nonlinear }}{}{ }^{2}$ nonlinear

Strategies

$\frac{\text { nonlinear }}{}{ }^{2}$ linearization \rightarrow nonlinear
Observation: scaling $u=\varepsilon v_{\varepsilon}$ and $p=\varepsilon q_{\varepsilon}$, then $\left(v_{\varepsilon}, q_{\varepsilon}\right)$ satisfies

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\mu \operatorname{Sym}\left(\nabla v_{\varepsilon}\right)\right)-\nabla q_{\varepsilon}-\varepsilon v_{\varepsilon} \cdot \nabla v_{\varepsilon}=0 \\
\operatorname{div} v_{\varepsilon}=0
\end{array}\right.
$$

Strategies

$\frac{\text { nonlinear }^{2}}{\text { linearization }} \rightarrow$ nonlinear
Observation: scaling $u=\varepsilon v_{\varepsilon}$ and $p=\varepsilon q_{\varepsilon}$, then $\left(v_{\varepsilon}, q_{\varepsilon}\right)$ satisfies

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\mu \operatorname{Sym}\left(\nabla v_{\varepsilon}\right)\right)-\nabla q_{\varepsilon}-\varepsilon v_{\varepsilon} \cdot \nabla v_{\varepsilon}=0 \\
\operatorname{div} v_{\varepsilon}=0
\end{array}\right.
$$

Taking $\varepsilon \rightarrow 0$, we expect that $v_{\varepsilon} \rightarrow v_{0}, q_{\varepsilon} \rightarrow q_{0}$ and $\left(v_{0}, q_{0}\right)$ satisfies

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\mu \operatorname{Sym}\left(\nabla v_{0}\right)\right)-\nabla q_{0}=0 \tag{11}\\
\operatorname{div} v_{0}=0
\end{array}\right.
$$

Eq.(8) is the Stokes system (linear). The Stokes system has its own Cauchy data on the boundary defined by

$$
S_{\mu}=\left\{\left(\left.v_{0}\right|_{\partial \Omega},\left.\sigma_{\mu}\left(v_{0}, q_{0}\right) \mathbf{n}\right|_{\partial \Omega}\right):\left(v_{0}, q_{0}\right) \text { solves (8) }\right\} .
$$

Eq.(8) is the Stokes system (linear). The Stokes system has its own Cauchy data on the boundary defined by

$$
S_{\mu}=\left\{\left(\left.v_{0}\right|_{\partial \Omega},\left.\sigma_{\mu}\left(v_{0}, q_{0}\right) \mathbf{n}\right|_{\partial \Omega}\right):\left(v_{0}, q_{0}\right) \text { solves (8) }\right\} .
$$

Question: $\widetilde{S}_{\mu_{1}}=\widetilde{S}_{\mu_{2}} \Rightarrow S_{\mu_{1}}=S_{\mu_{2}}$?

Of course, the answer will be yes!

Of course, the answer will be yes!

But, why and how?

Of course, the answer will be yes!
But, why and how?
Consider the boundary value problem:

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\mu \operatorname{Sym}\left(\nabla u_{\varepsilon}\right)-p_{\varepsilon} I\right)-u_{\varepsilon} \cdot \nabla u_{\varepsilon}=0 \text { in } \Omega, \tag{14}\\
\operatorname{div} u_{\varepsilon}=0 \text { in } \Omega, \\
u_{\varepsilon}=\varepsilon \phi \text { on } \partial \Omega
\end{array}\right.
$$

with ϕ satisfying the compatibility condition (6).

Let $\left(u_{\varepsilon}^{(j)}, p_{\varepsilon}^{(j)}\right)$ be solutions of (12) corresponding to μ_{j}, $j=1,2$. If $\widetilde{S}_{\mu_{1}}=\widetilde{S}_{\mu_{2}}$, then

$$
\left.u_{\varepsilon}^{(1)}\right|_{\partial \Omega}=\left.u_{\varepsilon}^{(2)}\right|_{\partial \Omega}
$$

and

$$
\left.\sigma_{\mu_{1}}\left(u_{\varepsilon}^{(1)}, p_{\varepsilon}^{(1)}\right) \mathbf{n}\right|_{\partial \Omega}=\left.\sigma_{\mu_{2}}\left(u_{\varepsilon}^{(2)}, p_{\varepsilon}^{(2)}\right) \mathbf{n}\right|_{\partial \Omega}
$$

Let $\left(u_{\varepsilon}^{(j)}, p_{\varepsilon}^{(j)}\right)$ be solutions of (12) corresponding to μ_{j}, $j=1,2$. If $\widetilde{S}_{\mu_{1}}=\widetilde{S}_{\mu_{2}}$, then

$$
\left.u_{\varepsilon}^{(1)}\right|_{\partial \Omega}=\left.u_{\varepsilon}^{(2)}\right|_{\partial \Omega}
$$

and

$$
\left.\sigma_{\mu_{1}}\left(u_{\varepsilon}^{(1)}, p_{\varepsilon}^{(1)}\right) \mathbf{n}\right|_{\partial \Omega}=\left.\sigma_{\mu_{2}}\left(u_{\varepsilon}^{(2)}, p_{\varepsilon}^{(2)}\right) \mathbf{n}\right|_{\partial \Omega}
$$

Dividing by ε :

$$
\left.\varepsilon^{-1} u_{\varepsilon}^{(1)}\right|_{\partial \Omega}=\left.\varepsilon^{-1} u_{\varepsilon}^{(2)}\right|_{\partial \Omega}
$$

and

$$
\left.\varepsilon^{-1} \sigma_{\mu_{1}}\left(u_{\varepsilon}^{(1)}, p_{\varepsilon}^{(1)}\right) \mathbf{n}\right|_{\partial \Omega}=\left.\varepsilon^{-1} \sigma_{\mu_{2}}\left(u_{\varepsilon}^{(2)}, p_{\varepsilon}^{(2)}\right) \mathbf{n}\right|_{\partial \Omega}
$$

Let $\varepsilon \rightarrow 0$ then we get that

$$
\left.v_{0}^{(1)}\right|_{\partial \Omega}=\left.v_{0}^{(2)}\right|_{\partial \Omega}
$$

and

$$
\left.\sigma_{\mu_{1}}\left(v_{0}^{(1)}, q_{0}^{(1)}\right) \mathbf{n}\right|_{\partial \Omega}=\left.\sigma_{\mu_{2}}\left(v_{0}^{(2)}, q_{0}^{(2)}\right) \mathbf{n}\right|_{\partial \Omega},
$$

where $\left(v_{0}^{(j)}, q_{0}^{(j)}\right)$ are solutions of Stokes system (8) corresponding to $\mu_{j}, j=1,2$.

In other words, $S_{\mu_{1}}=S_{\mu_{2}}$.

Our job is to make sense of this formal procedure.

Our job is to make sense of this formal procedure.
Intuition: the small parameter ε appears in the term with lower derivatives. Not a "singular perturbation problem"

Our job is to make sense of this formal procedure.
Intuition: the small parameter ε appears in the term with lower derivatives. Not a "singular perturbation problem"

Rigorously, we set $u_{\varepsilon}=\varepsilon v_{0}+v_{\varepsilon}$ and $p_{\varepsilon}=\varepsilon q_{0}+q_{\varepsilon}$, where $\left(v_{0}, q_{0}\right)$ is a solution to the Stokes system. The task is to show that $\left(v_{\varepsilon}, q_{\varepsilon}\right)$ exists and

$$
\frac{v_{\varepsilon}}{\varepsilon} \rightarrow 0, \quad \frac{p_{\varepsilon}}{\varepsilon} \rightarrow 0
$$

as $\varepsilon \rightarrow 0$ in some nice space.

Inverse problem for the Stokes systen

Now the inverse problem for the Navier-Stokes equations can be solved if we can solve the same problem for the Stokes equations, i.e., we want to prove

$$
S_{\mu_{1}}=S_{\mu_{2}} \Rightarrow \mu_{1}=\mu_{2} .
$$

This is indeed true.
Theorem 4 [Heck-Li-W] Assume that $\mu_{1}(x), \mu_{2}(x) \in C^{n_{0}}(\bar{\Omega})$ for $n_{0} \geq 8$ and

$$
\begin{equation*}
\partial^{\alpha} \mu_{1}(x)=\partial^{\alpha} \mu_{2}(x) \quad \forall x \in \partial \Omega,|\alpha| \leq 1 . \tag{15}
\end{equation*}
$$

If $S_{\mu_{1}}=S_{\mu_{2}}$ then $\mu_{1}=\mu_{2}$.
Remark 5 As before, the boundary restriction (15) can be removed if $\partial \Omega$ has nonvanishing Gauss curvature.

Ideas in proving Theorem 4

Ideas in proving Theorem 4

Green's formula:

$$
\begin{gather*}
S_{\mu_{1}}=S_{\mu_{2}} \Rightarrow \\
\int_{\Omega}\left(\mu_{1}-\mu_{2}\right) \operatorname{Sym}\left(\nabla u_{1}\right) \cdot \overline{\operatorname{Sym}\left(\nabla u_{2}\right)} d x=0, \tag{17}
\end{gather*}
$$

where $\left(u_{j}, p_{j}\right)(j=1,2)$ is the solution of

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\mu_{j} \operatorname{Sym}\left(\nabla u_{j}\right)\right)-\nabla p_{j}=0 \quad \text { in } \Omega, \\
\operatorname{div} u_{j}=0 \text { in } \Omega .
\end{array}\right.
$$

Ideas in proving Theorem 4

Green's formula:

$$
\begin{gather*}
S_{\mu_{1}}=S_{\mu_{2}} \Rightarrow \\
\int_{\Omega}\left(\mu_{1}-\mu_{2}\right) \operatorname{Sym}\left(\nabla u_{1}\right) \cdot \overline{\operatorname{Sym}\left(\nabla u_{2}\right)} d x=0 \tag{18}
\end{gather*}
$$

where $\left(u_{j}, p_{j}\right)(j=1,2)$ is the solution of

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\mu_{j} \operatorname{Sym}\left(\nabla u_{j}\right)\right)-\nabla p_{j}=0 \quad \text { in } \Omega, \\
\operatorname{div} u_{j}=0 \text { in } \Omega .
\end{array}\right.
$$

So the strategy now is to find enough u_{1} and u_{2} plugging into the identity such that we can conclude $\mu_{1}-\mu_{2}=0$.

We will look for special u of the form

$$
u=e^{i x \cdot \zeta} u_{r}
$$

where $\zeta \in \mathbb{C}^{3}$ satisfying $\zeta \cdot \zeta=0$ and we have a good control of u_{r} in terms of the size of ζ (so-called complex geometrical optics solutions).

We will look for special u of the form

$$
u=e^{i x \cdot \zeta} u_{r},
$$

where $\zeta \in \mathbb{C}^{3}$ satisfying $\zeta \cdot \zeta=0$ and we have a good control of u_{r} in terms of the size of ζ (so-called complex geometrical optics solutions).

This is no easy task because the Stokes system is strongly coupled in the leading order and two equations are in different orders.

A New System

Stokes equation for

Special solutions of the Stokes equation

A new system for (w, f)

relationship between (u, p) and (w, f)

Special solutions o the new system

Setting

$$
u=\mu^{-1 / 2} w+\mu^{-1} \nabla f-f \nabla \mu^{-1}
$$

Let $\binom{w}{f}$ solve

$$
\Delta\binom{w}{f}+A_{1}(x)\binom{\nabla f}{\operatorname{div} w}+A_{0}(x)\binom{w}{f}=0
$$

with

$$
A_{1}(x)=\left(\begin{array}{cc}
-2 \mu^{1 / 2} \nabla^{2} \mu^{-1} & -\mu^{-1} \nabla \mu \\
0 & \mu^{1 / 2}
\end{array}\right) .
$$

The form of A_{0} is not important.

Then

$$
u=\mu^{-1 / 2} w+\mu^{-1} \nabla f-f \nabla \mu^{-1}
$$ and

$$
p=\operatorname{div}\left(\mu^{1 / 2} w\right)+2 \Delta f
$$

solve the Stokes system.

Then

$$
u=\mu^{-1 / 2} w+\mu^{-1} \nabla f-f \nabla \mu^{-1}
$$

and

$$
p=\operatorname{div}\left(\mu^{1 / 2} w\right)+2 \Delta f
$$

solve the Stokes system.
The idea of deriving the new system is motivated by a similar reduction for the elasticity. One key observation is that the identity does not contain the pressure p.

Not so technical part

Choice of ζ : Let l, α and β be pairwise orthogonal vectors in \mathbb{R}^{3} with $|\alpha|=|\beta|=1$. Let $\theta=\alpha+i \beta$. For $\tau \gg 0$, we set

$$
\begin{aligned}
\zeta_{1}(\tau) & =\frac{l}{2}+\sqrt{\tau^{2}-\frac{|l|^{2}}{4}} \alpha+i \tau \beta \\
\zeta_{2}(\tau) & =-\frac{l}{2}+\sqrt{\tau^{2}-\frac{|l|^{2}}{4}} \alpha-i \tau \beta
\end{aligned}
$$

Construction of special solutions

$$
\binom{w_{1}}{f_{1}}=e^{i x \cdot \zeta_{1}}\binom{r_{1}}{s_{1}}, \quad\binom{r_{1}}{s_{1}}=C_{1}(x, \theta) g_{1}(\theta \cdot x)+O\left(\tau^{-1}\right)
$$

where C_{1} is a solution of

$$
-2 \theta \cdot \nabla C_{1}(x, \theta)=\left(\begin{array}{cc}
-2 \mu_{1}^{1 / 2} \nabla^{2} \mu_{1}^{-1} & -\mu_{1}^{-1} \nabla \mu_{1} \\
0 & \mu_{1}^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
0_{3 \times 3} & \theta \\
\theta^{T} & 0
\end{array}\right) C_{1}(x, \theta)
$$

and $g_{1}(z)$ is an arbitrary polynomial of z.

$$
\binom{w_{2}}{f_{2}}=e^{i x \cdot \zeta_{2}}\binom{r_{2}}{s_{2}}, \quad\binom{r_{2}}{s_{2}}=C_{2}(x, \bar{\theta}) g_{2}(\bar{\theta} \cdot x)+O\left(\tau^{-1}\right)
$$

where C_{2} is a solution of

$$
-2 \bar{\theta} \cdot \nabla C_{2}(x, \bar{\theta})=\left(\begin{array}{cc}
-2 \mu_{2}^{1 / 2} \nabla^{2} \mu_{2}^{-1} & -\mu_{2}^{-1} \nabla \mu_{2} \\
0 & \mu_{2}^{1 / 2}
\end{array}\right)\left(\begin{array}{cc}
0_{3 \times 3} & \bar{\theta} \\
\bar{\theta}^{T} & 0
\end{array}\right) C_{2}(x, \bar{\theta})
$$

and $g_{2}(\bar{z})$ is an arbitrary polynomial of \bar{z}.

Define

$$
u_{j}=\mu_{j}^{-1 / 2} w_{j}+\mu_{j}^{-1} \nabla f_{j}-f \nabla \mu_{j}^{-1}
$$

Denote

$$
H\left(u_{1}, u_{2}\right)=\int_{\Omega}\left(\mu_{1}-\mu_{2}\right) \operatorname{Sym}\left(\nabla u_{1}\right) \cdot \overline{\operatorname{Sym}\left(\nabla u_{2}\right)} d x
$$

Then the leading term in the express $H\left(u_{1}, u_{2}\right)$ is of order 2 in τ. We will prove that μ can be determined uniquely from

$$
\begin{equation*}
\lim _{\tau \rightarrow \infty} \tau^{-2} H\left(u_{1}, u_{2}\right)=0 \tag{19}
\end{equation*}
$$

Very technical part

In view of (19), using the technique of $\bar{\partial}$ equations
(introduced by Eskin), and a little bit luck, we can show that

$$
\mu_{1}=\mu_{2}
$$

Reconstruction of obstacle

Let $\Omega \subset \mathbb{R}^{n}, n=2,3$, be an open bounded domain with smooth boundary. Assume that D is a subset of Ω such that $\bar{D} \subset \Omega$ and $\Omega \backslash \bar{D}$ is connected.

$$
\left\{\begin{array}{l}
\operatorname{div}(\mu \operatorname{Sym}(\nabla u))-\nabla p=0 \text { in } \Omega \backslash \bar{D}, \tag{20}\\
\operatorname{div} u=0 \text { in } \Omega \backslash \bar{D}, \\
u=0 \text { on } \partial D, \\
u=f \in H^{1 / 2}(\partial \Omega) \text { on } \partial \Omega,
\end{array}\right.
$$

where

$$
\int_{\partial \Omega} f \cdot \mathbf{n} d s=0
$$

For this problem, we are interested in the determination of D from the set of measurements

$$
\left\{\left.u\right|_{\partial \Omega},\left.\sigma(u, p) \mathbf{n}\right|_{\partial \Omega}\right\} .
$$

For this problem, we are interested in the determination of
D from the set of measurements

$$
\left\{\left.u\right|_{\partial \Omega},\left.\sigma(u, p) \mathbf{n}\right|_{\partial \Omega}\right\} .
$$

Question: how can we actually reconstruct D ?

For this problem, we are interested in the determination of
D from the set of measurements

$$
\left\{\left.u\right|_{\partial \Omega},\left.\sigma(u, p) \mathbf{n}\right|_{\partial \Omega}\right\} .
$$

Question: how can we actually reconstruct D ?
Following is a reconstruction method proposed by Heck-Uhlmann-W.

Ideas

Energy inequalities

Let $\left(u_{0}, p_{0}\right)$ be a solution of

$$
\left\{\begin{array}{l}
\operatorname{div}\left(\mu S\left(\nabla u_{0}\right)\right)-\nabla p_{0}=0 \text { in } \Omega, \tag{21}\\
\operatorname{div} u_{0}=0 \text { in } \Omega, \\
u_{0}=f \text { on } \partial \Omega .
\end{array}\right.
$$

(solution to the system without obstacle). Then

$$
\begin{aligned}
& \int_{D}\left|\operatorname{Sym}\left(\nabla u_{0}\right)\right|^{2} d x \\
& \leq\left\langle\sigma(u, p) \mathbf{n}-\sigma\left(u_{0}, p_{0}\right) \mathbf{n}, f\right\rangle \\
& \leq C\left(\int_{D}\left|\operatorname{Sym}\left(\nabla u_{0}\right)\right|^{2} d x+\int_{D}\left|u_{0}\right|^{2} d x\right) .
\end{aligned}
$$

Plugging some special solutions to the unperturbed system into the energy inequalities will reveal the information of D.

Plugging some special solutions to the unperturbed system into the energy inequalities will reveal the information of D.

What kind of special solutions are useful?

Plugging some special solutions to the unperturbed system into the energy inequalities will reveal the information of D.

What kind of special solutions are useful?

Try complex geometrical optics solutions!

CGO solutions

CGO solutions

As before, using the new system:

$$
\begin{align*}
& P\binom{w}{g}:=\Delta\binom{w}{g}+A_{1}(x)\binom{\nabla g}{\operatorname{div} w}+A_{0}(x)\binom{w}{g}=0 . \tag{23}\\
& \left(u_{0}=\mu^{-1 / 2} w+\mu^{-1} \nabla g-\left(\nabla \mu^{-1}\right) g\right)
\end{align*}
$$

CGO solutions

As before, using the new system:

$$
\begin{align*}
& P\binom{w}{g}:=\Delta\binom{w}{g}+A_{1}(x)\binom{\nabla g}{\operatorname{div} w}+A_{0}(x)\binom{w}{g}=0 . \tag{24}\\
& \left(u_{0}=\mu^{-1 / 2} w+\mu^{-1} \nabla g-\left(\nabla \mu^{-1}\right) g\right)
\end{align*}
$$

Look for

$$
u_{0}=e^{-\phi / h} v \quad(h \ll 1)
$$

for appropriate phase function ϕ and amplitude v. (complex WKB)

Choice of phase function ϕ is tricky.

Choice of phase function ϕ is tricky.

Let us denote

$$
\phi=\varphi+i \psi
$$

Choice of phase function ϕ is tricky.
Let us denote

$$
\phi=\varphi+i \psi .
$$

φ is required to satisfy the following condition: if
$a(x, \xi)=|\xi|^{2}-\left|\varphi_{x}^{\prime}\right|^{2}$ and $b(x, \xi)=2 \varphi_{x}^{\prime} \cdot \xi$, then

$$
\{a, b\}(x, \xi)=0 \quad \text { when } \quad a(x, \xi)=b(x, \xi)=0
$$

(limiting Carleman weight)

$$
u_{t, h}=e^{t / h} u_{0}=e^{(t-\varphi) / h} e^{i \psi / h} v \text { is also a solution. }
$$

$u_{t, h}=e^{t / h} u_{0}=e^{(t-\varphi) / h} e^{i \psi / h} v$ is also a solution.
Using the input Dirichlet data:

$$
f_{t, h}=\left.u_{t, h}\right|_{\partial \Omega}
$$

and measure $\left.\sigma(u, p) \mathbf{n}\right|_{\partial \Omega}$ (output).
$u_{t, h}=e^{t / h} u_{0}=e^{(t-\varphi) / h} e^{i \psi / h} v$ is also a solution.
Using the input Dirichlet data:

$$
f_{t, h}=\left.u_{t, h}\right|_{\partial \Omega}
$$

and measure $\left.\sigma(u, p) \mathbf{n}\right|_{\partial \Omega}$ (output).
Denote

$$
E(t, h)=\left\langle\sigma(u, p) \mathbf{n}-\sigma\left(u_{0}, p_{0}\right) \mathbf{n}, f_{t, h}\right\rangle .
$$

$u_{t, h}=e^{t / h} u_{0}=e^{(t-\varphi) / h} e^{i \psi / h} v$ is also a solution.
Using the input Dirichlet data:

$$
f_{t, h}=\left.u_{t, h}\right|_{\partial \Omega}
$$

and measure $\left.\sigma(u, p) \mathbf{n}\right|_{\partial \Omega}$ (output).
Denote

$$
E(t, h)=\left\langle\sigma(u, p) \mathbf{n}-\sigma\left(u_{0}, p_{0}\right) \mathbf{n}, f_{t, h}\right\rangle
$$

$E(t, h)$ is completely determined by boundary measurements.

The behavior of $E(t, h)$ as $h \rightarrow 0$ will provide us a way to determine ∂D.

The behavior of $E(t, h)$ as $h \rightarrow 0$ will provide us a way to determine ∂D.

Behavior of $u_{t, h}$
$u_{t, h} \uparrow \infty$ as $h \rightarrow 0$ for $\varphi>t$
$u_{t, h} \downarrow 0$ as $h \rightarrow 0$ for $\varphi<t$

In view of the energy inequalities,

In view of the energy inequalities,

$$
E(t, h) \downarrow 0 \text { if } D \subset\{\varphi<t\}
$$

In view of the energy inequalities,

$$
\begin{gathered}
E(t, h) \downarrow 0 \text { if } D \subset\{\varphi<t\} \\
E(t, h) \uparrow \infty \text { if } D \cap\{\varphi>t\} \neq \emptyset
\end{gathered}
$$

In view of the energy inequalities,

$$
\begin{gathered}
E(t, h) \downarrow 0 \text { if } D \subset\{\varphi<t\} \\
E(t, h) \uparrow \infty \text { if } D \cap\{\varphi>t\} \neq \emptyset
\end{gathered}
$$

So we can determine whether the level surface $\varphi=t$ touches ∂D from the behavior of $E(t, h)$.

Two cases:

Two cases:
$\varphi=x \cdot \omega$: level surfaces are planes or lines \Rightarrow one can determine the convex hull of D (Ikehata's enclosure method).

Two cases:
$\varphi=x \cdot \omega$: level surfaces are planes or lines \Rightarrow one can determine the convex hull of D (Ikehata's enclosure method).
$\varphi=\log \left|x-x_{0}\right|$ and $t=\log s$: level surfaces are spheres or circles \Rightarrow determine some non-convex parts of D (Ide, Isozaki, Nakata, Siltanen, Uhlmann).

Two cases:
$\varphi=x \cdot \omega$: level surfaces are planes or lines \Rightarrow one can determine the convex hull of D (Ikehata's enclosure method).
$\varphi=\log \left|x-x_{0}\right|$ and $t=\log s$: level surfaces are spheres or circles \Rightarrow determine some non-convex parts of D (Ide, Isozaki, Nakata, Siltanen, Uhlmann).

Both cases work for our problem here.

Problems in 2 dim

One is able to determine more information of D by using CGO with more general phase functions. Why? We have rich conformal structures in 2 dim.

We can construct CGO with general phases for systems like

$$
\begin{equation*}
P U:=\Delta_{x} U+A_{1}(x) \partial_{x_{1}} U+A_{2}(x) \partial_{x_{2}} U+Q(x) U=0 \quad \text { in } \quad \Omega, \tag{25}
\end{equation*}
$$

where $\Delta_{x}=\partial_{x_{1}}^{2}+\partial_{x_{2}}^{2}$ and A_{1}, A_{2}, Q are $n \times n$. This system includes the conductivity equation, the isotropic elasticity, the Stokes system etc.

How it works?

How it works?

Let $y=\rho(x)=y_{1}\left(x_{1}, x_{2}\right)+i y_{2}\left(x_{1}, x_{2}\right)$ be a conformal map. Define $U(x)=V(y(x))$, we have

$$
\binom{\partial_{x_{1}}}{\partial_{x_{2}}} U=\left.J(x)\binom{\partial_{y_{1}}}{\partial_{y_{2}}} V\right|_{y=\rho(x)} \quad \text { and } \quad \Delta_{x} U=\Delta_{y} V\left|\rho^{\prime}(x)\right|^{2},
$$

where

$$
J(x)=\left(\begin{array}{ll}
\partial_{x_{1}} y_{1} & \partial_{x_{1}} y_{2} \\
\partial_{x_{2}} y_{1} & \partial_{x_{2}} y_{2}
\end{array}\right) .
$$

How it works?

Let $y=\rho(x)=y_{1}\left(x_{1}, x_{2}\right)+i y_{2}\left(x_{1}, x_{2}\right)$ be a conformal map. Define $U(x)=V(y(x))$, we have

$$
\binom{\partial_{x_{1}}}{\partial_{x_{2}}} U=\left.J(x)\binom{\partial_{y_{1}}}{\partial_{y_{2}}} V\right|_{y=\rho(x)} \quad \text { and } \quad \Delta_{x} U=\Delta_{y} V\left|\rho^{\prime}(x)\right|^{2},
$$

where

$$
J(x)=\left(\begin{array}{ll}
\partial_{x_{1}} y_{1} & \partial_{x_{1}} y_{2} \\
\partial_{x_{2}} y_{1} & \partial_{x_{2}} y_{2}
\end{array}\right) .
$$

The form of P does not change under the conformal transform.

So we can first construct CGO with linear phase, i.e., $y_{1}+i y_{2}$, and perform conformal transform. Thus we have CGO with phases $y_{1}\left(x_{1}, x_{2}\right)+i y_{2}\left(x_{1}, x_{2}\right)=\varphi(x)+i \psi(x)$.

So we can first construct CGO with linear phase, i.e., $y_{1}+i y_{2}$, and perform conformal transform. Thus we have CGO with phases $y_{1}\left(x_{1}, x_{2}\right)+i y_{2}\left(x_{1}, x_{2}\right)=\varphi(x)+i \psi(x)$.

We have lots of choices of φ whose level curves will give us more information about ∂D.

So we can first construct CGO with linear phase, i.e., $y_{1}+i y_{2}$, and perform conformal transform. Thus we have CGO with phases $y_{1}\left(x_{1}, x_{2}\right)+i y_{2}\left(x_{1}, x_{2}\right)=\varphi(x)+i \psi(x)$.

We have lots of choices of φ whose level curves will give us more information about ∂D.
"Scientists discover the world that exists; engineers create the world that never was." - Theodore Von Karman

merci beaucoup

