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Presentation of the equations

• Viscous, incompressible, homogeneous fluid, in two or three space dimensions

• Velocity u = (u1, u2, u3)(t, x), pressure p(t, x)

(NS) ∂tu + u · ∇u −∆u = −∇p,

div u = 0,

with div u =
3∑

j=1

∂ju
j and u · ∇u =

3∑
j=1

uj∂ju =
3∑

j=1

∂j(u
ju).

Remark : The pressure can be eliminated by projection onto divergence-free
vector fields :

P = Id−∇∆−1div.

Cauchy data : u|t=0 = u0.
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Fundamental properties

Conservation of the energy

1

2

d

dt
‖u(t)‖2

L2 + ‖∇u(t)‖2
L2 = 0

due to the structure of the nonlinear term : (u · ∇u|u)L2 = 0.

Scale invariance
If u is a solution of (NS) associated with the initial data u0 on [0,T [, then for
all λ > 0,

uλ(t, x)
def
= λu(λ2t, λx)

is a solution associated with uλ,0(x)
def
= λu0(λx) on [0, λ−2T [.

To solve (NS) one should try to use both informations.
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Weak solutions

Theorem [Leray, 1934]

Let u0 ∈ L2(Rd) be a divergence free vector field. There is a solution u of (NS)
satisfying for all t ≥ 0

‖u(t)‖2
L2 + 2

∫ t

0

‖∇u(t ′)‖2
L2 dt ′ ≤ ‖u0‖2

L2 .

In two space dimensions that solution is unique (and satisfies the energy equality).

Remarks :
I Proof by compactness.

I Uniqueness guaranteed if u ∈ L2([0,T ]; L∞(Rd))..

I Search for conditions on the initial data to guarantee uniqueness.
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Strong solutions

One does not use the structure of the equation, but rather its scale invariance, by
a fixed point method.
Solving (NS) is equivalent to solving

u = S(t)u0 + B(u, u)

where S(t) is the heat semi-group on Rd and B the bilinear form

B(u, u)(t) = −
∫ t

0

S(t − t ′)P div (u ⊗ u)(t ′) dt ′.

The problem consists in finding an adapted Banach space X , such that B is
continuous from X × X to X .

Remark : By the scale invariance, the norm on X must satisfy

λ‖f (λ2t, λ(x − a))‖X ∼ ‖f ‖X .
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An existence and uniqueness result

Theorem

Let X be an adapted space. If u0 is such that ‖S(t)u0‖X is small enough, then
there is a unique solution to (NS) in X .

Proof : This is simply Picard’s theorem : if X is a Banach space, if L ∈ L(X )
and if B ∈ B(X ), with ‖L‖L(X ) < 1, then for all x0 in X satisfying

‖x0‖X <
(1− ‖L‖L(X ))

2

4‖B‖B(X )

the equation
x = x0 + Lx + B(x , x)

has a unique solution in the ball centered at 0 and of radius
1− ‖L‖L(X )

2‖B‖B(X )
·
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Some examples of adapted spaces with d = 3

• The space of functions u0 such that t
1
4 S(t)u0 belongs to L∞([0,T ]; Ḣ1) ;

this is guaranteed if u0 is in Ḣ
1
2 (Fujita-Kato, 1964).

• The space of functions u0 such that t
1
4 S(t)u0 belongs to L∞([0,T ]; L6) ;

this is guaranteed if u0 is in L3 (Kato 1983).

• The space of functions u0 such that t
1
2 (1− 3

p )S(t)u0 belongs to L∞([0,T ]; Lp),
for p a real number in ]3,∞[ ;

this corresponds to the Besov space Ḃ
−1+ 3

p
p,∞ (Cannone-Meyer-Planchon,

1993).
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1
2 (Fujita-Kato, 1964).

• The space of functions u0 such that t
1
4 S(t)u0 belongs to L∞([0,T ]; L6) ;

this is guaranteed if u0 is in L3 (Kato 1983).

• The space of functions u0 such that t
1
2 (1− 3

p )S(t)u0 belongs to L∞([0,T ]; Lp),
for p a real number in ]3,∞[ ;

this corresponds to the Besov space Ḃ
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Remarks

Those are small data or small time theorems.

They hold for the more general equation

∂tu −∆u + Q(u, u) = 0

where Q(v ,w)
def
=

∑
1≤j,k≤3

Qj,k(D)(v jwk) and Qj,k(D) are smooth homogeneous

Fourier multipliers of order 1.
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Besov spaces and oscillations

Proposition

Let f ∈ S(R3), and σ ∈]0, 3(1− 1/p)[. We define

fε(x)
def
= f (x)e i

x3
ε .

Then
‖fε‖Ḃ−σp,∞

≤ Cεσ.

Proof : If t ≤ ε2, one has ‖S(t)fε‖Lp ≤ ‖f ‖Lp hence∥∥‖t σ2 S(t)fε‖Lp

∥∥
L1([0,ε2], dt

t )
. εσ‖f ‖Lp .
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If t ≥ ε2, since −iε∂3e
i

x3
ε = e i

x3
ε , one has

S(t)fε(x) = −ε2

∫
R3

∂2
y3

(Gt(x − y)f (y)) e i
y3
ε dy

= −ε
2

t

∫
R3

Gt(x − y)f (y)e i
y3
ε dy

+ 2
ε2

t
1
2

∫
R3

Gt(x − y)∂3f (y)e i
y3
ε dy

− ε2

∫
R3

Gt(x − y)∂2
3 f (y)e i

y3
ε dy ,

where Gt(x) is a function of the type
1

(4πt)
3
2

e−
|x|2

4t P(
x√
t

), and the result follows

from Young’s inequality and integration in time.
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Towards the largest adapted space

Proposition [Meyer]

Let B be a Banach space continuously embedded in S ′(R3) and such that

λ‖f (λ(· − a))‖B ∼ ‖f ‖B .

Then B is continuously embedded in Ḃ−1
∞,∞.

Proof : We notice that
|〈f , e−|·|

2

〉| ≤ C‖f ‖B
By dilation and translation, we deduce that

‖f ‖Ḃ−1
∞,∞

= sup
t>0

t
1
2 ‖S(t)f ‖L∞ ≤ C‖f ‖B .
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The Koch and Tataru space

Definition

We denote by X the space of functions f of L2
loc(R+ × R3) such that

‖f ‖X
def
= sup

t>0

(
t

1
2 ‖f (t)‖L∞ + sup

x∈R3

R>0

R−
3
2

(∫
P(x,R)

|f (t, y)|2dydt
) 1

2

)
<∞,

where P(x ,R) = [0,R2]× B(x ,R).

Remark : The space of initial data u0 such that S(t)u0 is in X is the
space BMO−1 and we have Ḃ−1

∞,2 ↪→ BMO−1 ↪→ Ḃ−1
∞,∞.

Theorem [Koch, Tataru 2001]

The operator B is continuous from X × X to X .
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∞,2 ↪→ BMO−1 ↪→ Ḃ−1
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Situations when large data can generate a global solution

• Spherical or helicoidal geometry (Ukhovskii, Yudovich 1968, Ladyzhenskaia
1969, Leibovich, Mahalov, Titi 1990, Ponce, Racke, Sideris, Titi 1994).

• Coriolis force (Babin, Mahalov, Nicolaenko 1996, Gallagher 1998, Chemin,
Desjardins, Gallagher, Grenier 2001, Charve 2004).

• Thin domains (Raugel, Sell 1994, Iftimie, Raugel 2001).

• Perturbations of 2D vector fields (in the periodic case ; Iftimie 1997,
Gallagher 1997).

• Perturbations of global solutions (Gallagher, Iftimie, Planchon 2003).

• Fourier transform of the data supported in “sum-closed frequency sets” far
enough from zero (Giga, Inui, Mahalov, Saal, 2007).
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Situations when large data can generate a global solution
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Two examples

• Example 1 : oscillations in one direction, and dilation in another (Chemin,
Gallagher 2006)

Link with the Montgomery-Smith toy Navier-Stokes model (Gallagher,Paicu
2008)

• Example 2 : slow variation in one direction (Chemin, Gallagher 2007)

Remark : Those results are specific to Navier-Stokes : the first one uses the
structure of the nonlinearity, the second one uses the fact that the 2D equation is
globally wellposed.
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A new, nonlinear smallness assumption

Theorem [Chemin, Gallagher 2006]

If u0 is a smooth, divergence free vector field in R3 such that, for some
(appropriate) space F

‖B(S(t)u0,S(t)u0)‖F ≤ C exp
(
−C‖u0‖4

Ḃ−1
∞,2

)
,

then the system (NS) has a unique global solution.

• F is a space for forcing terms in the Koch-Tataru theorem.

• Proof : define R(t) = u(t)− S(t)u0 then

R = B(S(t)u0,S(t)u0) + 2B(S(t)u0,R) + B(R,R).

and apply Picard’s scheme again.

• One needs to check that such an initial data exists (that is not small).
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Example 1

Theorem [Chemin, Gallagher 2006]

Let φ ∈ S(R3) and α ∈]0, 1[. Set

ϕε(x) =
(− log ε)

1
5

ε1−α cos
(x3

ε

)
φ
(
x1,

x2

εα
, x3

)
.

There is C > 0 such that, if ε is small enough,

uε0(x)
def
= (∂2ϕε(x),−∂1ϕε(x), 0)

satisfies
C−1(− log ε)

1
5 ≤ ‖uε0‖Ḃ−1

∞,∞
≤ C (− log ε)

1
5 , and

‖B(S(t)uε0 ,S(t)uε0)‖F ≤ Cε
α
3 (− log ε)

2
5 .

In particular for ε small enough, uε0 generates a unique, global, smooth solution
to (NS).
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The Montgomery-Smith toy model

The equation
(TNS1) ∂tu − ∂2

xu + |∂x |(u2) = 0

has the same small data theorems as Navier-Stokes, but some large data can
generate finite-time blow up (Montgomery-Smith, 2001).

Theorem [Gallagher, Paicu 2008]

Let d = 2 or 3. There is a bilinear operator Q, which is a d-dimensional matrix of
Fourier multipliers, such as the equation

(TNSd)

 ∂tu −∆u + Q(u, u) = 0 in R+ × Rd

div u = 0
u|t=0 = u0

preserves the divergence free condition and the scale invariance of (NS), and
such that there is a global, unique solution if the data is small enough in BMO−1.
Moreover the initial data of the previous theorem generates a finite-time blow up.
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Example 2 : slow variation in one direction

Theorem [Chemin, Gallagher 2007]

Let vh
0 = (v1

0 , v
2
0 ) and w0 be smooth divergence free vector fields on R3. If ε is

small enough, the initial data

uε0(x) =
(
vh

0 + εwh
0 ,w

3
0

)
(xh, εx3)

generates a unique, global solution uε of (NS).

Remark : One needs to check that such an initial data exists (that is not small) :
let (f , g) be in S(R2) and S(R) respectively. Let us consider the function hε

defined by hε(xh, x3)
def
= f (xh)g(εx3). We have, if ε is small enough,

‖hε‖Ḃ−1
∞,∞(R3) ≥

1

4
‖f ‖Ḃ−1

∞,∞(R2)‖g‖L∞(R).
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Idea of the proof

The solution uε is written uε = vεapp + Rε, where

vεapp(t, x)
def
=
(
vh + εwε,h,wε,3

)
(t, xh, εx3)

and vh(t, xh, y3) solves the 2D Navier-Stokes system with data vh
0 (xh, y3) (y3 is a

parameter) while wε solves a transport-diffusion equation

∂tw
ε + vh · ∇hw

ε −∆hw
ε − ε2∂2

3wε = −(∇hp
1
, ε2∂3p1

)

with data w0(xh, y3).

Claim : Rε is small, globally in time.

∂tR
ε + Rε · ∇Rε + vεapp · ∇Rε + Rε · ∇vεapp −∆Rε = −∇qε + F ε,

where F ε(t, xh, x3) ∼ ε 1
3 in L2(R+; Ḣ−

1
2 (R3)).
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Idea of the proof

Indeed F ε(t, xh, x3) is made of the following terms :

ε
(

(εwε · ∇wε,h,wε · ∇wε,3) + (wε · ∇vh, 0)
)

(t, xh, εx3)

+ε
(
ε(∂2

3vh, 0) + (0, ∂3p0
)
)

(t, xh, εx3).

Study of the nonlinear terms : For any smooth a and b and any 1 ≤ j ≤ 3,

‖a∂jb‖
L2(R+;Ḣ−

1
2 (R3))

. ‖a∂jb‖
L2(R+;L

3
2 (R3))

. ‖a‖L∞(R+;L3(R3))‖∂jb‖L2(R+;L3(R3)).

This implies that

‖a∂jb(t, xh, εx3)‖
L2(R+;Ḣ−

1
2 (R3))

. ε−
2
3 ‖a‖

L∞(R+;Ḣ
1
2 (R3))

‖∂jb‖
L2(R+;Ḣ

1
2 (R3))

.
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The ill prepared case

Ideally one would like to consider initial data of the following type
(with 0 < α ≤ 1) :

uε0(x) =
(
vh

0 + εαwh
0 , ε

α−1w3
0

)
(xh, εx3)

where vh
0 = (v1

0 , v
2
0 , 0) is a horizontal, smooth divergence free vector field on R3

and w0 is a smooth divergence free vector field on R3.

Work in progress (Chemin, Gallagher, Paicu 2008) : consider

uε0(x) =
(
ε

1
2 wh

0 , ε
− 1

2 w3
0

)
(xh, εx3)

in T2 × R with

∫
T2

wh
0 (xh, x3) ≡ 0, with (wh

0 ,w
3
0 ) small and smooth enough

(analytic-type in x3) then there is a global solution.
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