Some examples of global solutions associated with large initial data for the incompressible Navier-Stokes system

Isabelle Gallagher

Institut de Mathématiques de Jussieu, Université Paris 7

Luminy, March 25, 2008

I. Gallagher (IMJ, Paris 7)

Examples of large solutions to Navier-Stokes

Outline of the talk

The Cauchy problem

- Presentation of the equations
- Fundamental properties
- Weak solutions
- Strong solutions
- Towards the largest adapted space
- The Koch and Tataru space

Situations when large data can generate a global solution

- Previous results
- Two examples

▲ 同 → - ▲ 三

Presentation of the equations

- Viscous, incompressible, homogeneous fluid, in two or three space dimensions
- Velocity $u = (u^1, u^2, u^3)(t, x)$, pressure p(t, x)

(NS)
$$\partial_t u + u \cdot \nabla u - \Delta u = -\nabla p,$$

div $u = 0,$

with div
$$u = \sum_{j=1}^{3} \partial_{j} u^{j}$$
 and $u \cdot \nabla u = \sum_{j=1}^{3} u^{j} \partial_{j} u = \sum_{j=1}^{3} \partial_{j} (u^{j} u).$

Remark : The pressure can be eliminated by projection onto divergence-free vector fields :

$$\mathbb{P} = \mathsf{Id} -
abla \Delta^{-1} \mathsf{div}.$$

Cauchy data : $u_{|t=0} = u_0$.

Presentation of the equations

- Viscous, incompressible, homogeneous fluid, in two or three space dimensions
- Velocity $u = (u^1, u^2, u^3)(t, x)$, pressure p(t, x)

(NS)
$$\partial_t u + u \cdot \nabla u - \Delta u = -\nabla p,$$

div $u = 0,$

with div
$$u = \sum_{j=1}^{3} \partial_j u^j$$
 and $u \cdot \nabla u = \sum_{j=1}^{3} u^j \partial_j u = \sum_{j=1}^{3} \partial_j (u^j u)$.

Remark : The pressure can be eliminated by projection onto divergence-free vector fields :

$$\mathbb{P} = \mathsf{Id} - \nabla \Delta^{-1} \mathsf{div}.$$

Cauchy data : $u_{|t=0} = u_0$.

Presentation of the equations

- Viscous, incompressible, homogeneous fluid, in two or three space dimensions
- Velocity $u = (u^1, u^2, u^3)(t, x)$, pressure p(t, x)

(NS)
$$\partial_t u + u \cdot \nabla u - \Delta u = -\nabla p,$$

div $u = 0,$

with div
$$u = \sum_{j=1}^{3} \partial_j u^j$$
 and $u \cdot \nabla u = \sum_{j=1}^{3} u^j \partial_j u = \sum_{j=1}^{3} \partial_j (u^j u)$.

Remark : The pressure can be eliminated by projection onto divergence-free vector fields :

$$\mathbb{P} = \mathsf{Id} - \nabla \Delta^{-1} \mathsf{div}.$$

Cauchy data : $u_{|t=0} = u_0$.

Fundamental properties

Conservation of the energy

$$\frac{1}{2}\frac{d}{dt}\|u(t)\|_{L^2}^2+\|\nabla u(t)\|_{L^2}^2=0$$

due to the structure of the nonlinear term : $(u \cdot \nabla u | u)_{L^2} = 0$.

Scale invariance If u is a solution of (*NS*) associated with the initial data u_0 on [0, *T*[, then for all $\lambda > 0$,

 $u_{\lambda}(t,x) \stackrel{\text{def}}{=} \lambda u(\lambda^2 t, \lambda x)$

is a solution associated with $u_{\lambda,0}(x) \stackrel{\text{def}}{=} \lambda u_0(\lambda x)$ on $[0, \lambda^{-2}T[$.

To solve (NS) one should try to use both informations.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Fundamental properties

Conservation of the energy

$$\frac{1}{2}\frac{d}{dt}\|u(t)\|_{L^2}^2+\|\nabla u(t)\|_{L^2}^2=0$$

due to the structure of the nonlinear term : $(u \cdot \nabla u | u)_{L^2} = 0$.

Scale invariance

If *u* is a solution of (*NS*) associated with the initial data u_0 on [0, T[, then for all $\lambda > 0$,

 $u_{\lambda}(t,x) \stackrel{\text{def}}{=} \lambda u(\lambda^2 t, \lambda x)$

is a solution associated with $u_{\lambda,0}(x) \stackrel{\text{def}}{=} \lambda u_0(\lambda x)$ on $[0, \lambda^{-2}T[$.

To solve (NS) one should try to use both informations.

• • • • • • • • • • • •

Fundamental properties

Conservation of the energy

$$\frac{1}{2}\frac{d}{dt}\|u(t)\|_{L^2}^2+\|\nabla u(t)\|_{L^2}^2=0$$

due to the structure of the nonlinear term : $(u \cdot \nabla u | u)_{L^2} = 0$.

Scale invariance

If *u* is a solution of (*NS*) associated with the initial data u_0 on [0, T[, then for all $\lambda > 0$,

 $u_{\lambda}(t,x) \stackrel{\text{def}}{=} \lambda u(\lambda^2 t, \lambda x)$

is a solution associated with $u_{\lambda,0}(x) \stackrel{\text{def}}{=} \lambda u_0(\lambda x)$ on $[0, \lambda^{-2}T[$.

To solve (NS) one should try to use both informations.

• • • • • • • • • • • •

Theorem [Leray, 1934]

Let $u_0 \in L^2(\mathbb{R}^d)$ be a divergence free vector field. There is a solution u of (*NS*) satisfying for all $t \ge 0$

$$\|u(t)\|_{L^2}^2 + 2\int_0^t \|\nabla u(t')\|_{L^2}^2 dt' \le \|u_0\|_{L^2}^2.$$

In two space dimensions that solution is unique (and satisfies the energy equality).

Remarks :

- Proof by compactness.
- ▶ Uniqueness guaranteed if $u \in L^2([0, T]; L^{\infty}(\mathbb{R}^d))$..
- Search for conditions on the initial data to guarantee uniqueness.

Theorem [Leray, 1934]

Let $u_0 \in L^2(\mathbb{R}^d)$ be a divergence free vector field. There is a solution u of (NS) satisfying for all $t \ge 0$

$$\|u(t)\|_{L^2}^2 + 2\int_0^t \|\nabla u(t')\|_{L^2}^2 dt' \le \|u_0\|_{L^2}^2.$$

In two space dimensions that solution is unique (and satisfies the energy equality).

Remarks :

- Proof by compactness.
- Uniqueness guaranteed if $u \in L^2([0, T]; L^{\infty}(\mathbb{R}^d))$.
- Search for conditions on the initial data to guarantee uniqueness.

Theorem [Leray, 1934]

Let $u_0 \in L^2(\mathbb{R}^d)$ be a divergence free vector field. There is a solution u of (*NS*) satisfying for all $t \ge 0$

$$\|u(t)\|_{L^2}^2 + 2\int_0^t \|\nabla u(t')\|_{L^2}^2 dt' \le \|u_0\|_{L^2}^2.$$

In two space dimensions that solution is unique (and satisfies the energy equality).

Remarks :

- Proof by compactness.
- Uniqueness guaranteed if $u \in L^2([0, T]; L^{\infty}(\mathbb{R}^d))$.

Search for conditions on the initial data to guarantee uniqueness.

Theorem [Leray, 1934]

Let $u_0 \in L^2(\mathbb{R}^d)$ be a divergence free vector field. There is a solution u of (*NS*) satisfying for all $t \ge 0$

$$\|u(t)\|_{L^2}^2 + 2\int_0^t \|\nabla u(t')\|_{L^2}^2 dt' \le \|u_0\|_{L^2}^2.$$

In two space dimensions that solution is unique (and satisfies the energy equality).

Remarks :

- Proof by compactness.
- Uniqueness guaranteed if $u \in L^2([0, T]; L^{\infty}(\mathbb{R}^d))$.
- Search for conditions on the initial data to guarantee uniqueness.

(日) (同) (日) (日)

Strong solutions

One does not use the structure of the equation, but rather its scale invariance, by a fixed point method.

Solving (*NS*) is equivalent to solving

 $u = \mathbb{S}(t)u_0 + \mathbb{B}(u, u)$

where $\mathbb{S}(t)$ is the heat semi-group on \mathbb{R}^d and \mathbb{B} the bilinear form

$$\mathbb{B}(u,u)(t)=-\int_0^t \mathbb{S}(t-t')\mathbb{P}\, ext{div}\,(u\otimes u)(t')\,dt'.$$

The problem consists in finding an adapted Banach space X, such that \mathbb{B} is continuous from $X \times X$ to X.

Remark : By the scale invariance, the norm on X must satisfy

 $\lambda \|f(\lambda^2 t, \lambda(x-a))\|_X \sim \|f\|_X.$

Strong solutions

One does not use the structure of the equation, but rather its scale invariance, by a fixed point method. Solving (N(S)) is equivalent to solving

Solving (NS) is equivalent to solving

 $u = \mathbb{S}(t)u_0 + \mathbb{B}(u, u)$

where $\mathbb{S}(t)$ is the heat semi-group on \mathbb{R}^d and \mathbb{B} the bilinear form

$$\mathbb{B}(u,u)(t)=-\int_0^t \mathbb{S}(t-t')\mathbb{P}\, ext{div}\,(u\otimes u)(t')\,dt'.$$

The problem consists in finding an adapted Banach space X, such that \mathbb{B} is continuous from $X \times X$ to X.

Remark : By the scale invariance, the norm on X must satisfy

 $\lambda \|f(\lambda^2 t, \lambda(x-a))\|_X \sim \|f\|_X.$

Strong solutions

One does not use the structure of the equation, but rather its scale invariance, by a fixed point method.

Solving (NS) is equivalent to solving

 $u = \mathbb{S}(t)u_0 + \mathbb{B}(u, u)$

where $\mathbb{S}(t)$ is the heat semi-group on \mathbb{R}^d and \mathbb{B} the bilinear form

$$\mathbb{B}(u,u)(t)=-\int_0^t \mathbb{S}(t-t')\mathbb{P}\, ext{div}\,(u\otimes u)(t')\,dt'.$$

The problem consists in finding an adapted Banach space X, such that \mathbb{B} is continuous from $X \times X$ to X.

Remark : By the scale invariance, the norm on X must satisfy

 $\lambda \|f(\lambda^2 t, \lambda(x-a))\|_X \sim \|f\|_X.$

An existence and uniqueness result

Theorem

Let X be an adapted space. If u_0 is such that $\|\mathbb{S}(t)u_0\|_X$ is small enough, then there is a unique solution to (NS) in X.

Proof: This is simply Picard's theorem : if X is a Banach space, if $L \in \mathcal{L}(X)$ and if $\mathbb{B} \in \mathcal{B}(X)$, with $\|L\|_{\mathcal{L}(X)} < 1$, then for all x_0 in X satisfying

$$\|x_0\|_X < \frac{(1-\|L\|_{\mathcal{L}(X)})^2}{4\|\mathbb{B}\|_{\mathcal{B}(X)}}$$

the equation

$$x = x_0 + Lx + \mathbb{B}(x, x)$$

has a unique solution in the ball centered at $\boldsymbol{0}$ and of radius

イロト イヨト イヨト イヨ

An existence and uniqueness result

Theorem

Let X be an adapted space. If u_0 is such that $||\mathbb{S}(t)u_0||_X$ is small enough, then there is a unique solution to (NS) in X.

Proof: This is simply Picard's theorem : if X is a Banach space, if $L \in \mathcal{L}(X)$ and if $\mathbb{B} \in \mathcal{B}(X)$, with $\|L\|_{\mathcal{L}(X)} < 1$, then for all x_0 in X satisfying

$$\|x_0\|_X < \frac{(1-\|L\|_{\mathcal{L}(X)})^2}{4\|\mathbb{B}\|_{\mathcal{B}(X)}}$$

the equation

$$x = x_0 + Lx + \mathbb{B}(x, x)$$

has a unique solution in the ball centered at 0 and of radius $\frac{1 - \|L\|_{\mathcal{L}(X)}}{2\|\mathbb{B}\|_{\mathcal{L}(X)}}$

• • • • • • • • • • • • •

Some examples of adapted spaces with d = 3

- The space of functions u₀ such that t^{1/4}S(t)u₀ belongs to L[∞]([0, T]; H¹); this is guaranteed if u₀ is in H^{1/2} (Fujita-Kato, 1964).
- The space of functions u_0 such that $t^{\frac{1}{4}}\mathbb{S}(t)u_0$ belongs to $L^{\infty}([0, T]; L^6)$; this is guaranteed if u_0 is in L^3 (Kato 1983).
- The space of functions u_0 such that $t^{\frac{1}{2}(1-\frac{3}{p})}\mathbb{S}(t)u_0$ belongs to $L^{\infty}([0, T]; L^p)$, for p a real number in $]3, \infty[$; this corresponds to the Besov space $\dot{B}_{p,\infty}^{-1+\frac{3}{p}}$ (Cannone-Meyer-Planchon, 1993).

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Some examples of adapted spaces with d = 3

- The space of functions u₀ such that t^{1/4}S(t)u₀ belongs to L[∞]([0, T]; H¹); this is guaranteed if u₀ is in H^{1/2} (Fujita-Kato, 1964).
- The space of functions u_0 such that $t^{\frac{1}{4}}\mathbb{S}(t)u_0$ belongs to $L^{\infty}([0, T]; L^6)$; this is guaranteed if u_0 is in L^3 (Kato 1983).

• The space of functions u_0 such that $t^{\frac{1}{2}(1-\frac{3}{p})}\mathbb{S}(t)u_0$ belongs to $L^{\infty}([0, T]; L^p)$, for p a real number in $]3, \infty[$; this corresponds to the Besov space $\dot{B}_{p,\infty}^{-1+\frac{3}{p}}$ (Cannone-Meyer-Planchon, 1993).

Some examples of adapted spaces with d = 3

- The space of functions u₀ such that t^{1/4}S(t)u₀ belongs to L[∞]([0, T]; H¹); this is guaranteed if u₀ is in H^{1/2} (Fujita-Kato, 1964).
- The space of functions u_0 such that $t^{\frac{1}{4}}\mathbb{S}(t)u_0$ belongs to $L^{\infty}([0, T]; L^6)$; this is guaranteed if u_0 is in L^3 (Kato 1983).
- The space of functions u_0 such that $t^{\frac{1}{2}(1-\frac{3}{p})}\mathbb{S}(t)u_0$ belongs to $L^{\infty}([0, T]; L^p)$, for p a real number in $]3, \infty[$; this corresponds to the Besov space $\dot{B}_{p,\infty}^{-1+\frac{3}{p}}$ (Cannone-Meyer-Planchon, 1993).

(日) (同) (日) (日)

Remarks

Those are small data or small time theorems.

They hold for the more general equation

 $\partial_t u - \Delta u + Q(u, u) = 0$

where $Q(v, w) \stackrel{\text{def}}{=} \sum_{1 \le j,k \le 3} Q_{j,k}(D)(v^j w^k)$ and $Q_{j,k}(D)$ are smooth homogeneous Fourier multipliers of order 1.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Besov spaces and oscillations

Proof: If $t \leq \varepsilon^2$, one has $\|\mathbb{S}(t)f_{\varepsilon}\|_{L^p} \leq \|f\|_{L^p}$ hence $\|\|t^{\frac{\sigma}{2}}\mathbb{S}(t)f_{\varepsilon}\|_{L^p}\|_{L^1([0,\varepsilon^2],\frac{dt}{t})} \lesssim \varepsilon^{\sigma}\|f\|_{L^p}$

Besov spaces and oscillations

Proof: If $t \leq \varepsilon^2$, one has $\|\mathbb{S}(t)f_{\varepsilon}\|_{L^p} \leq \|f\|_{L^p}$ hence $\|\|t^{\frac{\sigma}{2}}\mathbb{S}(t)f_{\varepsilon}\|_{L^p}\|_{L^1([0,\varepsilon^2],\frac{dt}{t})} \lesssim \varepsilon^{\sigma}\|f\|_{L^p}.$

3

If $t \ge \varepsilon^2$, since $-i\varepsilon \partial_3 e^{i\frac{x_3}{\varepsilon}} = e^{i\frac{x_3}{\varepsilon}}$, one has

$$\begin{split} \mathbb{S}(t)f_{\varepsilon}(x) &= -\varepsilon^{2}\int_{\mathbb{R}^{3}}\partial_{y_{3}}^{2}\left(G_{t}(x-y)f(y)\right)e^{i\frac{y_{3}}{\varepsilon}}dy\\ &= -\frac{\varepsilon^{2}}{t}\int_{\mathbb{R}^{3}}G_{t}(x-y)f(y)e^{i\frac{y_{3}}{\varepsilon}}dy\\ &+ 2\frac{\varepsilon^{2}}{t^{\frac{1}{2}}}\int_{\mathbb{R}^{3}}G_{t}(x-y)\partial_{3}f(y)e^{i\frac{y_{3}}{\varepsilon}}dy\\ &- \varepsilon^{2}\int_{\mathbb{R}^{3}}G_{t}(x-y)\partial_{3}^{2}f(y)e^{i\frac{y_{3}}{\varepsilon}}dy, \end{split}$$

where $G_t(x)$ is a function of the type $\frac{1}{(4\pi t)^{\frac{3}{2}}}e^{-\frac{|x|^2}{4t}}P(\frac{x}{\sqrt{t}})$, and the result follows from Young's inequality and integration in time.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

If $t \ge \varepsilon^2$, since $-i\varepsilon \partial_3 e^{i\frac{x_3}{\varepsilon}} = e^{i\frac{x_3}{\varepsilon}}$, one has

$$\begin{split} \mathbb{S}(t)f_{\varepsilon}(x) &= -\varepsilon^{2}\int_{\mathbb{R}^{3}}\partial_{y_{3}}^{2}\left(G_{t}(x-y)f(y)\right)e^{i\frac{y_{3}}{\varepsilon}}dy\\ &= -\frac{\varepsilon^{2}}{t}\int_{\mathbb{R}^{3}}G_{t}(x-y)f(y)e^{i\frac{y_{3}}{\varepsilon}}dy\\ &+ 2\frac{\varepsilon^{2}}{t^{\frac{1}{2}}}\int_{\mathbb{R}^{3}}G_{t}(x-y)\partial_{3}f(y)e^{i\frac{y_{3}}{\varepsilon}}dy\\ &- \varepsilon^{2}\int_{\mathbb{R}^{3}}G_{t}(x-y)\partial_{3}^{2}f(y)e^{i\frac{y_{3}}{\varepsilon}}dy, \end{split}$$

where $G_t(x)$ is a function of the type $\frac{1}{(4\pi t)^{\frac{3}{2}}}e^{-\frac{|x|^2}{4t}}P(\frac{x}{\sqrt{t}})$, and the result follows from Young's inequality and integration in time.

• • • • • • • • • • • •

Towards the largest adapted space

Proposition [Meyer]

Let B be a Banach space continuously embedded in $\mathcal{S}'(\mathbb{R}^3)$ and such that

 $\lambda \|f(\lambda(\cdot - a))\|_B \sim \|f\|_B.$

Then *B* is continuously embedded in $\dot{B}_{\infty,\infty}^{-1}$.

Proof : We notice that

 $|\langle f, e^{-|\cdot|^2} \rangle| \leq C ||f||_B$

By dilation and translation, we deduce that

 $\|f\|_{\dot{B}^{-1}_{\infty,\infty}} = \sup_{t>0} t^{\frac{1}{2}} \|\mathbb{S}(t)f\|_{L^{\infty}} \leq C \|f\|_{B}.$

Towards the largest adapted space

Proposition [Meyer]

Let B be a Banach space continuously embedded in $\mathcal{S}'(\mathbb{R}^3)$ and such that

 $\lambda \|f(\lambda(\cdot - a))\|_B \sim \|f\|_B.$

Then *B* is continuously embedded in $\dot{B}_{\infty,\infty}^{-1}$.

Proof : We notice that

$$|\langle f, e^{-|\cdot|^2} \rangle| \leq C ||f||_B$$

By dilation and translation, we deduce that

$$\|f\|_{\dot{B}^{-1}_{\infty,\infty}} = \sup_{t>0} t^{\frac{1}{2}} \|\mathbb{S}(t)f\|_{L^{\infty}} \leq C \|f\|_{B}.$$

• • • • • • • • • • • •

The Koch and Tataru space

Definition

We denote by X the space of functions f of $L^2_{loc}(\mathbb{R}^+ \times \mathbb{R}^3)$ such that

$$\|f\|_{X} \stackrel{\text{def}}{=} \sup_{t>0} \left(t^{\frac{1}{2}} \|f(t)\|_{L^{\infty}} + \sup_{\substack{x \in \mathbb{R}^{3} \\ R>0}} R^{-\frac{3}{2}} \left(\int_{P(x,R)} |f(t,y)|^{2} dy dt \right)^{\frac{1}{2}} \right) < \infty,$$

where $P(x, R) = [0, R^2] \times B(x, R)$.

Remark : The space of initial data u_0 such that $\mathbb{S}(t)u_0$ is in X is the space BMO^{-1} and we have $\dot{B}_{\infty,2}^{-1} \hookrightarrow BMO^{-1} \hookrightarrow \dot{B}_{\infty,\infty}^{-1}$.

Theorem [Koch, Tataru 2001] The operator \mathbb{B} is continuous from $X \times X$ to X.

The Koch and Tataru space

Definition

We denote by X the space of functions f of $L^2_{loc}(\mathbb{R}^+ \times \mathbb{R}^3)$ such that

$$\|f\|_{X} \stackrel{\text{def}}{=} \sup_{t>0} \left(t^{\frac{1}{2}} \|f(t)\|_{L^{\infty}} + \sup_{\substack{x \in \mathbb{R}^{3} \\ R>0}} R^{-\frac{3}{2}} \left(\int_{P(x,R)} |f(t,y)|^{2} dy dt \right)^{\frac{1}{2}} \right) < \infty,$$

where $P(x,R) = [0,R^{2}] \times B(x,R).$

Remark : The space of initial data u_0 such that $\mathbb{S}(t)u_0$ is in X is the space BMO^{-1} and we have $\dot{B}_{\infty,2}^{-1} \hookrightarrow BMO^{-1} \hookrightarrow \dot{B}_{\infty,\infty}^{-1}$.

Theorem [Koch, Tataru 2001] The operator \mathbb{R} is continuous from $X \times X^{+}$

(日) (同) (三) (三)

The Koch and Tataru space

Definition

We denote by X the space of functions f of $L^2_{loc}(\mathbb{R}^+ \times \mathbb{R}^3)$ such that

$$\|f\|_{X} \stackrel{\text{def}}{=} \sup_{t>0} \left(t^{\frac{1}{2}} \|f(t)\|_{L^{\infty}} + \sup_{\substack{x \in \mathbb{R}^{3} \\ R>0}} R^{-\frac{3}{2}} \left(\int_{P(x,R)} |f(t,y)|^{2} dy dt \right)^{\frac{1}{2}} \right) < \infty,$$

where $P(x,R) = [0,R^{2}] \times B(x,R).$

Remark : The space of initial data u_0 such that $\mathbb{S}(t)u_0$ is in X is the space BMO^{-1} and we have $\dot{B}_{\infty,2}^{-1} \hookrightarrow BMO^{-1} \hookrightarrow \dot{B}_{\infty,\infty}^{-1}$.

Theorem [Koch, Tataru 2001]

The operator \mathbb{B} is continuous from $X \times X$ to X.

(日) (同) (三) (三)

- Spherical or helicoidal geometry (Ukhovskii, Yudovich 1968, Ladyzhenskaia 1969, Leibovich, Mahalov, Titi 1990, Ponce, Racke, Sideris, Titi 1994).
- Coriolis force (Babin, Mahalov, Nicolaenko 1996, Gallagher 1998, Chemin, Desjardins, Gallagher, Grenier 2001, Charve 2004).
- Thin domains (Raugel, Sell 1994, Iftimie, Raugel 2001).
- Perturbations of 2*D* vector fields (in the periodic case; Iftimie 1997, Gallagher 1997).
- Perturbations of global solutions (Gallagher, Iftimie, Planchon 2003).
- Fourier transform of the data supported in "sum-closed frequency sets" far enough from zero (Giga, Inui, Mahalov, Saal, 2007).

- Spherical or helicoidal geometry (Ukhovskii, Yudovich 1968, Ladyzhenskaia 1969, Leibovich, Mahalov, Titi 1990, Ponce, Racke, Sideris, Titi 1994).
- Coriolis force (Babin, Mahalov, Nicolaenko 1996, Gallagher 1998, Chemin, Desjardins, Gallagher, Grenier 2001, Charve 2004).
- Thin domains (Raugel, Sell 1994, Iftimie, Raugel 2001).
- Perturbations of 2*D* vector fields (in the periodic case; Iftimie 1997, Gallagher 1997).
- Perturbations of global solutions (Gallagher, Iftimie, Planchon 2003).
- Fourier transform of the data supported in "sum-closed frequency sets" far enough from zero (Giga, Inui, Mahalov, Saal, 2007).

- **Spherical or helicoidal geometry** (Ukhovskii, Yudovich 1968, Ladyzhenskaia 1969, Leibovich, Mahalov, Titi 1990, Ponce, Racke, Sideris, Titi 1994).
- **Coriolis force** (Babin, Mahalov, Nicolaenko 1996, Gallagher 1998, Chemin, Desjardins, Gallagher, Grenier 2001, Charve 2004).
- Thin domains (Raugel, Sell 1994, Iftimie, Raugel 2001).
- **Perturbations of** 2*D* **vector fields** (in the periodic case; Iftimie 1997, Gallagher 1997).
- Perturbations of global solutions (Gallagher, Iftimie, Planchon 2003).
- Fourier transform of the data supported in "sum-closed frequency sets" far enough from zero (Giga, Inui, Mahalov, Saal, 2007).

- **Spherical or helicoidal geometry** (Ukhovskii, Yudovich 1968, Ladyzhenskaia 1969, Leibovich, Mahalov, Titi 1990, Ponce, Racke, Sideris, Titi 1994).
- **Coriolis force** (Babin, Mahalov, Nicolaenko 1996, Gallagher 1998, Chemin, Desjardins, Gallagher, Grenier 2001, Charve 2004).
- Thin domains (Raugel, Sell 1994, Iftimie, Raugel 2001).
- Perturbations of 2*D* vector fields (in the periodic case; Iftimie 1997, Gallagher 1997).
- Perturbations of global solutions (Gallagher, Iftimie, Planchon 2003).
- Fourier transform of the data supported in "sum-closed frequency sets" far enough from zero (Giga, Inui, Mahalov, Saal, 2007).

- **Spherical or helicoidal geometry** (Ukhovskii, Yudovich 1968, Ladyzhenskaia 1969, Leibovich, Mahalov, Titi 1990, Ponce, Racke, Sideris, Titi 1994).
- **Coriolis force** (Babin, Mahalov, Nicolaenko 1996, Gallagher 1998, Chemin, Desjardins, Gallagher, Grenier 2001, Charve 2004).
- Thin domains (Raugel, Sell 1994, Iftimie, Raugel 2001).
- **Perturbations of** 2*D* **vector fields** (in the periodic case; Iftimie 1997, Gallagher 1997).
- Perturbations of global solutions (Gallagher, Iftimie, Planchon 2003).
- Fourier transform of the data supported in "sum-closed frequency sets" far enough from zero (Giga, Inui, Mahalov, Saal, 2007).

- **Spherical or helicoidal geometry** (Ukhovskii, Yudovich 1968, Ladyzhenskaia 1969, Leibovich, Mahalov, Titi 1990, Ponce, Racke, Sideris, Titi 1994).
- **Coriolis force** (Babin, Mahalov, Nicolaenko 1996, Gallagher 1998, Chemin, Desjardins, Gallagher, Grenier 2001, Charve 2004).
- Thin domains (Raugel, Sell 1994, Iftimie, Raugel 2001).
- **Perturbations of** 2*D* **vector fields** (in the periodic case; Iftimie 1997, Gallagher 1997).
- Perturbations of global solutions (Gallagher, Iftimie, Planchon 2003).
- Fourier transform of the data supported in "sum-closed frequency sets" far enough from zero (Giga, Inui, Mahalov, Saal, 2007).

• Example 1 : oscillations in one direction, and dilation in another (Chemin, Gallagher 2006)

Link with the Montgomery-Smith toy Navier-Stokes model (Gallagher,Paicu 2008)

• Example 2 : slow variation in one direction (Chemin, Gallagher 2007)

Remark : Those results are specific to Navier-Stokes : the first one uses the structure of the nonlinearity, the second one uses the fact that the 2D equation is globally wellposed.

• Example 1 : oscillations in one direction, and dilation in another (Chemin, Gallagher 2006)

Link with the Montgomery-Smith toy Navier-Stokes model (Gallagher, Paicu 2008)

• Example 2 : slow variation in one direction (Chemin, Gallagher 2007)

Remark : Those results are specific to Navier-Stokes : the first one uses the structure of the nonlinearity, the second one uses the fact that the 2D equation is globally wellposed.

• Example 1 : oscillations in one direction, and dilation in another (Chemin, Gallagher 2006)

Link with the Montgomery-Smith toy Navier-Stokes model (Gallagher, Paicu 2008)

• Example 2 : slow variation in one direction (Chemin, Gallagher 2007)

Remark : Those results are specific to Navier-Stokes : the first one uses the structure of the nonlinearity, the second one uses the fact that the 2D equation is globally wellposed.

• Example 1 : oscillations in one direction, and dilation in another (Chemin, Gallagher 2006)

Link with the Montgomery-Smith toy Navier-Stokes model (Gallagher, Paicu 2008)

• Example 2 : slow variation in one direction (Chemin, Gallagher 2007)

Remark : Those results are specific to Navier-Stokes : the first one uses the structure of the nonlinearity, the second one uses the fact that the 2D equation is globally wellposed.

Theorem [Chemin, Gallagher 2006]

If u_0 is a smooth, divergence free vector field in \mathbb{R}^3 such that, for some (appropriate) space F

$$\|\mathbb{B}(\mathbb{S}(t)u_0,\mathbb{S}(t)u_0)\|_F \leq C \exp\left(-C\|u_0\|^4_{\dot{B}^{-1}_{\infty,2}}
ight),$$

then the system (NS) has a unique global solution.

• *F* is a space for forcing terms in the Koch-Tataru theorem.

• **Proof** : define $R(t) = u(t) - S(t)u_0$ then

 $R = \mathbb{B}(\mathbb{S}(t)u_0, \mathbb{S}(t)u_0) + 2\mathbb{B}(\mathbb{S}(t)u_0, R) + \mathbb{B}(R, R).$

and apply Picard's scheme again.

• One needs to check that such an initial data exists (that is not small).

Theorem [Chemin, Gallagher 2006]

If u_0 is a smooth, divergence free vector field in \mathbb{R}^3 such that, for some (appropriate) space F

$$\|\mathbb{B}(\mathbb{S}(t)u_0,\mathbb{S}(t)u_0)\|_F \leq C \exp\left(-C\|u_0\|_{\dot{B}_{\infty,2}^{-1}}^4\right),$$

then the system (NS) has a unique global solution.

• *F* is a space for forcing terms in the Koch-Tataru theorem.

• **Proof** : define $R(t) = u(t) - S(t)u_0$ then

 $R = \mathbb{B}(\mathbb{S}(t)u_0, \mathbb{S}(t)u_0) + 2\mathbb{B}(\mathbb{S}(t)u_0, R) + \mathbb{B}(R, R).$

and apply Picard's scheme again.

• One needs to check that such an initial data exists (that is not small).

Theorem [Chemin, Gallagher 2006]

If u_0 is a smooth, divergence free vector field in \mathbb{R}^3 such that, for some (appropriate) space F

$$\|\mathbb{B}(\mathbb{S}(t)u_0,\mathbb{S}(t)u_0)\|_F \leq C \exp\left(-C\|u_0\|^4_{\dot{B}^{-1}_{\infty,2}}
ight),$$

then the system (NS) has a unique global solution.

- F is a space for forcing terms in the Koch-Tataru theorem.
- **Proof** : define $R(t) = u(t) S(t)u_0$ then

 $R = \mathbb{B}(\mathbb{S}(t)u_0, \mathbb{S}(t)u_0) + 2\mathbb{B}(\mathbb{S}(t)u_0, R) + \mathbb{B}(R, R).$

and apply Picard's scheme again.

• One needs to check that such an initial data exists (that is not small).

Theorem [Chemin, Gallagher 2006]

If u_0 is a smooth, divergence free vector field in \mathbb{R}^3 such that, for some (appropriate) space F

$$\|\mathbb{B}(\mathbb{S}(t)u_0,\mathbb{S}(t)u_0)\|_F \leq C \exp\left(-C\|u_0\|_{\dot{B}_{\infty,2}^{-1}}^4\right),$$

then the system (NS) has a unique global solution.

- F is a space for forcing terms in the Koch-Tataru theorem.
- **Proof** : define $R(t) = u(t) S(t)u_0$ then

 $R = \mathbb{B}(\mathbb{S}(t)u_0, \mathbb{S}(t)u_0) + 2\mathbb{B}(\mathbb{S}(t)u_0, R) + \mathbb{B}(R, R).$

and apply Picard's scheme again.

• One needs to check that such an initial data exists (that is not small).

Example 1

Theorem [Chemin, Gallagher 2006] Let $\phi \in \mathcal{S}(\mathbb{R}^3)$ and $\alpha \in]0, 1[$. Set

$$\varphi_{\varepsilon}(x) = \frac{(-\log \varepsilon)^{\frac{1}{5}}}{\varepsilon^{1-\alpha}} \cos\left(\frac{x_3}{\varepsilon}\right) \phi\left(x_1, \frac{x_2}{\varepsilon^{\alpha}}, x_3\right).$$

There is C > 0 such that, if ε is small enough,

$$u_0^{\varepsilon}(x) \stackrel{\mathrm{def}}{=} (\partial_2 \varphi_{\varepsilon}(x), -\partial_1 \varphi_{\varepsilon}(x), 0)$$

satisfies

$$\mathcal{C}^{-1}(-\log \varepsilon)^{rac{1}{5}} \leq \|u_0^{\varepsilon}\|_{\dot{B}^{-1}_{\infty,\infty}} \leq \mathcal{C}(-\log \varepsilon)^{rac{1}{5}}, \quad \text{and}$$

 $\|\mathbb{B}(\mathbb{S}(t)u_0^{\varepsilon},\mathbb{S}(t)u_0^{\varepsilon})\|_F\leq Carepsilon^{rac{lpha}{3}}(-\logarepsilon)^{rac{2}{5}}.$

In particular for ε small enough, u_0^{ε} generates a unique, global, smooth solution to (*NS*).

The Montgomery-Smith toy model

The equation

$$(TNS_1) \quad \partial_t u - \partial_x^2 u + |\partial_x|(u^2) = 0$$

has the same small data theorems as Navier-Stokes, but some large data can generate finite-time blow up (Montgomery-Smith, 2001).

Theorem [Gallagher, Paicu 2008] Let d = 2 or 3. There is a bilinear operator Q, which is a d-dimensional matrix of Fourier multipliers, such as the equation $(TNS_{t}) \int \partial_{t} u - \Delta u + Q(u, u) = 0 \quad \text{in } \mathbb{R}^{+} \times \mathbb{R}^{d}$

$$u_{|t=0} = u_0$$

preserves the **divergence free condition** and the **scale invariance** of (NS), and such that there is a global, unique solution if the data is small enough in BMO^{-1} . Moreover the initial data of the previous theorem generates a finite-time blow up.

The Montgomery-Smith toy model

The equation

$$(TNS_1) \quad \partial_t u - \partial_x^2 u + |\partial_x|(u^2) = 0$$

has the same small data theorems as Navier-Stokes, but some large data can generate finite-time blow up (Montgomery-Smith, 2001).

Theorem [Gallagher, Paicu 2008]

Let d = 2 or 3. There is a bilinear operator Q, which is a d-dimensional matrix of Fourier multipliers, such as the equation

$$(TNS_d) \begin{cases} \partial_t u - \Delta u + Q(u, u) = 0 & \text{in } \mathbb{R}^+ \times \mathbb{R}^d \\ \text{div } u = 0 \\ u_{|t=0} = u_0 \end{cases}$$

preserves the **divergence free condition** and the **scale invariance** of (*NS*), and such that there is a global, unique solution if the data is small enough in BMO^{-1} . Moreover the initial data of the previous theorem generates a finite-time blow up.

Example 2 : slow variation in one direction

Theorem [Chemin, Gallagher 2007]

Let $v_0^h = (v_0^1, v_0^2)$ and w_0 be smooth divergence free vector fields on \mathbb{R}^3 . If ε is small enough, the initial data

 $u_0^{\varepsilon}(x) = \left(v_0^h + \varepsilon w_0^h, w_0^3\right)\left(x_h, \varepsilon x_3\right)$

generates a unique, global solution u^{ε} of (NS).

Remark : One needs to check that such an initial data exists (that is not small) : let (f,g) be in $S(\mathbb{R}^2)$ and $S(\mathbb{R})$ respectively. Let us consider the function h^{ε} defined by $h^{\varepsilon}(x_h, x_3) \stackrel{\text{def}}{=} f(x_h)g(\varepsilon x_3)$. We have, if ε is small enough,

 $\|h^{\varepsilon}\|_{\dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3)} \geq \frac{1}{4} \|f\|_{\dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^2)} \|g\|_{L^{\infty}(\mathbb{R})}.$

Example 2 : slow variation in one direction

Theorem [Chemin, Gallagher 2007]

Let $v_0^h = (v_0^1, v_0^2)$ and w_0 be smooth divergence free vector fields on \mathbb{R}^3 . If ε is small enough, the initial data

$$u_0^{\varepsilon}(x) = \left(v_0^h + \varepsilon w_0^h, w_0^3\right)\left(x_h, \varepsilon x_3\right)$$

generates a unique, global solution u^{ε} of (NS).

Remark : One needs to check that such an initial data exists (that is not small) : let (f,g) be in $\mathcal{S}(\mathbb{R}^2)$ and $\mathcal{S}(\mathbb{R})$ respectively. Let us consider the function h^{ε} defined by $h^{\varepsilon}(x_h, x_3) \stackrel{\text{def}}{=} f(x_h)g(\varepsilon x_3)$. We have, if ε is small enough,

$$\|h^{arepsilon}\|_{\dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^3)}\geq rac{1}{4}\|f\|_{\dot{B}^{-1}_{\infty,\infty}(\mathbb{R}^2)}\|g\|_{L^\infty(\mathbb{R})}.$$

< ロ > < 同 > < 三 > < 三

The solution u^{ε} is written $u^{\varepsilon} = v^{\varepsilon}_{app} + R^{\varepsilon}$, where

$$v_{app}^{\varepsilon}(t,x) \stackrel{\text{def}}{=} \left(\underline{v}^{h} + \varepsilon \underline{w}^{\varepsilon,h}, \underline{w}^{\varepsilon,3}\right)(t, x_{h}, \varepsilon x_{3})$$

and $\underline{v}^{h}(t, x_{h}, y_{3})$ solves the 2D Navier-Stokes system with data $v_{0}^{h}(x_{h}, y_{3})$ (y_{3} is a parameter) while $\underline{w}^{\varepsilon}$ solves a transport-diffusion equation

$$\partial_t \underline{w}^{\varepsilon} + \underline{v}^h \cdot \nabla_h \underline{w}^{\varepsilon} - \Delta_h \underline{w}^{\varepsilon} - \varepsilon^2 \partial_3^2 \underline{w}^{\varepsilon} = -(\nabla^h \underline{p}_1, \varepsilon^2 \partial_3 \underline{p}_1)$$

with data $w_0(x_h, y_3)$.

Claim : R^{ε} is small, globally in time.

 $\partial_t R^{\varepsilon} + R^{\varepsilon} \cdot \nabla R^{\varepsilon} + v^{\varepsilon}_{app} \cdot \nabla R^{\varepsilon} + R^{\varepsilon} \cdot \nabla v^{\varepsilon}_{app} - \Delta R^{\varepsilon} = -\nabla q_{\varepsilon} + F^{\varepsilon},$ e $F^{\varepsilon}(t, x_h, x_3) \sim \varepsilon^{\frac{1}{3}}$ in $L^2(\mathbb{R}^+; \dot{H}^{-\frac{1}{2}}(\mathbb{R}^3)).$

The solution u^{ε} is written $u^{\varepsilon} = v_{app}^{\varepsilon} + R^{\varepsilon}$, where

$$v_{app}^{\varepsilon}(t,x) \stackrel{\text{def}}{=} \left(\underline{v}^{h} + \varepsilon \underline{w}^{\varepsilon,h}, \underline{w}^{\varepsilon,3}\right)(t, x_{h}, \varepsilon x_{3})$$

and $\underline{v}^{h}(t, x_{h}, y_{3})$ solves the 2D Navier-Stokes system with data $v_{0}^{h}(x_{h}, y_{3})$ (y_{3} is a parameter) while $\underline{w}^{\varepsilon}$ solves a transport-diffusion equation

$$\partial_t \underline{w}^{\varepsilon} + \underline{v}^h \cdot \nabla_h \underline{w}^{\varepsilon} - \Delta_h \underline{w}^{\varepsilon} - \varepsilon^2 \partial_3^2 \underline{w}^{\varepsilon} = -(\nabla^h \underline{p}_1, \varepsilon^2 \partial_3 \underline{p}_1)$$

with data $w_0(x_h, y_3)$.

Claim : R^{ε} is small, globally in time.

 $\partial_t R^{\varepsilon} + R^{\varepsilon} \cdot \nabla R^{\varepsilon} + v_{app}^{\varepsilon} \cdot \nabla R^{\varepsilon} + R^{\varepsilon} \cdot \nabla v_{app}^{\varepsilon} - \Delta R^{\varepsilon} = -\nabla q_{\varepsilon} + F^{\varepsilon},$ here $F^{\varepsilon}(t, x_h, x_3) \sim \varepsilon^{\frac{1}{3}}$ in $L^2(\mathbb{R}^+; \dot{H}^{-\frac{1}{2}}(\mathbb{R}^3)).$

The solution u^{ε} is written $u^{\varepsilon} = v^{\varepsilon}_{app} + R^{\varepsilon}$, where

$$v_{app}^{\varepsilon}(t,x) \stackrel{\text{def}}{=} \left(\underline{v}^{h} + \varepsilon \underline{w}^{\varepsilon,h}, \underline{w}^{\varepsilon,3}\right)(t, x_{h}, \varepsilon x_{3})$$

and $\underline{v}^{h}(t, x_{h}, y_{3})$ solves the 2D Navier-Stokes system with data $v_{0}^{h}(x_{h}, y_{3})$ (y_{3} is a parameter) while $\underline{w}^{\varepsilon}$ solves a transport-diffusion equation

$$\partial_t \underline{w}^{\varepsilon} + \underline{v}^h \cdot \nabla_h \underline{w}^{\varepsilon} - \Delta_h \underline{w}^{\varepsilon} - \varepsilon^2 \partial_3^2 \underline{w}^{\varepsilon} = -(\nabla^h \underline{p}_1, \varepsilon^2 \partial_3 \underline{p}_1)$$

with data $w_0(x_h, y_3)$.

Claim : R^{ε} is small, globally in time.

 $\partial_t R^{\varepsilon} + R^{\varepsilon} \cdot \nabla R^{\varepsilon} + v_{app}^{\varepsilon} \cdot \nabla R^{\varepsilon} + R^{\varepsilon} \cdot \nabla v_{app}^{\varepsilon} - \Delta R^{\varepsilon} = -\nabla q_{\varepsilon} + F^{\varepsilon},$ where $F^{\varepsilon}(t, x_h, x_3) \sim \varepsilon^{\frac{1}{3}}$ in $L^2(\mathbb{R}^+; \dot{H}^{-\frac{1}{2}}(\mathbb{R}^3)).$

Indeed $F^{\varepsilon}(t, x_h, x_3)$ is made of the following terms :

$$\begin{split} \varepsilon \Big(\big(\varepsilon \underline{w}^{\varepsilon} \cdot \nabla \underline{w}^{\varepsilon,h}, \underline{w}^{\varepsilon} \cdot \nabla \underline{w}^{\varepsilon,3} \big) + \big(\underline{w}^{\varepsilon} \cdot \nabla \underline{v}^{h}, 0 \big) \Big) (t, x_{h}, \varepsilon x_{3}) \\ + \varepsilon \Big(\varepsilon \big(\partial_{3}^{2} \underline{v}^{h}, 0 \big) + \big(0, \partial_{3} \underline{p}_{0} \big) \Big) (t, x_{h}, \varepsilon x_{3}). \end{split}$$

Study of the nonlinear terms : For any smooth *a* and *b* and any $1 \le j \le 3$,

 $\begin{aligned} \|a\partial_j b\|_{L^2(\mathbb{R}^+;\dot{H}^{-\frac{1}{2}}(\mathbb{R}^3))} \lesssim \|a\partial_j b\|_{L^2(\mathbb{R}^+;L^{\frac{3}{2}}(\mathbb{R}^3))} \lesssim \|a\|_{L^\infty(\mathbb{R}^+;L^3(\mathbb{R}^3))} \|\partial_j b\|_{L^2(\mathbb{R}^+;L^3(\mathbb{R}^3))}. \end{aligned}$ This implies that

 $\|a\partial_j b(t,\mathsf{x}_h,\varepsilon\mathsf{x}_3)\|_{L^2(\mathbb{R}^+;\dot{H}^{-\frac{1}{2}}(\mathbb{R}^3))} \lesssim \varepsilon^{-\frac{2}{3}} \|a\|_{L^\infty(\mathbb{R}^+;\dot{H}^{\frac{1}{2}}(\mathbb{R}^3))} \|\partial_j b\|_{L^2(\mathbb{R}^+;\dot{H}^{\frac{1}{2}}(\mathbb{R}^3))}.$

Indeed $F^{\varepsilon}(t, x_h, x_3)$ is made of the following terms :

$$\begin{split} \varepsilon \Big(\big(\varepsilon \underline{w}^{\varepsilon} \cdot \nabla \underline{w}^{\varepsilon,h}, \underline{w}^{\varepsilon} \cdot \nabla \underline{w}^{\varepsilon,3} \big) + \big(\underline{w}^{\varepsilon} \cdot \nabla \underline{v}^{h}, 0 \big) \Big) (t, x_{h}, \varepsilon x_{3}) \\ + \varepsilon \Big(\varepsilon \big(\partial_{3}^{2} \underline{v}^{h}, 0 \big) + \big(0, \partial_{3} \underline{p}_{0} \big) \Big) (t, x_{h}, \varepsilon x_{3}). \end{split}$$

Study of the nonlinear terms : For any smooth a and b and any $1 \le j \le 3$,

 $\|a\partial_j b\|_{L^2(\mathbb{R}^+;\dot{H}^{-\frac{1}{2}}(\mathbb{R}^3))} \lesssim \|a\partial_j b\|_{L^2(\mathbb{R}^+;L^{\frac{3}{2}}(\mathbb{R}^3))} \lesssim \|a\|_{L^{\infty}(\mathbb{R}^+;L^3(\mathbb{R}^3))} \|\partial_j b\|_{L^2(\mathbb{R}^+;L^3(\mathbb{R}^3))}.$

This implies that

$$\|a\partial_j b(t,x_h,\varepsilon x_3)\|_{L^2(\mathbb{R}^+;\dot{H}^{-\frac{1}{2}}(\mathbb{R}^3))} \lesssim \varepsilon^{-\frac{2}{3}} \|a\|_{L^\infty(\mathbb{R}^+;\dot{H}^{\frac{1}{2}}(\mathbb{R}^3))} \|\partial_j b\|_{L^2(\mathbb{R}^+;\dot{H}^{\frac{1}{2}}(\mathbb{R}^3))}.$$

3

The ill prepared case

Ideally one would like to consider initial data of the following type (with 0 $< \alpha \leq$ 1) :

$$u_0^{\varepsilon}(x) = \left(v_0^h + \varepsilon^{\alpha} w_0^h, \varepsilon^{\alpha-1} w_0^3\right) \left(x_h, \varepsilon x_3\right)$$

where $v_0^h = (v_0^1, v_0^2, 0)$ is a horizontal, smooth divergence free vector field on \mathbb{R}^3 and w_0 is a smooth divergence free vector field on \mathbb{R}^3 .

Work in progress (Chemin, Gallagher, Paicu 2008) : consider

$$u_0^{\varepsilon}(x) = \left(\varepsilon^{\frac{1}{2}}w_0^h, \varepsilon^{-\frac{1}{2}}w_0^3\right)(x_h, \varepsilon x_3)$$

in $\mathbb{T}^2 \times \mathbb{R}$ with $\int_{\mathbb{T}^2} w_0^h(x_h, x_3) \equiv 0$, with (w_0^h, w_0^3) small and smooth enough (analytic-type in x_3) then there is a global solution.

The ill prepared case

Ideally one would like to consider initial data of the following type (with 0 $< \alpha \leq$ 1) :

$$u_0^{\varepsilon}(x) = \left(v_0^h + \varepsilon^{\alpha} w_0^h, \varepsilon^{\alpha-1} w_0^3\right) \left(x_h, \varepsilon x_3\right)$$

where $v_0^h = (v_0^1, v_0^2, 0)$ is a horizontal, smooth divergence free vector field on \mathbb{R}^3 and w_0 is a smooth divergence free vector field on \mathbb{R}^3 .

Work in progress (Chemin, Gallagher, Paicu 2008) : consider

$$u_0^{\varepsilon}(x) = \left(\varepsilon^{\frac{1}{2}}w_0^h, \varepsilon^{-\frac{1}{2}}w_0^3\right)(x_h, \varepsilon x_3)$$

in $\mathbb{T}^2 \times \mathbb{R}$ with $\int_{\mathbb{T}^2} w_0^h(x_h, x_3) \equiv 0$, with (w_0^h, w_0^3) small and smooth enough (analytic-type in x_3) then there is a global solution.