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Mechanical Modelling of Biopolymers
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The Smale Conjecture
Mechanical Modelling of Biopolymers

The Smale Conjecture
Searching for a Physical Procedure in Unknotting

The Smale Conjecture

The Smle conjecture: the space of all smooth, unknotted,
simple, closed loops is homotopic equivalent to the space of
round loops (w RP2).

This conjecture was confirmed by A. Hatcher, A proof of the
Smale conjecture, Diff(S3) w O(4), Ann. Math., 1983.
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The Smale Conjecture
Mechanical Modelling of Biopolymers

The Smale Conjecture
Searching for a Physical Procedure in Unknotting

Searching for a Physical Procedure in Unknotting

It has been suggested in the article,
Freedman, He and Wang, Möbius energy of knots and
unknots, Ann. Math., 1994:
there may exist some physical procedure that will evolve a
“tangled” but unknotted simple loop through embeddings into
a round circle.
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The Smale Conjecture
Mechanical Modelling of Biopolymers

Supercoiling
Over-Damped Dynamics

Supercoiling of a Circular DNA

This picture comes from the article:
Pohl, DNA and differential geometry, Math. Intelligencer,
1980. Chun-Chi Lin Untangling and Tangling Elastic Knots



The Smale Conjecture
Mechanical Modelling of Biopolymers

Supercoiling
Over-Damped Dynamics

Supercoiling of a Bacterial Fiber: Bacillus subtilis

This picture comes from the article: Mendelson, PNAS, 1976.
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The Smale Conjecture
Mechanical Modelling of Biopolymers

Supercoiling
Over-Damped Dynamics

Supercoiling

One direction to go is static theory of the supercoiling
phenomena (as obstacle problems in elasticity theory). Some
progress have been made, for examples by Swigon and
Coleman (bifurcation), and Maddocks and his group (global
curvature), Schuricht and Von der Mosel (existence and
regularity of minimizers).

Dynamic theory taking into account supercoiling is quite
challenging.
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The Smale Conjecture
Mechanical Modelling of Biopolymers

Supercoiling
Over-Damped Dynamics

Over-Damped Dynamics

In recent years, there is a large interest in the dynamics of
twisted biopolymers such as DNA, filaments of Bacillus
subtilis, or folded proteins.

The dynamics of these biopolymer filaments is very important
in understanding certain mechanism of their functioning.

However, it still remains very complicated. The scientific
computations for these dynamics are still too slow and
expensive.

An over-damped dynamics of these models provides an
approach to study some details.
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Untangling Elastic Knots
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Variational Approaches
Our Setting and Results

The Möbius Energy
The Bending Energy

Definition of the Möbius Energy

Let f : R/Z→ R3 be a C 2 smooth and closed space curve.
Define the electrostatic energy functional of knots by

E(p)[f ] =

∫∫
R/Z×R/Z

[
1

|f (y)− f (x)|p
− 1

D(f (y), f (x))p

]
|f ′(y)||f ′(x)|dxdy ,

where p ≥ 1, and the improper integral is defined by its principal
value, i.e.,∫∫

g(x , y) dxdy = lim
ε→0+

∫∫
|x−y |≥ε

g(x , y) dxdy .

E(p) is a renormalized electrostatic energy.

E(2) is the so-called Möbius energy.
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Let f : R/Z→ R3 be a C 2 smooth and closed space curve.
Define the electrostatic energy functional of knots by

E(p)[f ] =

∫∫
R/Z×R/Z

[
1

|f (y)− f (x)|p
− 1

D(f (y), f (x))p

]
|f ′(y)||f ′(x)|dxdy ,

where p ≥ 1, and the improper integral is defined by its principal
value, i.e.,∫∫

g(x , y) dxdy = lim
ε→0+

∫∫
|x−y |≥ε

g(x , y) dxdy .

E(p) is a renormalized electrostatic energy.

E(2) is the so-called Möbius energy.
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The Möbius Energy
The Bending Energy

Properties of the Möbius Energy

Below we denote the Möbius Energy E(2) by EM .

The Möbius energy is C 2 self-repulsive, i.e.,
EM [f ]→ +∞,
as f is continuously deformed into an immersion (with
self-intersection) in C 2 topology.

The Möbius energy is conformally invariant.
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Below we denote the Möbius Energy E(2) by EM .
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The Möbius Energy
The Bending Energy

Heat Flow of the Möbius Energy

Z.X. He, The Euler-Lagrange equation and heat flow for the
Möbius energy, Comm Pure and Applied Math., 2000.

He considered the gradient flow:

∂t f = −∇EM [f ]. (1)

He showed the short time existence for smooth solutions of
Eq.(1).

However, by the conformal invariant property of Möbius
energy, one can construct a sequence of knots with decreasing
energy which pulls tightly and eventually becomes a round
circle.
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Möbius energy, Comm Pure and Applied Math., 2000.

He considered the gradient flow:

∂t f = −∇EM [f ]. (1)

He showed the short time existence for smooth solutions of
Eq.(1).

However, by the conformal invariant property of Möbius
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The Möbius Energy
The Bending Energy

Heat Flow of the Möbius Energy
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The Möbius Energy
The Bending Energy

The Pull-Tight of Knots with Decreasing Möbius Energy
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The Möbius Energy
The Bending Energy

Long Time Existence for the Heat Flow?

Up to our knowledge, nobody has excluded the case of
“pull-tight” in the heat flow of Möbius energy.

Thus, it is suspicious to derive the long time existence for
smooth solutions of the heat flow of Möbius energy.
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The Möbius Energy
The Bending Energy

Long Time Existence for the Heat Flow?

Up to our knowledge, nobody has excluded the case of
“pull-tight” in the heat flow of Möbius energy.
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Elastic Knots

By adding a bending energy,

K[f ] =
1

2

∫
|κ|2 ds,

to a Möbius energy, we define a new energy functional of knots,
i.e.,

E [f ] :=
1

2

∫
|κ|2 ds + γ · EM [f ],

where κ = d2f
ds2 is the curvature vector of f , s is the arclength

parameter of f , and γ > 0 is a constant.
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On the Gradient Flows

Now we consider the gradient flow of the elastic knot energy Eλ,

Eλ[f ] :=
1

2

∫
|κ|2 ds + λ ·

∫
ds + γ · EM [f ],

i.e.,

∂t f = −∇Eλ[f ] = −∇2
sκ−

|κ|2

2
κ+ λ · κ− γ · Hf , (2)

where ∇sg = (∂sg)⊥, λ > 0 is a constant (or a Lagrange multiplier
for preserving total length), Hf : R/Z→ R3 is defined by

∇hEM [f ] =

∫
R/Z

〈Hf (x), h(x)〉 ·
∣∣f ′(x)

∣∣ dx ,
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∫
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2
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and

Hf (x) =
(p.v .)

2·
∫
R/Z

[
2 · Pf ′⊥(x)(f (y)− f (x))

|f (y)− f (x)|2
− κ(x)

]
|f ′(y)|

|f (y)− f (x)|2
dy .

Here, Pf ′⊥(x) : R3 → R3, defined by

Pf ′⊥(x)(z) := z − 〈z , f
′(x)〉f ′(x)

|f ′(x)|2
,

is the orthogonal projection of R3 onto the normal vector plane to
f at f (x). Note that it is elementary to show

f ∈ C 3+k,α(R/Z; R3)⇒ Hf ∈ C k,β(R/Z; R3), (3)

where 0 < β < α ≤ 1. Thus, Hf is a closed and smooth space
curve as long as f is a closed and sufficiently smooth space curve.
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Short Time Existence

From [He,CPAM,2000], the major term in the linearized
operator of Hf = ∇EM [f ] is a pseudo-differential operator,
43/2, whose order is less than 4, the highest order in
∂t f = −∇Eλ[f ] = −∇Kλ[f ]− γ · Hf .

Therefore, in standard linearization argument for short-time
existence, ∇Hf is still a compact operator between the
relevant parabolic functional spaces.

Hence, the short time existence for C∞ smooth solutions of

∂t f = −∇Eλ[f ] = −∇2
sκ−

|κ|2

2
κ+ λ · κ− γ · Hf ,

follows from the same argument in the curve straightening
flow, (i.e., ∂t f = −∇Kλ[f ], cf. Polden, Thübingen
Disertation, 1995 or Dziuk-Kuwert-Schätzle, SIAM J. Math.
Anal., 2002).
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Long Time Existence

To prove long time existence of solutions, we wish to derive global
bounds for the higher Sobolev norms of the curvature. Since their
evolution is given by

∇t∇m
s κ = −∇4

s∇m
s κ+ tensors of lesser order.

Therefore we arrive at

d

dt

1

2

∫
|∇m

s κ|2 ds +

∫
|∇m+2

s κ|2 ds = terms of less order.

Now we need to estimate the “terms of less order” to have
d

dt

1

2

∫
|∇m

s κ|2 ds+ε2·
∫
|∇m+2

s κ|2 ds ≤ uniformly bounded constant.
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Long Time Existence

In fact, it can be written as

d
dt

1
2

∫
|∇m

s κ|2 ds +
∫
|∇m+2

s κ|2 ds

=
∫
〈Pm+2

3 (κ) + Pm
5 (κ) ,∇m

s κ〉+ λ · 〈Pm+2
1 (κ) + Pm

3 (κ) ,∇m
s κ〉 ds

+γ ·
[∫
〈Hf , (−1)m+2∇2m+2

s κ〉 ds +
∫
Hf ∗ P2m

3 (κ) ds
]

,

where the notation Pµ
ν (φ) is defined below. Notice, the structure

of this differential equation is important in our proof. For example,
as we consider Lp-norm of elastic energy (i.e., ‖κ‖Lp ), out proof
doesn’t work.
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The Notation Pµ
ν (φ) :

For normal vector fields φ1, · · ·, φk along f , we denote by
φ1 ∗ ∗ ∗ φk a term of the type

φ1 ∗ ∗ ∗ φk =

{
〈φi1 , φi2〉 · · · 〈φik−1

, φik 〉 , for k even,
〈φi1 , φi2〉 · · · 〈φik−2

, φik−1
〉 · φik , for k odd,

where i1, · · ·, ik is any permutation of 1, · · ·, k. Slightly more
generally, we allow some of the φi to be functions, in which case
the ∗-product reduces to multiplication. Thus for a normal vector
field φ along f , we denote by
Pµ
ν (φ) any linear combination of terms of the type ∇i1

s φ∗ · · · ∗∇iν
s φ

with universal constant coefficients, where µ = i1 + · · ·+ iν is the
total number of derivatives.
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We need the lemmas below to estimate the terms of less order.

Lemma (Gagliardo-Nirenberg interpolation inequality)

Let κ : I → Rn be a smooth vector field. If µ+ 1
2ν < 2k + 1, then

γ < 2 and we have for any ε > 0,

∫
I

|Pµ
ν (κ)| ds ≤ ε

∫
I

|∇k
s κ|2 ds + c ε

−γ
2−γ

∫
I

|κ|2 ds


ν−γ
2−γ

+ c

∫
I

|κ|2 ds

µ+ν−1

,

where c = c (n, k , µ, ν).
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To estimate terms involving Hf , one further needs

Lemma (L- and Schwetlick)

Let f : R/Z→ R3 be a C 3,1 function, `−1 ≤ L[f ] ≤ `, and
EM [f ] ≤ b, for some positive constants ` and b. Then∫

I

|Hf (s)|2 ds

 1
2

≤ C (`, b, ‖κ‖L2) ·

[
δ−3 + δ1/2 ·

(
1 +

6∑
i=0

‖κ‖
2−i/4
m+2

m+2,2

)]
,

for all sufficiently small δ > 0.
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Recall the integral formula of Hf

Hf (x) =
(p.v .)

2·
∫
R/Z

[
2 · Pf ′⊥(x)(f (y)− f (x))

|f (y)− f (x)|2
− κ(x)

]
|f ′(y)|

|f (y)− f (x)|2
dy ,

and

Lemma (O’Hara, Topology, 1991)

Let f : R/Z→ R3 be a smooth knot. For any b ∈ R there is a
positive constant C = C (b) such that if EM [f ] ≤ b then
|f (s)− f (t)| ≥ C · d(s, t) for any s, t ∈ S1, where d(s, t) is the
shortest arclength between f (s) and f (t) along the space curve f .
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Decomposition of the Integral

For each fixed s ∈ I , we may decompose the integral formula of
Hf as

Hf (s) = (Hf )1 (s) + (Hf )2 (s),

where
(Hf )1 (s) := (p.v .) 2 ·

∫
Iδ

(· · ·) ds ′,

(Hf )2 (s) := (p.v .) 2 ·
∫
I c
δ

(· · ·) ds ′,

Iδ = Iδ(s) := {s ′ ∈ I : |s ′ − s| ≤ δ}, and I c
δ = I c

δ (s) := I \ Iδ(s).
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To estimate

(∫
I

|(Hf )1 (s)|2 ds

)1/2

.

We apply power series expansions, i.e., for |σ| < δ,

f (s+σ) = f (s)+f ′(s)σ+
f ′′(s)

2!
σ2+

f (3)(s)

3!
σ3+

1

3!

∫ s+σ

s
(s+σ−t)3f (4)(t) dt.

To estimate

(∫
I

|(Hf )2 (s)|2 ds

)1/2

.

We apply O’Hara’s Lemma.
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Uniform bounds of the total length:

Lemma (L- and Schwetlick)

If the initial curve is smooth, then the total length of f , L [f ],
remains uniformly bounded away from 0 and ∞ during the
gradient flow of Eλ. In fact,

2π2

Eλ[f0]
≤ L [f ] ≤ Eλ[f0]

λ
.
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Now one applies the lemmas to estimate the terms of less
order.∣∣∫ 〈Pm+2

3 (κ) + Pm
5 (κ) ,∇m

s κ〉+ λ · 〈Pm+2
1 (κ) + Pm

3 (κ) ,∇m
s κ〉 ds

∣∣
≤ C · ‖κ‖p(m)

L2 ·
(
‖κ‖

2− 1
m+2

m+2,2 + ‖κ‖
2− 2

m+2

m+2,2 + ‖κ‖
2− 3

m+2

m+2,2

)

≤ C ·
(
‖κ‖

2− 1
m+2

m+2,2 + ‖κ‖
2− 2

m+2

m+2,2 + ‖κ‖
2− 3

m+2

m+2,2

)
,

where C = Cm(λ, E [f0]);
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and,

γ ·
∣∣∣∣∫
I

〈Hf , (−1)m+2∇2m+2
s κ〉 ds +

∫
I

Hf ∗ P2m
3 (κ) ds

∣∣∣∣
≤ C ·

[
δ−3 + δ1/2

(
1 +

∑6
i=0‖κ‖

2−i/4
m+2

m+2,2

)][
‖κ‖

2− 2
m+2

m+2,2 + ‖κ‖
2− 3

m+2

m+2,2

]
,

where C = Cm(γ, λ, E [f0]).
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By combining these estimates and applying the interpolation
inequality again, one has

d
dt

1
2

∫
I

|∇m
s κ|2 ds +

∫
I

|∇m+2
s κ|2 ds

≤
[
ε+ γ · δ1/2 · Cm(γ, λ, E [f0])

]
·
∫
I

|∇m+2
s κ|2 ds + Cm(γ, λ, δ, E [f0]),

By choosing sufficiently small δ and ε,

d
dt

1
2

∫
I

|∇m
s κ|2 ds + 1

2 ·
∫
I

|∇m+2
s κ|2 ds ≤ Cm(γ, λ, E [f0]), (4)
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Notice that by the fact

∂sϕ = ∇sϕ+ 〈ϕ, κ〉T , (5)

where ϕ ∈ (T )⊥, by applying Poincare inequality twice on
∂m+2

s κ, and by using the interpolation inequality, one derives∫
|∇m+2

s κ|2 ds ≥ C (L[f ]) ·
∫
|∇m

s κ|2 ds − Cm (‖κ‖L2) .

Thus, we have the differential inequality

d

dt

∫
|∇m

s κ|2 ds + c2 ·
∫
|∇m+2

s κ|2 ds ≤ Cm(γ, λ, E [f0]),

which implies

‖∇m
s κ‖L2 ≤ Cm(γ, λ, E [f0], ‖∇m

s κ‖
2
L2 (0)), ∀m ∈ Z+.
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The uniform upper bounds of ‖∂m
s κ‖L2 now follows from

letting ϕ = ∇m−1
s κ in Eq.(5), and an induction argument on

m.

Thus by Sobolev embedding Theorem and an induction on m,

‖∂m
s κ‖L∞ ≤ C (γ, λ, E [f0],Λ1, · · ·,Λm), (6)

where Λi =
∥∥∇i

sκ
∥∥2

L2 (0), ∀ i ∈ Z+.

Furthermore, we have

‖∂m
s Hf ‖L∞ ≤ C (γ, λ, E [f0],Λ1, · · ·,Λm+2). (7)

This is due to Eq.(6) and the fact in Eq.(3), i.e.,

f ∈ C 3+k,α(R/Z; R3)⇒ Hf ∈ C k,β(R/Z; R3)
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Asymptotics

We first choose a subsequence of curves f (t, ·), which converges
smoothly to a smooth limit curve f∞ as t →∞ after
reparametrization of arclength and translations. Then by applying
Eqs.(6), (7), and the lemma below, we can derive the estimates

‖∇t (∇m
s κ)‖L∞ ≤ C (γ, λ, E [f0],Λ1, · · ·,Λm+4), ∀ m ≥ 0. (8)

Lemma (L- and Schwetlick)

Let f be a solution of Eq.(2). Then φm = ∇m
s κ, m ∈ Z+, satisfy

∇tφm +∇4
sφm

= Pm+2
3 (κ) + λ ·

(
∇m+2

s κ+ Pm
3 (κ)

)
+ 1

2 ·
(
Pm+2

3 (κ) + Pm
5 (κ)

)
+ γ ·

(
∇m+2

s Hf + Pm
2 (κ) ∗ Hf

)
.
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Asymptotics

Let

u (t) :=

∫
I

|∂t f |2 ds.

Note that the first equality in the energy identity

d
dt Eλ [ft ] = −

∫
I

|∂t f |2 ds = −
∫
I

|−∇2
sκ−

|κ|2
2 κ+ λ · κ− γ · Hf |2 ds

implies u (t) ∈ L1 ([0,∞)). On the other hand, from using the
lemma above on differentiating the energy identity, using
L∞-estimates in Eqs.(6), (8), and using integration by parts,∣∣u′ (t)

∣∣ ≤ C (γ, λ, E [f0],Λ1, · · ·,Λ4).

Thus, u (t)→ 0 as t →∞. This implies that f∞ is independent of
t. Therefore, from Eq.(2), f∞ is an equilibrium of the energy
functional Eλ.
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Thus, u (t)→ 0 as t →∞. This implies that f∞ is independent of
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Main Results

Theorem (L- and Schwetlick, 2008)

For any real numbers λ ∈ (0,∞) and any smooth initial closed
curve f0, there exists a smooth solution to the L2-gradient flow in
Eq.(2). Moreover, the curves subconverge to f∞, an equilibrium of
the energy functional Eλ, after reparametrization by arclength and
translation.

Theorem (for ∂t f = −∇E with fixed length)

For any smooth initial closed curve f0, there exists a smooth
solution to the L2-gradient flow in Eq.(2), which preserves total
length. Moreover, the curves subconverge to f∞, an equilibrium of
the energy functional E , after reparametrization by arclength and
translation.
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The Twisting Energy

A rod configuration Γ is a framed curve described by
{f (s) ; T (s) ,M1 (s) ,M2 (s)}, where the material frame
{T ,M1,M2} forms an orthonormal frame field along f . Thus, a
smooth rod configuration Γ gives the skew-symmetric system T ′(s)

M ′1(s)
M ′2(s)

 =

 0 m1(s) m2(s)
−m1(s) 0 m(s)
−m2(s) −m(s) 0

 T (s)
M1(s)
M2(s)

 .

The Kirchhoff elastic energy E of an isotropic rod Γ, is defined by

E [Γ] :=

∫
I

[α · (m2
1 + m2

2) + β ·m2] ds, (9)

where α > 0 and β ≥ 0 are constants. The terms involving α give
the bending energy, while the term involving β gives the twisting
energy. It can be easily verified that m2

1 + m2
2 = |κ|2 is a geometric

quantity of curves.
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The Twisting Energy

The natural frames of the curve discussed by Bishop form the
orthonormal frames along a given curve f , which can be uniquely
determined by fixing it at a given point on the centerline and
solving the skew-symmetric system, T ′(s)

U ′(s)
V ′(s)

 =

 0 ∗ ∗
∗ 0 0
∗ 0 0

 T (s)
U(s)
V (s)

 .

As we denote by θ the angle from U to M1, it can be verified that
m (s) = θ′ (s). Since a natural frame can be thought as a frame
without twisting, m(s) in Eq.(9) is called twisting rate. Thus the
elastic energy in Eq.(9 ) becomes

E [Γ] =

∫
I

[α · |κ|2 + β · (θ′)2] ds. (10)
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The End-Point Condition

We will use the term (f (s), θ(s)) to represent the rod configuration
Γ, which is the curve-angle representation.
Because of the twisting energy, we need to establish the end-point
conditions (or “boundary” value conditions) which will be imposed
through the Călugăreanu-White-Fuller formula

Lk[Γ] = Tw [Γ] + Wr [f ] (11)
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The End-Point Condition

The linking number, twisting number, and writhing number of Γ
are defined by

Lk[Γ] : =
1

4π

∫
s∈I

∫
σ∈I

〈f (s)− gε(σ), f ′(s)× g ′ε(σ)〉
|f (s)− gε(σ)|3

ds ∧ dσ, (12)

Tw [Γ] : =
1

2π

∫
I

〈
M ′1(s), f ′(s)×M1(s)

〉
ds =

1

2π

∫
I

θ′(s) ds,(13)

Wr [f ] : =
1

4π

∫
s∈I

∫
σ∈I

〈f (s)− f (σ), f ′(s)× f ′(σ)〉
|f (s)− f (σ)|3

ds ∧ dσ. (14)

Here both s and σ represent the arclength parameterisation for f
and gε = f + ε ·M1, where ε > 0 is sufficiently small so that f and
gε have no intersection.
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The Total Energy of Rods (framed curves)

Now we consider the total energy,

E [Γ] =

∫
I

[α · |κ|2 + β · (θ′)2] ds + γ · EM [f ]. (15)

We use the topologically invariant, the linking number,

∆Ω

2π
:= Lk[Γ] = Tw [Γ] + Wr [f ],

to set up the end-point conditions. Note that if f and gε
consist two closed curves the linking number is an
integer-valued topological quantity, while twisting number and
writhing number are only geometric quantity.The linking
number continues to be an invariant under smooth
perturbations of the rod configuration Γ. In fact, one can set
∆Ω
2π to be any real number.
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The Total Energy of Curves

In order to apply our technique used before, we transform the
energy of rods into that of curves. We learn from a fact that
when an isotropic elastic rod attains an equilibrium state it
must have a constant twisting rate.

Assuming that the twisting rate m of an isotropic rod
configurations Γ is constant we can combine the definitions of
elastic energy and the twisting number to deduce

m =
2π

L[f ]
Tw [Γ],

where L[f ] =
∫
I

ds is the length of the centerline.
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The Total Energy of Curves

Now the total energy can be written as that of curves,

F [f ] := α

∫
I

|κ|2 ds +
β

L[f ]
(∆Ω− 2π ·Wr [f ])2 + γ · EM [f ].

As β = 0 = γ, this energy functional corresponds to the
Euler-Bernoulli model of elastic curves. Thus the geometric
evolution considered below is also a generalization of the
so-called curve-straightening flow.

We note here that in computing the writhing number, we
apply Fuller’s difference of writhe formula

Wr [f1]−Wr [f0] =
1

2π

∫
I

〈T0(x)× T1(x),T ′0(x) + T ′1(x)〉
1 + 〈T0(x),T1(x)〉

dx ,

where f0 and f1 are two C 2 smooth curves.
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Tangling Knots by Increasing their Writhing Numbers

This picture comes from the article: Pohl, DNA and
differential geometry, Math. Intelligencer., 1980.
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Tangling Knots by Increasing their Writhing Numbers

Now we want to tangle elastic knots by solving the variational
problem stated above.We can also observe the dynamical
behaviour. However, in this setting, we don’t treat the
obstacle problem, which is more difficult.
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The Gradient Flow

∂t f = 2α · (−∇2
sκ−

|κ|2

2
κ) + λ2 (t) · ∇s (T × κ) + λ1 · κ− γ · Hf ,

where

λ2 (t) =
2β

L[f ]
(∆Ω− 2π ·Wr [f ]) ,

and either λ1 is a positive constant or a Lagrange multiplier for
preserving total length of curves.
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Results and A Remained Problem

We still have the existence of smooth solutions (short time
and long time) in the case of adding twisting energy. The
proof parallels the one in Part II.

Numerical implements are still in progress (it is quite
demanding; one needs higher-order approximation of curves)!

A Remained Problem: Does any one of the flows we treated
here provides a physical procedure in unknotting trivial knots?
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proof parallels the one in Part II.

Numerical implements are still in progress (it is quite
demanding; one needs higher-order approximation of curves)!

A Remained Problem: Does any one of the flows we treated
here provides a physical procedure in unknotting trivial knots?
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Merci !

THANK YOU FOR YOUR ATTENTION !
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