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Wind-driven oceanic motion

A mathematical model for large-scale oceanic motions

The Navier-Stokes-Coriolis equations

A mathematical model for large-scale oceanic motions

I The homogeneous incompressible Navier-Stokes equations
with Coriolis force

∂tu + (u · ∇)u +∇p = F + u ∧ Ω ,

∇ · u = 0 ,

• F friction force ;

• Ω vertical component of the Earth rotation vector ;

• p pressure (defined as the Lagrange multiplier associated to the
incompressibility constraint).

Using the f -plane approximation at mid-latitudes

DxΩ = 0.

Modelling turbulent effects by some anisotropic viscosity

F = Ah∆hu + Az∂zzu
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A mathematical model for large-scale oceanic motions

Boundary conditions at the surface and at the bottom

I Boundary conditions at the surface and at the bottom

The ocean/atmosphere coupling

• rigid lid approximation (no free surface as first approximation)

• stress tensor to account for the effect of the wind
u3|z=1 = 0,

∂zuh|z=1 = Σ .
(1)

The ocean/Earth crust coupling

• flat bottom approximation (topographic effects to be studied later)

• braking condition to account for the fluid/structure interaction

u|z=0 = 0. (2)
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A mathematical model for large-scale oceanic motions

The small Rossby number asymptotics

I The small Rossby number asymptotics
Typical scales

• Length scales : L ∼ 100km, D ∼ 4km

• Velocity scale U ∼ 5cm/s

• Viscosity Ah ∼ 107cm2/s, Az ∼ 10cm2/s

• Density of the fluid ρ ∼ 103kg/m3

Nondimensional parameters

U

LΩ
= ε ∼ 5× 10−3,

Ah

ρUL
∼ 1,

LAz

ρUD2
= ν ∼ 10−3

The singular penalization problem

∂tu + (u · ∇)u +
1

ε
e3 ∧ u −∆hu − ν∂zzu +∇p = 0

∇ · u = 0 ,
(3)
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The Coriolis operator

The quasigeostrophic motion

The Coriolis operator

L : u 7→ e3 ∧ u +∇p with ∇ · (e3 ∧ u +∇p) = 0

I The quasigeostrophic motion
The geostrophic constraint

e3 ∧ ū = −∇p, ∇ · ū = 0

• motion that does not depend on z ⇒ Taylor-Proudman columns

• constant height of water ⇒ 2D motion without constraint

The formal evolution equation

∂t ūh + (ūh · ∇h)ūh +∇hp = 0

• equation that does not take into account the effect of small scales

• motion that is not compatible with the boundary conditions
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The Coriolis operator

Waves and envelope equations

I Wave and envelope equations
On (Ker L)⊥, the dominant process is governed by the Coriolis operator

∂tu +
1

ε
Lu = O(1)

It describes the propagation of Poincaré waves

• propagating with a speed of order ε−1 ;

• having the dispersion law λk = −k3π/
√
|kh|2 + (πk3)2;

• carrying a finite energy.

Their slow evolution is given by the envelope equations obtained
formally by some filtering method based

• on the decomposition of any field of

V0 = {u ∈ L2(ω) /∇ · u = 0 and u3|z=0 = u3|z=1 = 0}

on the eigenmodes of L ;

• on a precise study of resonances.
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The Coriolis operator

Diagonalization of the Coriolis operator

I Diagonalization of the Coriolis operator

Proposition. There exists an hilbertian basis (Nk) of V0

constituted of eigenvectors of the linear penalization

LNk = iλkN
k with λk = −k3π/

√
|kh|2 + (πk3)2 .

For instance the family (Nk) defined by

Nk = exp(ikh · xh)

n1(k) cos(πk3z)
n2(k) cos(πk3z)
n3(k) sin(πk3z)



with


nh(k) =

1

2π|kh|
(ik⊥h + khλk), n3(k) = −i

|kh|λk

2π2k3
if kh 6= 0

n1(k) =
sgn(k3)

2π
, n2(k) =

i

2π
, n3(k) = 0 if kh = 0

(see [Chemin, Desjardins, Gallagher, Grenier] for a detailed study)
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Ansatz and equation for the decay rate

The boundary operator
I Ansatz and equation for the decay rate
The vector fields Nk do not satisfy the boundary conditions (1)(2).
To match the horizontal boundary conditions in (2), we seek a
particular solution to (3) in the form

Φkh,µ(t, xh, z) = ϕ(kh, µ) exp(ikh · xh) exp
(
i
t

ε
µ
)

exp

(
−λ z√

εν

)

The balance between forces in the boundary layers states

iµϕ1 + λ2ϕ1 − εk2
hϕ1 − ϕ2 + εν

k1k2ϕ1 − k2
1ϕ2

λ2 − ενk2
h

= 0,

iµϕ2 + λ2ϕ2 − εk2
hϕ2 + ϕ1 + εν

−k1k2ϕ2 + k2
2ϕ1

λ2 − ενk2
h

= 0,

√
εν(ik1ϕ1 + ik2ϕ2)− λϕ3 = 0 .
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The boundary operator

Ansatz and equation for the decay rate

I Interpretation in terms of dynamical system
The existence of exponentially decaying solutions is related to the fact
that the matrix

Aλ(µ, kh) =

(
µ i
−i µ

)
+ o(1)

has eigenvalues with non zero real parts.

• if |µ| 6= 1, Aλ(µ, kh) perturbation of an hyperbolic system
⇒ Aλ(µ, kh) hyperbolic system

• if |µ| = 1, Aλ(µ, kh) perturbation of a degenerate system
- the system is hyperbolic (with a very small eigenvalue) if kh 6= 0
In that case, pressure cannot be neglected !
- the system is non hyperbolic if kh = 0 (no perturbation)
In that case, boundary effects are no more localized !
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The boundary operator

The Ekman layers

I The Ekman layers and profiles
- If kh 6= 0 or |µ| 6= 1
Φkh,µ is a linear combination of

Φkh,µ,± =

 wλ(µ, kh))√
εν

λ
ikh · wλ(µ, kh))

 exp(ikh · xh) exp(iµ
t

ε
) exp

(
−λ z√

εν

)
where

det(Aλ + iλ2Id) = 0 and Aλwλ = −iλ2wλ.

• Usual Ekman layers if λ = O(1)
• Anomalous boundary layers if λ = O((εν)1/4) (|µ| = 1)

- If kh = 0 and |µ| = 1
Φkh,µ is a linear combination of a usual Ekman boundary term and of
some destabilization profile 1

±i
0

 exp
(
±i

t

ε

)
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The boundary operator

The Ekman velocity

I The Ekman velocity
The vector fields Φkh,µ,± do not belong to V0.
To restore the zero-flux condition, we introduce some corrector.

δΦkh,µ,±
3 =

√
εν

λ±(µ, kh)
ikh · w±(µ, kh) exp(ikh · xh) exp(iµ

t

ε
)

×
(

z

(
1− exp

(
−λ
±(µ, kh)√

εν

))
− 1

)
δΦkh,µ,±

h =−
√
εν

λ±(µ, kh)

khkh · w±(µ, kh)

|kh|2
exp(ikh · xh) exp(iµ

t

ε
)

×
(

1− exp

(
−λ
±(µ, kh)√

εν

))

δΦkh,µ,±
3 is the Ekman transpiration velocity.

It will be responsible for global circulation in the whole domain

• of order (εν)
1
2

• but not limited to the boundary layer.
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The boundary operator

Propagation of he horizontal boundary data

I Propagation of he horizontal boundary data

Proposition. With the previous notations, for any µ 6= ±1, the
family (Ψkh,µ,±) of V0 defined by

Ψkh,µ,± = Φkh,µ,± + δΦkh,µ,±

• is constituted of quasi-eigenvectors of the linear operator

LΨkh,µ,± + ε∆hΨkh,µ,± + εν∂zzΨkh,µ,± = −iµΨkh,µ,± + O(
√
ν)

• is such that (Ψkh,µ,±
h|z=0 )kh,± is an hilbertian basis of L2(ωh,R2).

(see [Dalibard, Saint-Raymond] for a more general statement including
the case |µ| = 1)
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The coupling between Poincaré waves

The high rotating limit
I The coupling between Poincaré waves
Obtained formally by filtering the waves vε = exp(tL/ε)uε

∂tv
ε −∆hv

ε − ν exp(tL/ε)∂zz exp(−tL/ε)vε

= − exp(tL/ε)P∇x · (exp(−tL/ε)vε ⊗ exp(−tL/ε)vε)

One has then to characterize the resonances

λk = λl + λm with k = l + m

Some properties of the limiting coupling

• there are few resonances (no non trivial resonance generically),

• the nonlinear term corresponding to the triplet (0, k , k) for k 6= 0 is
identically zero, meaning that the mean motion decouples from
the oscillating part of the system.

(see [Chemin, Desjardins, Gallagher, Grenier] for instance)
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The high rotating limit

The boundary effects

I The boundary effects

Do not play any role in the nonlinear process since they are localized in
the vicinity of the surface.

Result only from the non commutation between 1
εL and ν∂zz

ν exp(tL/ε)∂zz exp(−tL/ε)

(in some suitable functional space depending on the boundary conditions)

Characterization of the Ekman pumping

• at the bottom, damping of the interior motion (friction term)

• at the surface, no contribution (scaling of the wind-stress)

(see [Desjardins, Grenier] or [Masmoudi] for instance)
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The high rotating limit

Statement of the result

I Statement of the result

Theorem. Let u0 ∈ V0, and Σ ∈ L2
loc(R+, L2(ωh)). For all ε > 0,

denote by uε a weak solution of (1)(2)(3).

Then (uε) converges weakly in L2
loc(R+ × ω) to a limit u such that

• if limε→0
ν
ε = +∞, u = 0

• if limε→0
ν
ε = β < +∞, u = (uh, 0) is the solution of the two

dimensional Navier-Stokes equations with Ekman pumping
∂tuh + (uh · ∇h)uh −∆huh +

β√
2
uh +∇hp = 0,

∇h · uh = 0 ,

uh|t=0 =

∫ 1

0

u0,hdz .

(4)
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The high rotating limit

Weak vs strong convergence results

I Weak vs strong convergence methods
We present here a method which is based

• on some uniform energy estimate,

• on 2-scales techniques (to deal with boundary layers),

• on compensated compactness arguments (to handle the
nonlinearity).

Simple strategy ⇒ easily extended to more complex problems
(variable density, variable Coriolis force)

Weak convergence result ⇒ focuses on the mean motion
(no description of the envelope equations)

In both cases, boundary layers do not appear in the approximation,
since they have negligible L2 norm and the convergence holds in L2.
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The weak convergence method

The weak formulation

The weak convergence method

I The weak formulation
Start from the weak form of (1)(2)(3) : for any test function Φ ∈ Ker L,∫

u0 · Φhdx +

∫ t

0

∫
(uεh · ∂tΦh + uεh ⊗ uεh : ∇hΦh −∇hu

ε
h : ∇hΦh) (s, x)dsdx

= ν

∫ t

0

∫
(∂zu

ε
h)|z=0Φh(s, xh)dxhds − ν

∫ t

0

∫
(∂zu

ε
h)|z=1Φh(s, xh)dxhds

(5)

Take limits in the surface term

• if ν → 0, ν
∫

ΣΦhdxh → 0
(scaling assumption on Σ to ensure that the energy is bounded)

• if ν → ν̄ > 0, ν
∫

ΣΦhdxh → ν̄
∫

ΣΦhdxh

Boundary layer at the top does not appear (even though it exists !).



Wind-driven oceanic motion

The weak convergence method

The 2-scale analysis

I The 2-scale analysis

To relate the trace (∂zu
ε
h)|z=0 to uεh , we use the boundary test

functions Ψkh,µ,± in the weak formulation of (1)(2)(3).

This process is exactly the analog of the 2-scale analysis of N’Guetseng
and Allaire.

We actually prove that the only terms that remain of order O(
√
ν/ε) are

ν

∫
(∂zu

ε
h)|z=0Φkh,±

h|z=0(s, xh)dxh

and the Ekman pumping∫ (
uε · 1

ε
LδΦkh,±

)
(s, x)dx

=

√
ν

2ε

∫ t

0

∫
uε · Φkh,±

|z=0(s, x)dsdx
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The weak convergence method

The 2-scale analysis

Key arguments of the proof

• A priori estimates for Ψkh,±

Φkh,µ,±
h = O(1)L∞([0,1],Hs (ωh)), Φkh,µ,±

h = O(
√
εν)L1([0,1],Hs (ωh)),

Φkh,µ,±
h = O((εν)

1
4−

σ
2 )Hσ([0,1],Hs (ωh))

δΦkh,µ,± = O(
√
εν)Hs (ω)

• Refined estimates on uε (using the Dirichlet condition at z = 0)

‖uh|z=z0
‖L2(ωh) ≤ z

1/2
0 ‖∂zuh‖L2(ω) ≤ Cν−1/2z

1/2
0 ν1/2‖∂zuh‖L2(ω)

‖u3|z=z0
‖L2(ωh) ≤ z

1/2
0 ‖∂zu3‖L2(ω) ≤ Cz

1/2
0 ‖∇huh‖L2(ω).



Wind-driven oceanic motion

The weak convergence method

The compensated compactness

I The compensated compactness
If lim
ε→0

ν

ε
= β < +∞ then the Ekman pumping is an order O(1)

dissipation process.
The point is then to take limits in the nonlinear terms, i.e.

• to establish strong compactness on ūε =
∫ 1

0
(uεh , 0)dz ;

• to prove that the equation on ūε decouples from oscillations
(compensated-compactness argument).

Strong compactness of (ūε) coming from

• the uniform spatial regularity

ūε bounded in L2(R+, Ḣ1(ωh))

• some control on the time derivative

∂t(ūε − O((εν)1/4)L2(ω)) bounded in L2([0,T ]× [0, 1],W−1,1(ωh))

• some interpolation result (see [Aubin] for instance)
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The compensated compactness

Structure of the waves uε − ūε = ∂zW
ε

ε∂t(∂zW
ε −∇W ε

3 ) + e3 ∧ ∂zWε = rε,

ε∂t(∇h ·W ε,⊥
h ) +∇h ·W ε

h = sε,

where rε and sε are small remainders.

Algebraic computation (see [Gallagher, Saint-Raymond] for instance)

(wε ∧ (∇∧ wε))h

= (ε∂tρ
ε ∧ ∂zρ

ε)h

= −ε∂t(ρε3∂zρ
ε,⊥
h ) + ∂z(ρε3ε∂tρ

ε,⊥
h ) + rε∂zρ

ε
3 + sε∂zρ

ε,⊥
h

where ρε = ∇∧W ε.

That formal computation can be made rigorous by introducing some
regularization in xh, provided that ν >> ε4/3.
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