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CONVECTION, OPTIMAL TRANSPORTAND COUPLED MONGE-AMPERE SYSTEMS

1. CONVECTION AND NAVIER-STOKES BOUSSINESQ EQUATIONS2. HYDROSTATIC BOUSSINESQ EQUATIONS3. TRANSPORT MONGE-AMPERE SYSTEMS(Hoskins' Semi-geostrophi equations and fully non-linear Chemotaxis model)
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A NAVIER-STOKES BOUSSINESQ 'NSB' MODEL

Let D be a smooth bounded domain D ⊂ R3 in whih moves aninompressible �uid of veloity v(t,x) at x ∈ D, t ≥ 0, subjet to:

NSB : ǫ(∂tv + (v · ∇)v) + Kv + ∇p = y ∇ · v = 0where Kv = αv − ν∆v with α ≥ 0, ǫ > 0, ν > 0 and v = 0 along ∂D.The fore �eld y is subjet to the advetion equation

∂ty + (v · ∇)y = G(x,y)where G is a given smooth funtion with bounded derivatives.CONVECTION THEORY orresponds to the speial ase

G = 0, y//e3with (usually) an additional di�usion term in the y equation.Global existene of weak solutions in 3D follows fromLeray/Diperna-Lions theory. Global existene of smooth solutions in 2Dfollows from Hou-Li 2005 and Chae 2006.Marh 17, 2008 3
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THREE LIMITS OF THE NS BOUSSINESQ MODEL

While keeping unhanged

∂ty + (v · ∇)y = G(x,y) ∇ · v = 0and dropping inertia terms, we onsider three possible limit regimes:

STOKES − BOUSSINESQ SB : ǫ = α = 0, ν = 1 ⇒ −∆v + ∇p = y(the limit ǫ→ 0 an be rigorously justi�ed, YB 2007)

DARCY − BOUSSINESQ DB : ǫ = ν = 0, α = 1 ⇒ v + ∇p = y(the limit ǫ→ 0 an be rigorously justi�ed, YB 2007)
HYDROSTATIC − BOUSSINESQ HB : ǫ = ν = α = 0 ⇒ ∇p = y(here the rigorous justi�ation of the limit ǫ→ 0 seems widely open!)
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EVOLUTION OF 'OBSERVABLES' IN BOUSSINESQ SYSTEMS

For eah suitable test funtion f , we de�ne the 'observable'

t → ρf (t) =

Z

D

f(y(t,x))dxwhere y is solution to one of the Boussinesq systems (NSB,SB,DB,HB)Sine ∂ty + (v · ∇)y = G(x,y) where ∇ · v = 0, v//∂D,we get, for eah suitable test funtion f ,
d

dt

Z

D

f(y(t,x))dx =

Z

D

(∇f)(y(t,x)) · G(x,y(t,x))dx
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EVOLUTION OF 'OBSERVABLES' IN THE HYDROSTATIC CASE

The Hydrostati Boussinesq 'HB' modeljust requires y to be a gradient: y = ∇p .

A remarkable fact : y is COMPLETELY DETERMINED by itsobservables t → ρf (t) =

Z

D

f(y(t,x))dx (for all suitable test funtions f)

under the following A PRIORI CONVEXITY ASSUMPTION

p(t,x) is a CONVEX function of x ∈ D (D being supposed to be onvex)NB: This is a typial result of OPTIMAL TRANSPORT THEORY:YB, C. R. Aad. Si. Paris 1987 and CPAM 1991 Smith and Knott, J. Optim. TheoryAppl. 1987 Ca�arelli, J. AMS 1992 and Ann. of Math.1996, Villani, Topis in optimaltransportation, AMS, 2003, see also reviews and leture notes and many other papersand books.Marh 17, 2008 6
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HYDROSTATIC BOUSSINESQ: A GLOBAL EXISTENCE RESULT

YB 2007, also see G. Loeper, SIAM J. Math. Anal. 2006THEOREMAssume G(x,y) to be a smooth funtion with bounded �rst derivatives.Let C be the onvex one of all maps y ∈ L2(D,R3)suh that y(x) = ∇p(x) a.e. in D for some CONVEX onvex ls funtion p.Then, for eah y0 ∈ C, there is (t → y(t, ·)) ∈ C0(R+,L2(D,R3))valued in the one C suh that y(t = 0, ·) = y0 and

d

dt

Z

D

f(y(t,x))dx =

Z

D

(∇f)(y(t,x)) · G(x,y(t,x))dx,(for all test funtions f) whih we all aSOLUTION WITH CONVEX POTENTIAL TO THE HB SYSTEM
∂ty + (v · ∇)y = G(x,y), ∇ · v = 0, y = ∇pMarh 17, 2008 7
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INTERPRETATION OF THE HB SYSTEMAS A COUPLED MONGE-AMPERE-TRANSPORT SYSTEM

Under the POTENTIAL CONVEXITY assumption, the HB system

HB : ∂ty + (v · ∇)y = G(x,y), y = ∇p, ∇ · v = 0is (formally) equivalent to the transport-Monge-Ampère system

TMA : ∂tρ+ ∇ · (ρw) = 0, w = G(∇p∗(t,x),x), ρ = det(D2p∗(t,x))where p∗ is the LEGENDRE-FENCHEL transform

p∗(t,x) = sup
x̃∈D

x · x̃ − p(t, x̃)

Indeed, using the hange of variable x = ∇p(t, x̃) ⇐⇒ x̃ = ∇p∗(t,x),

d

dt

Z

f(x)det(D2p∗(t,x))dx −

Z

∇f(x) · G(∇p∗(t,x),x)det(D2p∗(t,x))dx

=
d

dt

Z

D

f(y(t, x̃))dx̃ −

Z

D

(∇f)(y(t, x̃)) · G(x̃,y(t, x̃))dx̃ = 0Marh 17, 2008 8
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EXAMPLES OF TRANSPORT-MONGE-AMPERE SYSTEMS 1

Example 1: Setting G(x,y) = (y2 − x2,x1 − y1,0) we reover Hoskins'SEMI-GEOSTROPHIC equations.Then, the CONVEXITY PRINCIPLE for the HB system exatlyorresponds to the CULLEN-PURSER PRINCIPLE.f. Cullen-Norbury-Purser 1991, Benamou-Brenier 1998,Cullen-Gangbo 2001, Loeper 2006.Example 2: With G(x,y) = y−x

β

where β > 0 is a onstant, Setting

∇p∗(t,x) = x − β∇ψ(t,x) we get
TMA : ∂tρ+ ∇ · (ρw) = 0, w = ∇ψ(t,x), ρ = det(I − βD2ψ(t,x))
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EXAMPLES OF TRANSPORT-MONGE-AMPERE SYSTEMS 2

The resulting system an be seen as a FULLY NON-LINEARCHEMOTAXIS model.Indeed, Assuming |β| << 1, the MONGE-AMPERE beomes

ρ = det(I − βD2ψ(t,x)) = 1 − β∆ψ + O(β2)whih approximates the CHEMOTAXIS model (without visosity)onsidered by Jäger and Lukhaus Trans. AMS 1992:
∂tρ+ ∇ · (ρw) = 0, w = ∇ψ(t,x), ρ = 1 − β∆ψ(t,x))
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EXAMPLES OF TRANSPORT-MONGE-AMPERE SYSTEMS 3

In one spae variable the approximation is exat:

∂tρ+ ∂x(ρw) = 0, ρ = 1 − β∂xwIn that ase, the system an be redued to the invisid BURGERSequation
∂tw + ∂x(w2/2) =

w

βand the Kruzhkov-Oleinik ENTROPY CONDITION ondition exatly �tswith the CONVEXITY PRINCIPLE we used for the HB system.
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