Motion by Curvature of Planar Curves with Two Free End Points

Jong-Shenq Guo

National Taiwan Normal University
(Joint Work with Xinfu Chen)

In this talk, we are interested in the following problem:
Problem (\mathbf{P}): Given an initial curve $\Gamma(0)$, find a family of curves $\{\Gamma(t)\}_{0<t<T}$ that lie on the upper-half plane, have end points on the x-axis with contact angle ψ_{-}on the left and ψ_{+}on the right, and evolve according to the motion by curvature.

- Motion by curvature: $V($ normal velocity $)=\kappa($ curvature $)$.
- This problem arises in the study of the evolution of three grain domains in polycrystals.

Figure (b) is a schematic snap shot of a diminishing grain domain $\Omega(t)$ surrounded by two other grain domains $\Omega_{+}(t)$ and $\Omega_{-}(t)$; the dots $P(t)$ and $Q(t)$ are the triple junctions of these three grain domains. When $\Omega(t)$ is symmetric about the x-axis, figure (a), modelled by problem (P), is the upper-half part of figure (b).

- A grain domain is a periodic lattice structure of composite particles of a crystal.
- A grain boundary is the intersection of two grain domains at which orientations of different lattices do not match.
- Grain boundaries are often modelled by the curvature flows.
- A triple junction is the meeting place of three grain domains.
- In general, it is assumed that the intersection angles (φ) at a triple junction and the three interfacial energy densities (σ) satisfy the Herring condition.

Figure 1

Figure 2. Left: self-similar expanding; middle: stationary; right: self-similar shrinking.

- a movie from David Kinderlehrer

PDE Formulations of (P):

1. Motion of Particles: We can regard $\Gamma(0)$ as the union of the positions of a collection of particles so that
$\Gamma(0)=\left\{\left(x^{0}(z), y^{0}(z)\right) \mid 0 \leqslant z \leqslant 1\right\}$ with
$\left|x_{z}^{0}(z)\right|+\left|y_{z}^{0}(z)\right|>0$ for all $z \in[0,1]$,
$y^{0}(0)=y^{0}(1)=0$,
$x_{z}^{0}(0)=y_{z}^{0}(0) \cot \psi_{-}$,
$x_{z}^{0}(1)=-y_{z}^{0}(1) \cot \psi_{+}$.
Let

$$
\Gamma(t):=\{(x(z, t), y(z, t)) \mid z \in[0,1]\} .
$$

(P): Find $X=(x, y)$ such that

$$
\left\{\begin{array}{l}
x_{t}=\frac{x_{z z}}{x_{z}^{2}+y_{z}^{2}}, y_{t}=\frac{y_{z z}}{x_{z}^{2}+y_{z}^{2}}, z \in(0,1), t \in(0, T) \\
y(0, t)=0, y(1, t)=0, t \in[0, T) \\
x_{z}(0, t)=y_{z}(0, t) \cot \psi_{-}, t \in[0, T) \tag{1}\\
x_{z}(1, t)=-y_{z}(1, t) \cot \psi_{+}, t \in[0, T) \\
x(z, 0)=x^{0}(z), y(z, 0)=y^{0}(z), z \in[0,1]
\end{array}\right.
$$

- This is the most general formulation.

2. Polar Coordinates Formulation:

Fix a reference point $x_{0}+0 \mathbf{i} \in \mathbb{C}=\mathbb{R}^{2}$, set

$$
\Gamma(t)=\left\{x_{0}+R(\varsigma, t) e^{\mathbf{i} \boldsymbol{s}} \mid 0 \leqslant \varsigma \leqslant \pi\right\} .
$$

Then problem (P) can be expressed as

$$
\left\{\begin{array}{l}
R_{t}=\frac{R R_{\varsigma \varsigma}-2 R_{\varsigma}^{2}-R^{2}}{R\left(R^{2}+R_{\varsigma}^{2}\right)}, \varsigma \in(0, \pi), t \in(0, T) \\
R_{\varsigma}(0, t)=-R(0, t) \cot \psi_{+}, t \in[0, T) \tag{2}\\
R_{\varsigma}(\pi, t)=R(\pi, t) \cot \psi_{-}, t \in[0, T) \\
R(\varsigma, 0)=R^{0}(\varsigma), \varsigma \in[0, \pi]
\end{array}\right.
$$

3. Evolution of A Graph: When $\psi_{ \pm} \in(0, \pi / 2)$ and $\Gamma(0)$ is a graph $y=u^{0}(x), x \in\left[l_{-}^{0}, l_{+}^{0}\right]$, one can expect that $\Gamma(t)$ is also a graph given by $y=u(x, t), x \in\left[l_{-}(t), l_{+}(t)\right]$.
(P): find unknowns u and $\left\{l_{ \pm}(t)\right\}$ such that

$$
\begin{align*}
& u_{t}=\left(\arctan u_{x}\right)_{x}, x \in\left(l_{-}(t), l_{+}(t)\right), t \in(0, T), \\
& u\left(l_{ \pm}(t), t\right)=0, t \in[0, T), \tag{3}\\
& u_{x}\left(l_{ \pm}(t), t\right)=\mp \tan \psi_{ \pm}, t \in[0, T), \\
& u(x, 0)=u^{0}(x), x \in\left[l_{-}(0), l_{+}(0)\right]:=\left[l_{-}^{0}, l_{+}^{0}\right] .
\end{align*}
$$

II It is a free boundary problem for a scalar equation.

Set $\psi_{1}:=\theta_{1}-\beta_{1}, \psi_{2}:=\beta_{2}-\theta_{2}$.
【 Chang-G.-Kohsaka (AA, 2003) - expanding case $\left(\psi_{1}<\psi_{2}\right)$.
【 G.-Hu (QAM, 2006) - area-preserving $\left(\psi_{1}=\psi_{2}\right)$ and shrinking $\left(\psi_{1}>\psi_{2}\right)$ cases.

- Study the free boundary formulation in a conical domain with open angle, i.e., $\pi-\left(\beta_{1}+\beta_{2}\right)$, strictly less than π.
- Global or non-global existence and uniqueness of solutions are established. Moreover, the asymptotic behaviors, as $t \rightarrow T^{-}, T \leq \infty$, are also studied.
- Only in the shrinking case, the open angle can be equal to π.

Some Difficulties of Problem (P):

- Need to eliminate Grim Reaper type singularity, or, needle-type singularity of solution.
- Existence and uniqueness of self-similar shrinking solution is highly nontrivial.
- Since the open angle is π, the center in polar coordinates might need to be changed after some time - Goto domain3

4. Velocity Formulation: Write

$$
\begin{gathered}
X_{z}(z, t)=v(z, t) e^{\mathrm{i} \psi(z, t)} . \\
v_{t}=\left(v^{-2} v_{z}\right)_{z}-v^{-1} \psi_{z}^{2}, z \in(0,1), t \in(0, T), \\
\psi_{t}=v^{-2} \psi_{z z}, z \in(0,1), t \in(0, T), \\
v_{z}(0, t)=-v(0, t) \psi_{z}(0, t) \cot \psi_{-}, t \in[0, T), \\
v_{z}(1, t)=v(1, t) \psi_{z}(1, t) \cot \psi_{+}, t \in[0, T), \\
\psi(0, t)=\psi_{-}, \psi(1, t)=-\psi_{+}, t \in[0, T), \\
v(z, 0)=v^{0}(z), \psi(z, 0)=\psi^{0}(z), z \in[0,1] .
\end{gathered}
$$

5. Curvature Formulation:

$$
\left\{\begin{array}{l}
\kappa_{t}=\kappa^{2}\left(\kappa_{\theta \theta}+\kappa\right), \theta \in\left(-\psi_{-}, \psi_{+}\right), t \in(0, T) \\
\kappa_{\theta}(\theta, t) \sin \theta=\kappa(\theta, t) \cos \theta, \theta= \pm \psi_{ \pm}, t \in[0, T) \\
\kappa(\theta, 0)=\kappa^{0}(\theta), \theta \in\left[-\psi_{-}, \psi_{+}\right]
\end{array}\right.
$$

- Friedman-McLeod (ARMA, 1986): $\kappa\left(\pm \psi_{ \pm}, t\right)=0$
- Angenent (JDG, 1991): replacing $\left[-\psi_{-}, \psi_{+}\right]$by \mathbb{R} and using
$2 n \pi$ (n positive integer) periodic boundary conditions
- see also Grayson (JDG, 1987): evolution of planar curves

Existence and Uniqueness of Solution:

Theorem 1 Let $\psi_{+}, \psi_{-} \in(0, \pi)$ and assume that
$\Gamma(0) \in C^{1+\alpha}$ for some $\alpha \in(0,1)$. Then there exists a positive T such that (1) admits a unique solution

$$
(x, y) \in C^{\infty}([0,1] \times(0, T)) \cap C^{1+\alpha,(1+\alpha) / 2}([0,1] \times[0, T))
$$

and T is the time of blow-up of curvature:

$$
\lim _{t \nearrow T}\|\kappa\|_{L^{\infty}(\Gamma(t))}=\infty
$$

- Apply a fixed-point argument to the particle formulation.
- The sup-norm of κ does not depend on any parameterization of $\Gamma(t)$, since the curvature is a geometric quantity.

Geometric Properties:

Theorem 2 Assume that $\psi_{ \pm}>0, \psi_{+}+\psi_{-} \leqslant \pi$, and $\Gamma(0)$ is a simple curve whose interior lies in the upper-half plane. Then for each $t \in(0, T), x(0, t)<x(1, t)$ and $\Gamma(t)$ is also a simple curve with interior lying in the upper-half plane. In addition, the area $A(t)$ of the region bounded by $\Gamma(t)$ and the x-axis is given by

$$
A(t)=A(0)-\left[\psi_{-}+\psi_{+}\right] t \quad \forall t \in[0, T)
$$

so that $T \leqslant T_{\max }:=A(0) /\left(\psi_{+}+\psi_{-}\right)$.

Self-similar Solution:

Theorem 3 Assume that $\psi_{ \pm} \in(0, \pi / 2]$. Then there exists a unique self-similar shrinking solution.

Recall the formulation in polar coordinates (2) and set

$$
\varphi:=\operatorname{arccot} \frac{R_{\varsigma}}{R}
$$

Then the problem can be written as

$$
\left\{\begin{array}{l}
R R_{t}=-1-\varphi_{\zeta}, R_{\varsigma}=R \cot \varphi, \varsigma \in(0, \pi), t \in(0, T) \\
\varphi(0, t)=\pi-\psi_{+}, \varphi(\pi, t)=\psi_{-}, t \in[0, T) \\
R(\varsigma, 0)=R^{0}(\varsigma), \varsigma \in[0, \pi]
\end{array}\right.
$$

A self-similar shrinking solution can be put in the form

$$
\begin{aligned}
& R(\varsigma, t)=\sqrt{2(T-t) \rho(\varsigma)} \\
& \varphi(\varsigma, t)=\psi(\varsigma), \forall \varsigma \in[0, \pi], t \in[0, T)
\end{aligned}
$$

This reduces to to solve the ODE system

$$
\begin{equation*}
\rho^{\prime}=2 \rho \cot \psi, \quad \rho>0, \quad \psi^{\prime}=\rho-1 \text { in }[0, \pi] \tag{4}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
\psi(0)=\pi-\psi_{+}, \quad \psi(\pi)=\psi_{-} \tag{5}
\end{equation*}
$$

- First integral $\leftrightarrow\left[\ln \sin ^{2} \psi+\ln \rho-\rho\right]^{\prime}=0$
- A generic trajectory to (4) is given by $e^{\rho-1} / \rho=c \sin ^{2} \psi$ for some constant $c \geq 1 \leftrightarrow \gamma(c)$ (counterclockwise)

- Let $B_{1}(c, \varphi)\left(B_{2}(c, \varphi)\right)$ be the left (right) intersection point of $\psi=\varphi$ with $\gamma(c)$.
- Let $\ell_{1}(c, \varphi)\left(\ell_{2}(c, \varphi)\right)$ be the "time" spent on $\gamma(c)$ from the leftmost point of $\gamma(c)$ to $B_{1}(c, \varphi)\left(B_{2}(c, \varphi)\right)$.

【 Key Idea: To evaluate the "time" spent on the trajectory $\gamma(c)$ so that $\ell_{i}\left(c, \psi_{+}\right)+\ell_{j}\left(c, \psi_{-}\right)=\pi, i, j \in\{1,2\}$.

- For every $\varphi \in(0, \pi / 2]$, we have $\ell_{2}(\infty, \varphi)=\pi / 2$, $d \ell_{2}(c, \varphi) / d c<0, \forall c \gg 1$, and

$$
\frac{d}{d c}\left(c(c-1) \frac{d}{d c} \ell_{2}(c, \varphi)\right)<0, \forall c>\frac{1}{\sin ^{2} \varphi}
$$

- Let $\omega(c)$ be the whole period of $\gamma(c)$. Then

$$
\omega(c)=2 \ell_{2}(c, \pi / 2) .
$$

- Let $\omega_{1}(c)$ be the "time" spent on $\gamma(c)$ from the leftmost point to the bottom point. Then we have

$$
\begin{aligned}
& \lim _{c \searrow 1} \omega(c)=\sqrt{2} \pi, \lim _{c / \infty} \omega(c)=\pi, \\
& \lim _{c \searrow 1} \omega_{1}(c)=\sqrt{2} \pi / 4, \lim _{c / \infty} \omega_{1}(c)=\pi / 2, \\
& \omega^{\prime}(c)<0, \omega_{1}^{\prime}(c)>0, \forall c \in(1, \infty) .
\end{aligned}
$$

Theorem 4 (Asymptotic Behavior) Assume that $\Gamma(0)$ is a graph and $0<\psi_{ \pm}<\pi / 2$ such that u^{0} satisfies

$$
\begin{aligned}
& u^{0} \in C^{\infty}\left(\left[l_{-}^{0}, l_{+}^{0}\right]\right), u^{0}\left(l_{ \pm}^{0}\right)=0 \\
& u(\cdot)>0 \text { in }\left(l_{-}^{0}, l_{+}^{0}\right), \mp u_{x}^{0}\left(l_{ \pm}^{0}\right)=\gamma_{ \pm}>0
\end{aligned}
$$

Then (3) admits a unique solution with $T=T_{\max }$, and as $t \nearrow T, \Gamma(t)$ shrinks to a point in a self-similar manner.

- Using the standard blow-up technique in parabolic problem, we can derive the convergence to the self-similar shrinking solution as $t \nearrow T$.

We make the change of dependent and independent variables:

$$
\begin{aligned}
& z=\frac{x}{\sqrt{2(T-t)}}, \quad s=-\ln \sqrt{2(T-t)}, \\
& U(z, s):=u(x, t) / \sqrt{2(T-t)}, \\
& L_{ \pm}(s)=l_{ \pm}(t) / \sqrt{2(T-t)} .
\end{aligned}
$$

Set $s_{0}=-\ln \sqrt{2 T}$. Then the functions $\left(U, L_{ \pm}\right)$satisfies

$$
\left\{\begin{array}{l}
U_{s}=\left[a\left(U_{z}\right)\right]_{z}-z U_{z}+U, z \in\left(L_{-}(s), L_{+}(s)\right), s>s_{0} \\
U\left(L_{ \pm}(s), s\right)=0, U_{z}\left(L_{ \pm}(s), s\right)=\mp \gamma_{ \pm}, s>s_{0}
\end{array}\right.
$$

where $a(s)=\arctan (s)$ and $\gamma_{ \pm}=\tan \psi_{ \pm}$.

Some Estimates and Properties:

1. For every $t \in[0, T)$ and $x \in\left[l_{-}(t), l_{+}(t)\right]$,

$$
\left|u_{x}(x, t)\right| \leqslant M, u_{t}(x, t) \leqslant M, u_{x x} \leqslant M
$$

for some positive constant M.
2. There exists a constant C that depends only on u^{0} such that

$$
u_{t}(x, t) \geqslant-\frac{C h(0)}{h(t)}, u_{x x}(x, t) \geqslant-\frac{C h(0)}{h(t)}
$$

where $h(t):=\max _{l_{-}(t)<x<l_{+}(t)} u(x, t)$.
3. There exists $t_{*} \in[0, T)$ and $\xi \in C^{1}\left(\left[t_{*}, T\right)\right)$ such that for each $t \in\left[t_{*}, T\right)$,

$$
\begin{aligned}
& u_{x}(\cdot, t)>0 \text { in }\left[l_{-}(t), \xi(t)\right), \\
& u_{x}(\xi(t), t)=0>u_{x x}(\xi(t), t), \\
& u_{x}(\cdot, t)<0 \text { in } \quad\left(\xi(t), l_{+}(t)\right] .
\end{aligned}
$$

In addition, $i_{-}(t)>0, i_{+}(t)<0$ for all $t \in\left[t_{*}, T\right)$.
4. There exists a constant M and a time $t_{*} \in[0, T)$ such that

$$
u_{x x}(x, t) \leqslant M u(x, t), \forall x \in\left(l_{-}(t), l_{+}(t)\right), t \in\left[t_{*}, T\right) .
$$

5. Key Estimate: there exists a constant $C>0$ such that

$$
\sqrt{T-t} \leqslant C \ell(t) \leqslant C^{2} h(t) \leqslant C^{3} \sqrt{T-t}
$$

for all $t \in[0, T)$, where $\ell(t):=l_{+}(t)-l_{-}(t)$.
By translation, we may assume that

$$
l_{ \pm}(T):=\lim _{t \nearrow T} l_{ \pm}(T)=0
$$

Since $\dot{l}_{+}(t)<0<\dot{l}_{-}(t)$ for $t \in\left[t_{*}, T\right]$, we have

$$
\left|l_{ \pm}(t)\right|<\ell(t) \leqslant C \sqrt{T-t} \quad \forall t \in\left[t_{*}, T\right)
$$

