About the influence of the wind on the oceanic motion

Laure Saint-Raymond Université Paris VI & Ecole Normale Supérieure Département de Mathématiques et Applications

26 mars 2008

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

A mathematical model for large-scale oceanic motions

► The homogeneous incompressible Navier-Stokes equations with Coriolis force

$$\partial_t u + (u \cdot \nabla) u + \nabla \rho = \mathcal{F} + u \wedge \Omega,$$

 $\nabla \cdot u = 0,$

- \mathcal{F} friction force;
- Ω vertical component of the Earth rotation vector;
- *p* pressure (defined as the Lagrange multiplier associated to the incompressibility constraint).

Using the f-plane approximation at mid-latitudes

$$D_{x}\Omega = 0.$$

Modelling turbulent effects by some anisotropic viscosity

$$\mathcal{F}=A_h\Delta_h u+A_z\partial_{zz}u$$

◆□▶ ▲□▶ ▲目▶ ▲□▶ ▲□▶

A mathematical model for large-scale oceanic motions

Boundary conditions at the surface and at the bottom

Boundary conditions at the surface and at the bottom

The ocean/atmosphere coupling

- rigid lid approximation (no free surface as first approximation)
- stress tensor to account for the effect of the wind

$$u_{3|z=1} = 0,$$

$$\partial_z u_{h|z=1} = \Sigma.$$
(1)

The ocean/Earth crust coupling

- flat bottom approximation (topographic effects to be studied later)
- braking condition to account for the fluid/structure interaction

$$u_{|z=0} = 0.$$
 (2)

Wind-driven oceanic motion

A mathematical model for large-scale oceanic motions

L The small Rossby number asymptotics

► The small Rossby number asymptotics Typical scales

- Length scales : $L \sim 100 km$, $D \sim 4 km$
- Velocity scale $U \sim 5 cm/s$
- Viscosity $A_h \sim 10^7 cm^2/s$, $A_z \sim 10 cm^2/s$
- Density of the fluid $ho \sim 10^3 kg/m^3$

Nondimensional parameters

$$rac{U}{L\Omega} = arepsilon \sim 5 imes 10^{-3}, \quad rac{A_h}{
ho UL} \sim 1, \quad rac{LA_z}{
ho UD^2} =
u \sim 10^{-3}$$

The singular penalization problem

$$\partial_t u + (u \cdot \nabla)u + \frac{1}{\varepsilon} e_3 \wedge u - \Delta_h u - \nu \partial_{zz} u + \nabla p = 0$$

$$\nabla \cdot u = 0,$$
(3)

The Coriolis operator

 $L: u \mapsto e_3 \wedge u + \nabla p$ with $\nabla \cdot (e_3 \wedge u + \nabla p) = 0$

► The quasigeostrophic motion The geostrophic constraint

$$e_3 \wedge \bar{u} = -\nabla p, \quad \nabla \cdot \bar{u} = 0$$

- motion that does not depend on $z \Rightarrow$ Taylor-Proudman columns
- constant height of water \Rightarrow 2D motion without constraint

The formal evolution equation

$$\partial_t \bar{u}_h + (\bar{u}_h \cdot \nabla_h) \bar{u}_h + \nabla_h p = 0$$

- equation that does not take into account the effect of small scales
- motion that is not compatible with the boundary conditions

Wind-driven oceanic motion

The Coriolis operator

Waves and envelope equations

► Wave and envelope equations

On $(\text{Ker } L)^{\perp}$, the dominant process is governed by the Coriolis operator

$$\partial_t u + \frac{1}{\varepsilon} L u = O(1)$$

It describes the propagation of Poincaré waves

- propagating with a speed of order ε^{-1} ;
- having the dispersion law $\lambda_k = -k_3\pi/\sqrt{|k_h|^2 + (\pi k_3)^2}$;
- carrying a finite energy.

Their slow evolution is given by the **envelope equations** obtained formally by some filtering method based

• on the decomposition of any field of

$$V_0 = \{ u \in L^2(\omega) \, / \, \nabla \cdot u = 0 \text{ and } u_{3|z=0} = u_{3|z=1} = 0 \}$$

on the eigenmodes of *L*;

• on a precise study of resonances.

► Diagonalization of the Coriolis operator

Proposition. There exists an hilbertian basis (N^k) of V_0 constituted of eigenvectors of the linear penalization

$$LN^k = i\lambda_k N^k$$
 with $\lambda_k = -k_3\pi/\sqrt{|k_h|^2 + (\pi k_3)^2}$.

For instance the family (N^k) defined by

$$N^{k} = \exp(ik_{h} \cdot x_{h}) \begin{pmatrix} n_{1}(k)\cos(\pi k_{3}z) \\ n_{2}(k)\cos(\pi k_{3}z) \\ n_{3}(k)\sin(\pi k_{3}z) \end{pmatrix}$$

with $\begin{cases} n_h(k) = \frac{1}{2\pi |k_h|} (ik_h^{\perp} + k_h \lambda_k), \quad n_3(k) = -i \frac{|k_h| \lambda_k}{2\pi^2 k_3} \text{ if } k_h \neq 0\\ n_1(k) = \frac{\operatorname{sgn}(k_3)}{2\pi}, \quad n_2(k) = \frac{i}{2\pi}, \quad n_3(k) = 0 \text{ if } k_h = 0 \end{cases}$ (see [Chemin, Desjardins, Gallagher, Grenier] for a detailed study)

- The boundary operator

Ansatz and equation for the decay rate

The boundary operator

► Ansatz and equation for the decay rate

The vector fields N_k do not satisfy the boundary conditions (1)(2). To **match the horizontal boundary conditions** in (2), we seek a particular solution to (3) in the form

$$\Phi^{k_h,\mu}(t,x_h,z) = \varphi(k_h,\mu) \exp(ik_h \cdot x_h) \exp\left(i\frac{t}{\varepsilon}\mu\right) \exp\left(-\lambda \frac{z}{\sqrt{\varepsilon\nu}}\right)$$

The balance between forces in the boundary layers states

$$\begin{split} i\mu\varphi_1 + \lambda^2\varphi_1 - \varepsilon k_h^2\varphi_1 - \varphi_2 + \varepsilon \nu \frac{k_1k_2\varphi_1 - k_1^2\varphi_2}{\lambda^2 - \varepsilon\nu k_h^2} &= 0, \\ i\mu\varphi_2 + \lambda^2\varphi_2 - \varepsilon k_h^2\varphi_2 + \varphi_1 + \varepsilon \nu \frac{-k_1k_2\varphi_2 + k_2^2\varphi_1}{\lambda^2 - \varepsilon\nu k_h^2} &= 0, \\ \sqrt{\varepsilon\nu}(ik_1\varphi_1 + ik_2\varphi_2) - \lambda\varphi_3 &= 0. \end{split}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへ⊙

The boundary operator

Ansatz and equation for the decay rate

Interpretation in terms of dynamical system

The existence of exponentially decaying solutions is related to the fact that the matrix

$$A_{\lambda}(\mu, k_h) = \begin{pmatrix} \mu & i \\ -i & \mu \end{pmatrix} + o(1)$$

has eigenvalues with non zero real parts.

- if $|\mu| \neq 1$, $A_{\lambda}(\mu, k_h)$ perturbation of an hyperbolic system $\Rightarrow A_{\lambda}(\mu, k_h)$ hyperbolic system
- if |μ| = 1, A_λ(μ, k_h) perturbation of a degenerate system
 the system is hyperbolic (with a very small eigenvalue) if k_h ≠ 0
 In that case, pressure cannot be neglected !
 the system is non hyperbolic if k_h = 0 (no perturbation)
 In that case, boundary effects are no more localized !

Wind-driven oceanic motion

The boundary operator

L The Ekman layers

► The Ekman layers and profiles - If $k_h \neq 0$ or $|\mu| \neq 1$ $\Phi^{k_h,\mu}$ is a linear combination of

$$\Phi^{k_h,\mu,\pm} = \begin{pmatrix} w_\lambda(\mu,k_h) \\ \frac{\sqrt{\varepsilon\nu}}{\lambda} i k_h \cdot w_\lambda(\mu,k_h) \end{pmatrix} \exp(ik_h \cdot x_h) \exp(i\mu\frac{t}{\varepsilon}) \exp\left(-\lambda \frac{z}{\sqrt{\varepsilon\nu}}\right)$$

where

$$\det(A_{\lambda}+i\lambda^2 Id)=0 \text{ and } A_{\lambda}w_{\lambda}=-i\lambda^2 w_{\lambda}.$$

- Usual Ekman layers if $\lambda = O(1)$
- Anomalous boundary layers if $\lambda = O((\varepsilon \nu)^{1/4})$ $(|\mu| = 1)$
- If $k_h = 0$ and $|\mu| = 1$

 $\Phi^{k_h,\mu}$ is a linear combination of a usual Ekman boundary term and of some destabilization profile

$$\begin{pmatrix} 1\\\pm i\\0 \end{pmatrix} \exp\left(\pm i\frac{t}{\varepsilon}\right)$$

Wind-driven oceanic motion The boundary operator The Ekman velocity

▶ The Ekman velocity

The vector fields $\Phi^{k_h,\mu,\pm}$ do not belong to V_0 .

To restore the zero-flux condition, we introduce some corrector.

$$\begin{split} \delta \Phi_{3}^{k_{h},\mu,\pm} &= \frac{\sqrt{\varepsilon\nu}}{\lambda^{\pm}(\mu,\,k_{h})} ik_{h} \cdot w^{\pm}(\mu,\,k_{h}) \exp(ik_{h} \cdot x_{h}) \exp(i\mu\frac{t}{\varepsilon}) \\ &\times \left(z \left(1 - \exp\left(-\frac{\lambda^{\pm}(\mu,\,k_{h})}{\sqrt{\varepsilon\nu}}\right) \right) - 1 \right) \\ \delta \Phi_{h}^{k_{h},\mu,\pm} &= -\frac{\sqrt{\varepsilon\nu}}{\lambda^{\pm}(\mu,\,k_{h})} \frac{k_{h}k_{h} \cdot w^{\pm}(\mu,\,k_{h})}{|k_{h}|^{2}} \exp(ik_{h} \cdot x_{h}) \exp(i\mu\frac{t}{\varepsilon}) \\ &\times \left(1 - \exp\left(-\frac{\lambda^{\pm}(\mu,\,k_{h})}{\sqrt{\varepsilon\nu}}\right) \right) \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $\delta \Phi_3^{k_b,\mu,\pm}$ is the **Ekman transpiration velocity**. It will be responsible for global circulation in the whole domain

- of order $(\varepsilon \nu)^{\frac{1}{2}}$
- but not limited to the boundary layer.

The boundary operator

Propagation of he horizontal boundary data

Propagation of he horizontal boundary data

Proposition. With the previous notations, for any $\mu \neq \pm 1$, the family $(\Psi^{k_h,\mu,\pm})$ of V_0 defined by

$$\Psi^{k_h,\mu,\pm} = \Phi^{k_h,\mu,\pm} + \delta \Phi^{k_h,\mu,\pm}$$

is constituted of quasi-eigenvectors of the linear operator

$$L\Psi^{k_h,\mu,\pm} + \varepsilon \Delta_h \Psi^{k_h,\mu,\pm} + \varepsilon \nu \partial_{zz} \Psi^{k_h,\mu,\pm} = -i\mu \Psi^{k_h,\mu,\pm} + O(\sqrt{\nu})$$

• is such that $(\Psi_{h|z=0}^{k_h,\mu,\pm})_{k_h,\pm}$ is an hilbertian basis of $L^2(\omega_h,\mathbb{R}^2)$.

(see [Dalibard, Saint-Raymond] for a more general statement including the case $|\mu|=1)$

The high rotating limit

L The coupling between Poincaré waves

The high rotating limit

► The coupling between Poincaré waves Obtained formally by filtering the waves $v^{\varepsilon} = \exp(tL/\varepsilon)u^{\varepsilon}$

$$\begin{aligned} \partial_t v^{\varepsilon} &- \Delta_h v^{\varepsilon} - \nu \exp(tL/\varepsilon) \partial_{zz} \exp(-tL/\varepsilon) v^{\varepsilon} \\ &= -\exp(tL/\varepsilon) \mathbb{P} \nabla_x \cdot (\exp(-tL/\varepsilon) v^{\varepsilon} \otimes \exp(-tL/\varepsilon) v^{\varepsilon}) \end{aligned}$$

One has then to characterize the resonances

$$\lambda_k = \lambda_l + \lambda_m$$
 with $k = l + m$

Some properties of the limiting coupling

- there are few resonances (no non trivial resonance generically),
- the nonlinear term corresponding to the triplet (0, k, k) for k ≠ 0 is identically zero, meaning that the mean motion decouples from the oscillating part of the system.

(see [Chemin, Desjardins, Gallagher, Grenier] for instance)

► The boundary effects

Do not play any role in the nonlinear process since they are localized in the vicinity of the surface.

Result only from the non commutation between $\frac{1}{\varepsilon}L$ and $\nu\partial_{zz}$

$$\nu \exp(tL/\varepsilon)\partial_{zz}\exp(-tL/\varepsilon)$$

(in some suitable functional space depending on the boundary conditions)

Characterization of the Ekman pumping

- at the bottom, damping of the interior motion (friction term)
- at the surface, no contribution (scaling of the wind-stress)

(see [Desjardins, Grenier] or [Masmoudi] for instance)

► Statement of the result

Theorem. Let $u_0 \in V_0$, and $\Sigma \in L^2_{loc}(\mathbb{R}^+, L^2(\omega_h))$. For all $\varepsilon > 0$, denote by u^{ε} a weak solution of (1)(2)(3).

Then (u^{ε}) converges weakly in $L^2_{loc}(\mathbb{R}^+ \times \omega)$ to a limit u such that

• if
$$\lim_{\varepsilon \to 0} rac{
u}{\varepsilon} = +\infty$$
, $u = 0$

if lim_{ε→0} ^ν/_ε = β < +∞, u = (u_h, 0) is the solution of the two dimensional Navier-Stokes equations with Ekman pumping

$$\begin{cases} \partial_t u_h + (u_h \cdot \nabla_h) u_h - \Delta_h u_h + \frac{\beta}{\sqrt{2}} u_h + \nabla_h p = 0, \\ \nabla_h \cdot u_h = 0, \\ u_{h|t=0} = \int_0^1 u_{0,h} dz. \end{cases}$$
(4)

► Weak vs strong convergence methods We present here a method which is based

- on some uniform energy estimate,
- on 2-scales techniques (to deal with boundary layers),
- on compensated compactness arguments (to handle the nonlinearity).

Simple strategy \Rightarrow easily extended to more complex problems (variable density, variable Coriolis force)

Weak convergence result \Rightarrow focuses on the mean motion (no description of the envelope equations)

In both cases, boundary layers do not appear in the approximation, since they have negligible L^2 norm and the convergence holds in L^2 .

The weak convergence method

► The weak formulation

Start from the weak form of (1)(2)(3) : for any test function $\Phi \in \operatorname{Ker} L$,

$$\int u_{0} \cdot \Phi_{h} dx + \int_{0}^{t} \int \left(u_{h}^{\varepsilon} \cdot \partial_{t} \Phi_{h} + u_{h}^{\varepsilon} \otimes u_{h}^{\varepsilon} : \nabla_{h} \Phi_{h} - \nabla_{h} u_{h}^{\varepsilon} : \nabla_{h} \Phi_{h} \right) (s, x) ds dx$$
$$= \nu \int_{0}^{t} \int (\partial_{z} u_{h}^{\varepsilon})_{|z=0} \Phi_{h}(s, x_{h}) dx_{h} ds - \nu \int_{0}^{t} \int (\partial_{z} u_{h}^{\varepsilon})_{|z=1} \Phi_{h}(s, x_{h}) dx_{h} ds$$
(5)

Take limits in the surface term

 if ν → 0, ν ∫ ΣΦ_hdx_h → 0 (scaling assumption on Σ to ensure that the energy is bounded)

• if
$$\nu \to \bar{\nu} > 0$$
, $\nu \int \Sigma \Phi_h dx_h \to \bar{\nu} \int \Sigma \Phi_h dx_h$

Boundary layer at the top does not appear (even though it exists !).

► The 2-scale analysis

To relate the trace $(\partial_z u_h^{\varepsilon})|_{z=0}$ to u_h^{ε} , we use the boundary test functions $\Psi^{k_h,\mu,\pm}$ in the weak formulation of (1)(2)(3).

This process is exactly the analog of the $\mbox{2-scale}$ analysis of N'Guetseng and Allaire.

We actually prove that the only terms that remain of order $O(\sqrt{
u/arepsilon})$ are

$$u \int (\partial_z u_h^{\varepsilon})_{|z=0} \Phi_{h|z=0}^{k_h,\pm}(s,x_h) dx_h$$

and the Ekman pumping

$$\int \left(u^{\varepsilon} \cdot \frac{1}{\varepsilon} L\delta \Phi^{k_h, \pm} \right) (s, x) dx$$
$$= \sqrt{\frac{\nu}{2\varepsilon}} \int_0^t \int u_{\varepsilon} \cdot \Phi^{k_h, \pm}_{|z=0}(s, x) ds dx$$

Key arguments of the proof

• A priori estimates for $\Psi^{k_h,\pm}$

$$\Phi_h^{k_h,\mu,\pm} = O(1)_{L^{\infty}([0,1],H^{\mathfrak{s}}(\omega_h))}, \quad \Phi_h^{k_h,\mu,\pm} = O(\sqrt{\varepsilon\nu})_{L^1([0,1],H^{\mathfrak{s}}(\omega_h))},
onumber$$
 $\Phi_h^{k_h,\mu,\pm} = O((\varepsilon\nu)^{\frac{1}{4}-\frac{\sigma}{2}})_{H^{\sigma}([0,1],H^{\mathfrak{s}}(\omega_h))}$
 $\delta\Phi^{k_h,\mu,\pm} = O(\sqrt{\varepsilon\nu})_{H^{\mathfrak{s}}(\omega)}$

• Refined estimates on u^{ε} (using the Dirichlet condition at z = 0)

$$\begin{aligned} \|u_{h|z=z_{0}}\|_{L^{2}(\omega_{h})} &\leq z_{0}^{1/2} \|\partial_{z} u_{h}\|_{L^{2}(\omega)} \leq C\nu^{-1/2} z_{0}^{1/2} \nu^{1/2} \|\partial_{z} u_{h}\|_{L^{2}(\omega)} \\ \|u_{3|z=z_{0}}\|_{L^{2}(\omega_{h})} &\leq z_{0}^{1/2} \|\partial_{z} u_{3}\|_{L^{2}(\omega)} \leq C z_{0}^{1/2} \|\nabla_{h} u_{h}\|_{L^{2}(\omega)}. \end{aligned}$$

The weak convergence method

- The compensated compactness

► The compensated compactness If $\lim_{\varepsilon \to 0} \frac{\nu}{\varepsilon} = \beta < +\infty$ then the Ekman pumping is an order O(1) dissipation process.

The point is then to take limits in the nonlinear terms, i.e.

- to establish strong compactness on $ar{u}^arepsilon = \int_0^1 (u_h^arepsilon, 0) dz$;
- to prove that the equation on \bar{u}_{ε} decouples from oscillations (compensated-compactness argument).

Strong compactness of (\bar{u}^{ε}) coming from

• the uniform spatial regularity

 $ar{u}_{arepsilon}$ bounded in $L^2(\mathbb{R}^+,\dot{H}^1(\omega_h))$

• some control on the time derivative

 $\partial_t (\bar{u}^{\varepsilon} - O((\varepsilon \nu)^{1/4})_{L^2(\omega)})$ bounded in $L^2([0, T] \times [0, 1], W^{-1,1}(\omega_h))$

• some interpolation result (see [Aubin] for instance)

Structure of the waves $u^{\varepsilon} - \bar{u}^{\varepsilon} = \partial_z W^{\varepsilon}$

$$\begin{split} \varepsilon \partial_t (\partial_z W^{\varepsilon} - \nabla W^{\varepsilon}_{\mathfrak{z}}) + e_{\mathfrak{z}} \wedge \partial_z W_{\varepsilon} &= r_{\varepsilon}, \\ \varepsilon \partial_t (\nabla_h \cdot W^{\varepsilon, \perp}_h) + \nabla_h \cdot W^{\varepsilon}_h &= s_{\varepsilon}, \end{split}$$

where r_{ε} and s_{ε} are small remainders.

Algebraic computation (see [Gallagher, Saint-Raymond] for instance)

$$\begin{aligned} (w^{\varepsilon} \wedge (\nabla \wedge w^{\varepsilon}))_{h} \\ &= (\varepsilon \partial_{t} \rho^{\varepsilon} \wedge \partial_{z} \rho^{\varepsilon})_{h} \\ &= -\varepsilon \partial_{t} (\rho_{3}^{\varepsilon} \partial_{z} \rho_{h}^{\varepsilon,\perp}) + \partial_{z} (\rho_{3}^{\varepsilon} \varepsilon \partial_{t} \rho_{h}^{\varepsilon,\perp}) + r_{\varepsilon} \partial_{z} \rho_{3}^{\varepsilon} + s_{\varepsilon} \partial_{z} \rho_{h}^{\varepsilon,\perp} \end{aligned}$$

where $\rho^{\varepsilon} = \nabla \wedge W^{\varepsilon}$.

That formal computation can be made rigorous by introducing some regularization in x_h , provided that $\nu >> \varepsilon^{4/3}$.