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the deterministic KdV equation

∂tu + ∂3
xu + ∂x(u

2) = 0

I “Universal model” :
Asymptotic model for long waves at the surface of water
(small amplitude, shallow water, unidirectional propagation)
Rigorous derivation : W. Craig, CPDE, 1985
Model for plasma physics : Herman, J. Phys. A, 1990

I Integrable equation
Hamiltonian system (action-angle variables) : infinite number
of integrals of motion
Allows to solve globally the equation (weakly) in spaces of
irregular data : Kappeler-Toppalov, Duke Math. J., 2006
 white noise invariant measure
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I Inverse scattering methods : Gardner, Green, Kruskal,
Miura,PRL, 1967
Resolution into solitons of any smooth enough and decaying
solution : Ekhaus, Schuur, M2AS, 1983
Solitons : two-parameter family of solutions
uc0,x0(t, x) = ϕc0(x − c0t + x0) with

ϕc0(x) =
3c0

2 cosh2(
√

c0x/2)

I From PDE point of view :
I Equation globally well-posed in Hs(R), s > −3/4, and
Hs(T), s > −1/2 : Bourgain ; Kenig,Ponce,Vega ; Colliander,
Staffilani, Takaoka, Tao

I Solitons are orbitally stable Benjamin, Proc. Roy. Soc.
Lond.,1972 and even asymptotically stable Pego, Weinstein,
CMP, 1994 ; Martel, Merle, Arch. Rat. Mech. Anal., 01
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Random perturbations of the KdV equation

No rigorous (mathematical) derivation

I Forcing term : Surface waves, random pressure e.g. turbulent
wind on the surface
 add a term ξ̇(t, x) white noise in time

I Variations of the bottom topography modeled by a
stationary (in x) random process
 add a term (∂xu)ξ̇(t) (white in time)
Mathematically : KdV equation rewritten in the frame moving
with velocity ξ̇ : u(x − ξ(t))

I Random potential : uξ̇ or (∂xu)ξ̇
Plasma physics, Herman, J. Phys. A, 1990
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Mathematical results in the randomly perturbed case

I Additive case :

PDE methods :

dB, Debussche, Tsutsumi, JFA, 99 ; Printems, JDE, 99 :
Equation is well posed in Hs(R), s > −5/8 for irregular noise
in space (includes “localised” space-time white noise)
dB, Debussche, Tsutsumi, SIAM, 04 : Same result for x ∈ T,
but with s > −1/2, i.e. close to space-time white noise)
dB, Debussche, Ann IHP, 07 : Random modulation of solitons

Integrability methods (action-angle variables)
Kuksin, Piatnitski, to appear in JMPA :
Hasminski-Whitham averaging for

∂tu + ∂3
xu − ν∂2

xu + ∂x(u
2) =

√
νξ̇

ξ̇ white noise in time, regular in x ; modeling of weak
turbulence
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I Multiplicative case :

PDE Methods :

dB, Debussche, Int. Disc. Math. Sc., 07 : Existence of
solutions in L2(R) and H1(R) (for noise in L2 or H1)

Tsutsumi, preprint 07 : Regular noise in space, u(t, x) goes to
zero a.s. as t goes to infinity, for any u0, under specific
assumptions on the noise, and x ∈ T

Inverse scattering methods :

Garnier, J. Stat. Phys. 01 : Noise of the form (∂xu)ξ̇(t),
(∂3

xu)ξ̇(t) or ∂x(u
2)ξ̇(t), i.e. perturbations of velocity,

dispersion or nonlinearity ; propagation of solitons : equations
on the scattering data ; no estimate on the remaining terms
for the original solution
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Original motivation of the work

Wadati, J. Phys. Soc. Japan, 1983 : Particular case of a noise that
depends only on time

du + (∂3
xu + ∂x(u

2))dt = dW

with W (t) real valued, centered, Brownian motion ; then
u(t, x) = U(t, x −

∫ t
0 W (s)ds) + W (t) with U solution of

deterministic KdV. If in particular U(t, x) = ϕc0(x − c0t), then

E(u(t, x)) = E(ϕc0(x−c0t−
∫ t

0
W (s)ds)) =

∫
R

ϕc0(x−c0t−y)µ(dy)

with µ = L(
∫ t
0 W (s)ds) ∼ N (0, t3/3) ; one easily gets

max
x∈R

E(u(t, x)) ≤ Ct−3/2

Same result, but with Ct−1/2 if noise (∂xu) ◦ dW /dt
Is it possible to get such results for more general noises (depending
on space) with, e.g., amplitude goes to zero ?
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Description of the noise

du + (∂3
xu + ∂x(u

2))dt =


εdW
εudW
ε(∂xu)dW

W (t) infinite dimensional Wiener process i.e.

W (t, x) =
∑

j

Φ(ej)(x)Wj(t)

(Wj)j∈N independent family of real valued Brownian motions

(ej)j∈N complete orthonormal system of L2(R)
I Φ Hilbert-Schmidt operator from L2(R) into H1(R), if

additive noise

I Φ(ej) = k ∗ ej , with k ∈ H1(R) ∩ L1(R) if multiplicative noise
(W homogeneous or stationary in x)

In these cases there is a unique solution with paths a.s. in the
energy space H1(R) except for (∂xu)dW
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Exit from a neighborhood of the soliton : heuristics

Let u0(x) = ϕc0(x) and let ε > 0 small ;

Question : Up to what time does the solution uε stay close to the
soliton solution ϕc0(x − c0t) ?

Linearization of the deterministic equation :
If u(t, x) = ϕc0(x − c0t) + v(x − c0t), the linearized deterministic
equation is

∂tv = ∂xLc0v , Lc0 = −∂2
x + c0 − 2ϕc0∂xϕc0

Pego, Weinstein, Phil. Trans. Roy. Soc. Lond., 1992 : Spectrum of
∂xLc0

I No unstable eigenvalue

I Generalized null space :

{
∂xLc0(∂xϕc0) = 0
∂xLc0(∂cϕc0) = −∂xϕc0

i.e. 0 is a simple degenerate eigenvalue with Jordan block
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Heuristics :

Consider the linearization around ϕc0(x − c0t) of the stochastic
equation ; projected on the “center manifold”, i.e. on the
generalized null space, the dynamics will formally be given by the
SDE system : {

dX1 = εdW1

dX2 = −X1dt + εdW2

with (W1,W2) a R2-valued brownian motion (projection of ϕc0W
on the null space) ; hence

X2(t) = εW2(t)− ε

∫ t

0
W1(s)ds;

but
∫ t
0 W2(s)ds ∼ N (0, t3/3) and thus for large t,

P(X2(T ) > δ) ≤ C exp(− δ

ε2T 3
)

This suggests that the time we are looking for (X2(T ) small) is of
the order of ε−2/3
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Rigorous results in the additive case

dB, Gautier, 07 : Consider the additive equation

∂tu + (∂3
xu + ∂x(u

2))dt = εΦndW

with Φn a Hilbert-Schmidt operator from L2 into H1,
‖Φn‖L(L2,H1) ≤ 1 for all n and limn→+∞Φn(v) = (Id −∆)−1/2v

for all v ∈ L2 ; define

τ̃n,ε
α = inf{t ≥ 0, ‖un,ε(t, . + c0t)− ϕc0‖H1 > α}

Theorem : Let c0 > 0, α > 0 sufficiently small, then there exists a
constant C (α, c0) such that for all T > 0,

lim inf
n→+∞

lim inf
ε→0

ε2 log P(τ̃n,ε
α ≤ T ) ≥ −C (α, c0)

T 3

Hence, the soliton approximation is valid up to times at most of
the order of ε−2/3
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Stability of the solitons :

The family {ϕc0(. + x0), x0 ∈ R} is a stable family of solutions of
the deterministic equation

Benjamin, Proc. Roy. Soc. Lond. 1972 : Consider the functional
Qc0(u) = H(u) + c0m(u) as a Lyapunov functional with

m(u) =
1

2

∫
R

u2dx , and H(u) =
1

2

∫
R

u2dx − 1

3

∫
R

u3dx

Then Q ′′
c0

= Lc0 satisfies (Lc0η, η) ≥ |η|2H1 , for all η ∈ H1(R) with
(η, ϕc0) = (η, ∂xϕc0) = 0.

 the right scale in time should be ε−2
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Dynamics of the stochastic equation

Let uε(0, x) = ϕc0(x) ; in order to use the stability property of the
soliton for (KdV), write the solution uε of the stochastic equation
as

uε(t, x) = ϕcε(t)(x − xε(t)) + εηε(t, x − xε(t))

where the parameters xε(t) and cε(t) are random modulation
parameters, chosen such that for all t,
(ηε(t), ϕc0) = (ηε(t), ∂xϕc0) = 0.

This decomposition holds as long as ‖εηε(t)‖H1 ≤ α and
|cε(t)− c0| ≤ α for α > 0 sufficiently small.

Question : Can we estimate the time τ ε
α with

τ ε
α = inf{t > 0, ‖εηε(t)‖H1 ≥ α or |cε(t)− c0| ≥ α}?
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Theorem dB, Debussche, 2007 : The stopping time (exit time) τ ε
α

satisfies : for all α > 0 sufficiently small, there exists a constant Cα

such that for all T > 0 and ε > 0 with ε2T sufficiently small,

P(τ ε
α ≤ T ) ≤ Cαε2T

Moreover, the modulation parameters xε(t) and cε(t), defined a.s.
for t ≤ τ ε

α are semi-martingales (solutions of a system of SDEs
involving ηε)

Remark : Easy to improve this estimate as :
P(τ ε

α ≤ T ) ≤ C k
α(ε2T )k , for any integer k. Actually, we have :

Theorem dB, Gautier, 2007 : Under the preceding assumptions,
the exit time τ ε

α satisfies : ∃ C (α) > 0, such that for all T > 0,
and ε > 0 with ε2T sufficiently small,

P(τ ε
α ≤ T ) ≤ exp(−C (α)

ε2T
)
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Further results in the additive case

Consider again the additive equation

∂tu + (∂3
xu + ∂x(u

2))dt = εΦndW ,

with Φn Hilbert-Schmidt from L2 into H1, approximating the
operator (Id −∆)−1/2 ; let τn,ε

α be the exit time from the
neighborhood of the randomly modulated soliton ;

Theorem dB, Gautier, 07 : Let c0 > 0, α > 0 sufficiently small,
then there exists a constant C (α, c0) such that for all T > 0,

lim inf
n→+∞

lim inf
ε→0

ε2 log P(τn,ε
α ≤ T ) ≥ −C (α, c0)

T

Remark : Large deviation principle certainly also holds in the
multiplicative case ; however, in order to obtain such estimate, one
should solve a controlability problem by a potential  open
problem
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Theorem : dB, Debussche, 2007
For any T > 0, there is a constant C (T , α, c0) with

E

(
sup

t≤T∧τε
α

‖ηε(t)‖2
H1

)
≤ C (T , α, c0)

Moreover, ηε converges to η as ε goes to zero, in
L2(Ω, L∞(0,T ∧ τ ε

α, L2(R))) and η is the solution of the linear
equation

dη = ∂xLc0ηdt + Q(ϕc0dW̃ )

with η(0) = 0 and W̃ (t, x) = W (t, x + c0t) is the noise translated
in the frame moving with velocity c0 ; Q : projector on
span{ϕc0 , ∂xϕc0}⊥

Remark : (multiplicative noise)

I L(W̃ ) = L(W ) due to the homogeneity of the noise

I η is a centered Gaussian process (“Ornstein-Uhlenbeck” if
∂xLc0 dissipative operator)
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Pego, Weinstein, CMP, 1994 : Asymptotic stability of solitary
waves in spaces with exponential weights

H1
a = {v ∈ H1(R), eaxv ∈ H1(R)}, ‖v‖H1

a
= ‖eaxv‖H1

Then ∃b > 0, ∃C > 0 (depending on a, c0) such that

‖e−t∂xLc0 Qw‖H1
a
≤ Ce−bt‖Qw‖H1

a
, ∀w ∈ H1

a

In H1
a , the covariance operator of η satisfies

tr(Φ(t)) =
∑

j

∫ t
0 ‖e

−(t−s)∂xLc0 Q[ϕc0(k ∗ ej)]|2H1
a
ds

≤ C
(∫ t

0 e−2bσdσ
)∑

j ‖Q[ϕc0(k ∗ ej)]‖2
H1

a

≤ C |ϕc0 |2H1
a
|k|2H1

Hence η converges weakly to a Gaussian stationary measure as t
goes to infinity
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I The modulation equations are given by{
dxε = c0dt + εB1dt + εdB2 + o(ε)
dcε = εdB1 + o(ε)

with (B1,B2) a R2-valued brownian motion, corresponding to
Pϕc0W̃ (t, x), with P = Id − Q ;

I Note that coupling with ηε only at next order (true only in the
multiplicative case)

I Keeping only order one in ε, the process
(cε(t)− c0, x

ε(t)− c0t) is an R2-valued centered Gaussian
process

I Keeping only first order terms in ε, one may use the same
computations as Wadati, and using ϕc = cϕ1(

√
cx), and

ϕ1 ∈ L1(R), we obtain

max
x∈R

E
(
ϕcε(t)(x − xε(t))

)
≤ Kc0ε

−1/2t−5/4

for large t
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Proof of the lower bound on exit time (additive case)
Recall that we want to prove :
There exists a constant C (α, c0) such that for all T > 0,

lim inf
n→+∞

lim inf
ε→0

ε2 log P(τ̃n,ε
α ≤ T ) ≥ −C (α, c0)

T 3

The laws
(
µun,ε,ϕc0

)
ε>0

satisfy a LDP of speed ε2 and good rate

function

I n(w) =
1

2
inf

h∈L2(0,T ;L2): w=Sn,ϕc0 (h)
‖h‖2

L2(0,T ;L2)

where Sn,ϕc0 (h) is the unique mild solution in XT of the control
problem {

∂tu + ∂3
xu + ∂x(u

2) = Φnh,
u(0) = ϕc0 and h ∈ L2

(
0,T ; L2

)
.
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It means that for any Borel set B of C ([0,T ];H1),

− inf
◦

w ∈ B

I n(w) ≤ limε→0ε
2 log P (un,ε,ϕc0 ∈ B)

limε→0ε
2 log P (un,ε,ϕc0 ∈ B) ≤ − inf

w∈B
I n(w).

We then need to construct controls h such that Sn,ϕc0 (h) ∈ B (the
set of functions leaving the α-neighborhood of the soliton before
T ), and such that the infimum is bounded below by −C(α,c0)

T 3

First replace φn by (Id −∆)−1/2 and denote S(h) the
corresponding control map

We consider controls h such that S(h) = ϕc(t)(.−
∫ t
0 c(s)ds), so

that h = −c ′(t)∂cϕc(t)(.−
∫ t
0 c(s)ds), c(0) = 0 and the condition

‖S(h)(T )− ϕc0(.− c0T )‖H1 >
3

2
α
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This latter condition is actually satisfied if

3

2
c0 − ϕc(T )(.−

∫ T

0
(c0 − c(s))ds) > 3C∞α

with ‖v‖L∞ ≤ C∞‖v‖H1 for all v ;

This is in turn satisfied if
∫ T
0 (c0 − c(s))ds > δ(c0, α)

The energy to minimize is

1
2

∫ T
0 ‖c ′(t)(I −∆)1/2

[
∂cϕc(t)(.−

∫ t
0 c(s)ds)

]
‖2
L2dt

= 1
2

∫ T
0 (c ′(t))2g(c(t))dt

We then get the expected bound by taking c(t) = c0 − 3tδ/T 2

For φn, we use a continuity argument on the control map and get
the same estimate as n goes to infinity.
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random modulation : parametrization

I The proof uses a local parametrization u 7→ (c(u), x(u)) of
the soliton profile, such that u = ϕc(u)(.− x(u)) + R(u)
where R satisfies the orthogonality conditions
(R(u), ϕc0) = (R(u), ∂xϕc0) = 0

I The parametrization is obtained thanks to the implicit
function Theorem, and holds for u in a α-neighborhood of the
orbit of ϕc , with |c − c0| ≤ α

I It is sufficient to estimate P(τ̄ ε
α < T ) with

τ̄ ε
α = inf{t ≥ 0, |cε(t)−c0| ≥ α, ‖uε(t, .+xε(t))−ϕc0‖H1 ≥ α}

where we have set xε(t) = x(uε(t)) and cε(t) = c(uε(t))

I We make use of the Lyapunov functional
Qc0(u

ε) = H(uε) + c0m(uε), thanks to the equations for
H(uε(t)) and m(uε(t)), in order to estimate
‖uε(t, . + xε(t))− ϕc0‖H1
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random modulation : upper bounds for the exit time
Manipulations of the Lyapunov functional Qc0 give

|cε(τ ε
α)− c0|2 ≤ C

[
‖εηε(τ ε

α)‖4
L2 + 4ε2

∣∣∣∣∫ τε
α

0
((uε)2, dW (s))

∣∣∣∣2
+4ε4|k|4L2

(∫ τε
α

0
|uε(s)|2L2ds

)2
]

‖εηε(τ ε
α)‖2

H1 ≤ C

[
‖εηε(τ ε

α)‖4
L2 + ε

∣∣∣∣∫ τε
α

0
(∂xu

ε, ∂x(u
εφc0)dW (s))

∣∣∣∣
+ ε

∣∣∣∣∫ τε
α

0
((uε)3, dW )

∣∣∣∣+ c0ε

∣∣∣∣∫ τε
α

0
((uε)2, dW (s))

∣∣∣∣
+ 4ε2

∣∣∣∣∫ τε
α

0
((uε)2, dW (s))

∣∣∣∣2 + ε2|k|2H1

∫ τε
α

0
|uε|2H1ds

+ε2|k|2L2

∫ τε
α

0
|uε|3H1ds + ε4|k|4L2

(∫ τε
α

0
|uε|2L2ds

)2
]
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I Use of the Cauchy-Schwarz + Burkhölder inequalities to
estimate the stochastic integrals
 obtain P(τ ε

α < T ) ≤ Cαε2T

I Use of exponential tail estimates for those integrals
 get the bound P(τ ε

α < T ) ≤ exp(−C(α)
ε2T

)

Remark : The same kind of estimates (upper bounds) hold for a
solution which starts from a sum of n solitary waves (or n-solitons)
dB, El Dika, 2006)
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concluding remarks

I We have considered small random perturbations, white in
time, of the KdV equation with the soliton as initial data

I The time scale on which solution stays in a neighborhood of
the soliton for an additive perturbation is at most ε−2/3,
confirming the heuristic.

I Like for asymptotic stability under perturbation of the initial
datum, modulations help to understand the persistence of
solitons.

I The time scale on which the solution stays in a neighborhood
of the randomly modulated soliton is ε−2.

I A central limit theorem holds, i.e. the order one part of the
remaining term converges as ε goes to 0 to a centered
Gaussian process which has an invariant measure in H1

a

I Keeping only the order one in the modulation equations, the
soliton diffuses at rate t−5/4

I What about larger time scales than ε−2 ? ex : Tsutsumi, 07,
Garnier, 01...
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