Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Entropy and Zeta Functions for One-dimensional Multi-layer Cellular Neural Networks

Jung-Chao Ban *

Department of Mathematics, National Hualien University of Education

March, 2008

*Joint work with Prof. Song-Sun Lin, Prof. Yin-Heng Lin and Mr. Chih-Hung Chang

Outline

Introduction

- **One-layer CNN**
- One-layer CNN
- Without input
- With input
- Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input

ヘロト ヘアト ヘヨト

- Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Outline

Introduction

- **One-layer CNN**
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
- 4 Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

- One-layer CNN One-layer CNN
- Without input With input

Sofic shif

- Introduction to sofic shift Entropy for shift space
- Application to one-layer
- Difference between CNN with and without input

Multi-layer CNN

- Two-layer CNN with input Multi-layer CNN
- New phenomena
- Recent works and future plans

Reference

Sac

- イ 同 ト イ 三 ト イ 三 ト

< □ ▶

• L.O. Chua and L. Yang

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

One-dimensional Multi-layer CNN

$$\begin{cases} \frac{dx_i^{(\gamma)}}{dt} = -x_i^{(1)} + \sum_{|k| \le d} a_k^{(1)} y_{i+k}^{(1)} + \sum_{|k| \le d} b_k^{(1)} u_{i+k}^{(1)} + z^{(1)}, \\ \frac{dx_i^{(2)}}{dt} = -x_i^{(2)} + \sum_{|k| \le d} a_k^{(2)} y_{i+k}^{(2)} + \sum_{|k| \le d} b_k^{(2)} u_{i+k}^{(2)} + z^{(2)}, \\ \vdots \\ \frac{dx_i^{(N)}}{dt} = -x_i^{(N)} + \sum_{|k| \le d} a_k^{(N)} y_{i+k}^{(N)} + \sum_{|k| \le d} b_k^{(N)} u_{i+k}^{(N)} + z^{(N)}, \end{cases}$$

where

(1)

(, (1)

$$y_l^{(k)} = u_l^{(k+1)}, \quad 1 \le k \le N - 1$$

and

$\{u_l^{(1)}\}$: input data.

(日)(四)(四)(日)(日)

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Consider
$$N = 1$$
 and $d = 1$,
$$\frac{dx_i}{dt} = -x_i + a_l y_{i-1} + ay_i + a_r y_{i+1} + b_l u_{i-1} + bu_i + b_r u_{i+1} + z.$$

The diagram of this CNN model:

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

$$y = f(x) = \frac{1}{2}(|x+1| - |x-1|).$$

・ロト ・ 日 ト ・ モ ト ・ モ ト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

$$y = f(x) = \frac{1}{2}(|x+1| - |x-1|).$$

Initial conditions

$$u_i^{(k)}(0) = u_i^{(k)}$$
 and $x_i^{(k)}(0)$: constant

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

$$y = f(x) = \frac{1}{2}(|x+1| - |x-1|).$$

Initial conditions

$$u_i^{(k)}(0) = u_i^{(k)}$$
 and $x_i^{(k)}(0)$: constant

ヘロト ヘアト ヘヨト ヘヨト

• Parameters

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

5900

$$y = f(x) = \frac{1}{2}(|x+1| - |x-1|).$$

Initial conditions

$$u_i^{(k)}(0) = u_i^{(k)}$$
 and $x_i^{(k)}(0)$: constant

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

- Parameters
 - $A^{(k)}$: feedback template.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

$$y = f(x) = \frac{1}{2}(|x+1| - |x-1|).$$

Initial conditions

$$u_i^{(k)}(0) = u_i^{(k)}$$
 and $x_i^{(k)}(0)$: constant

- Parameters
 - $A^{(k)}$: feedback template.
 - $B^{(k)}$: controlling template.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$y = f(x) = \frac{1}{2}(|x+1| - |x-1|).$$

Initial conditions

$$u_i^{(k)}(0) = u_i^{(k)}$$
 and $x_i^{(k)}(0)$: constant

ヘロト ヘアト ヘヨト

Parameters

- $A^{(k)}$: feedback template.
- $B^{(k)}$: controlling template.
- $z^{(k)}$: threshold.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Definition 1.1

• Mosaic patterns (Output patterns)

$$\{(y_i^{(k)})\}_{\substack{i\in\mathbb{Z}\\1\leq k\leq N}} \Longleftrightarrow |y_i^{(k)}| = 1$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Definition 1.1

.

• Mosaic patterns (Output patterns)

$$\{(y_i^{(k)})\}_{\substack{i\in\mathbb{Z}\\1\leq k\leq N}}\Longleftrightarrow |y_i^{(k)}|=1$$

• Mosaic input
$$\{(u_i^{(1)})\} \iff |u_i^{(1)}| = 1, i \in \mathbb{Z}.$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNM One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Consider
$$A^{(k)} = (a_l^{(k)}, a^{(k)}, a_r^{(k)}), B^{(k)} = (b_l^{(k)}, b^{(k)}, b_r^{(k)})$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

0-6----

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 > への

Consider $A^{(k)} = (a_l^{(k)}, a^{(k)}, a_r^{(k)}), B^{(k)} = (b_l^{(k)}, b^{(k)}, b_r^{(k)})$ Parameters space $\{(A^{(1)}, B^{(1)}, z^{(1)}), \dots, (A^{(N)}, B^{(N)}, z^{(N)})\}$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

Without input With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Consider
$$A^{(k)} = (a_l^{(k)}, a^{(k)}, a_r^{(k)}), B^{(k)} = (b_l^{(k)}, b^{(k)}, b_r^{(k)})$$

Parameters space $\{(A^{(1)}, B^{(1)}, z^{(1)}), \dots, (A^{(N)}, B^{(N)}, z^{(N)})\}$

In (1), consider stationary solutions:

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

<ロ> < 四> < 回> < 三> < 三> < 三> 三 のへで

Consider $A^{(k)} = (a_l^{(k)}, a^{(k)}, a_r^{(k)}), B^{(k)} = (b_l^{(k)}, b^{(k)}, b_r^{(k)})$ Parameters space $\{(A^{(1)}, B^{(1)}, z^{(1)}), \dots, (A^{(N)}, B^{(N)}, z^{(N)})\}$ In (1), consider stationary solutions: MCNN \Longrightarrow *N*-coupled map lattice

$$2) \begin{cases} x_i^{(1)} = a_l^{(1)} y_{i-1}^{(1)} + a_l^{(1)} y_i^{(1)} + a_r^{(1)} y_{i+1}^{(1)} \\ + b_l^{(1)} u_{i-1}^{(1)} + b^{(1)} u_i^{(1)} + b_r^{(1)} u_{i+1}^{(1)} + z^{(1)}, \\ x_i^{(2)} = a_l^{(2)} y_{i-1}^{(2)} + a^{(2)} y_i^{(2)} + a_r^{(2)} y_{i+1}^{(2)} \\ + b_l^{(2)} y_{i-1}^{(1)} + b^{(2)} y_i^{(1)} + b_r^{(2)} y_{i+1}^{(1)} + z^{(2)}, \\ \vdots \\ x_i^{(N)} = a_l^{(N)} y_{i-1}^{(N)} + a^{(N)} y_i^{(N)} + a_r^{(N)} y_{i+1}^{(N)} \\ + b_l^{(N)} y_{i-1}^{(N-1)} + b^{(N)} y_i^{(N-1)} + b_r^{(N)} y_{i+1}^{(N-1)} + z^{(N)} \end{cases}$$

신다 제 사람에서 관계에 관계

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sar

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

ヘロト ヘ週ト ヘミト ヘミト

Question

(I) { input
$$(u_i^{(1)})$$
} $\equiv \mathcal{I} \longrightarrow$ { outputs $(y_i^{(N)})$ } $\equiv \mathcal{Y}$

Question

(I) { input
$$(u_i^{(1)})$$
} $\equiv \mathcal{I} \longrightarrow$ { outputs $(y_i^{(N)})$ } $\equiv \mathcal{Y}$

(II) Complexity of { outputs } ≡ 𝒴.
(i) Spatial entropy.
(ii) Zeta function.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeto function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Outline

Introductior

One-layer CNN

- One-layer CNN
- Without input
- With input
- Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
- 4 Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CN Without input With input

Sofic shif

- Introduction to sofic shift Entropy for shift space
- Zeta function Application to one-la
- CNN with input Difference between CNN
- with and without input
- Two-layer CNN with input
- New phenomena

Recent works and future plans

Reference

Sac

何トイヨトイヨト

< □ ▶

Outline

- Introduction
- 2
- One-layer CNNOne-layer CNN
- Without input
- With input
- Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
- 4) Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function Application to one-la

CNN with input Difference between CNN

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

김 글 네 귀 글 네

< □ ▶

.

In (1), consider N = 1 and d = 1.

(3)
$$\frac{dx_i}{dt} = -x_i + a_l y_{i-1} + a y_i + a_r y_{i+1} + b_l u_{i-1} + b u_i + b_r u_{i+1} + z.$$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-la

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

.

In (1), consider N = 1 and d = 1.

(3)
$$\frac{dx_i}{dt} = -x_i + a_l y_{i-1} + a y_i + a_r y_{i+1} + b_l u_{i-1} + b u_i + b_r u_{i+1} + z.$$

Consider the stationary solutions,

(4)
$$0 = -x_i + a_l y_{i-1} + a y_i + a_r y_{i+1} + b_l u_{i-1} + b u_i + b_r u_{i+1} + z.$$

(日)(四)(四)(日)(日)

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

Without input

withy SUIL :

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Output patterns

• Mosaic patterns with B = 0:

$$y_i = 1 \quad \Leftrightarrow \quad (a - 1) + z + (a_l y_{i-1} + a_r y_{i+1}) > 0.$$

$$y_i = -1 \quad \Leftrightarrow \quad (a - 1) - z - (a_l y_{i-1} + a_r y_{i+1}) > 0.$$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

Without inpu With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Output patterns

• Mosaic patterns with B = 0:

$$y_i = 1 \quad \Leftrightarrow \quad (a-1) + z + (a_l y_{i-1} + a_r y_{i+1}) > 0.$$

$$y_i = -1 \quad \Leftrightarrow \quad (a-1) - z - (a_l y_{i-1} + a_r y_{i+1}) > 0.$$

• Mosaic patterns with $B \neq 0$:

$$y_i = 1 \quad \Leftrightarrow \quad (a-1) + z > \\ -(a_l y_{i-1} + a_r y_{i+1} + b_l u_{i-1} + b u_i + b_r u_{i+1}).$$

$$\begin{array}{rl} y_i = -1 & \Leftrightarrow & (a-1)-z > \\ & & (a_l y_{i-1} + a_r y_{i+1} + b_l u_{i-1} + b u_i + b_r u_{i+1}). \end{array}$$

ヘロト ヘ週ト ヘミト ヘヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

Without inpu With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Outline

Introduction

One-layer CNN

One-layer CNN

• Without input

- With input
- Why sofic?

3 Sofic shift

- Introduction to sofic shift
- Entropy for shift space
- Zeta function
- Application to one-layer CNN with input
- Difference between CNN with and without input

4 Multi-layer CNN

- Two-layer CNN with input
- Multi-layer CNN
- 5 New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-la

CNN with input Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

御下 くまた くまた

< □ ▶

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Why sofic'

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Procedures

Partition of parameters space.

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

・ロト・西ト・山下・山下・山下

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Solution Transition matrix of given templates (A, z).

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-laye

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

・ロト・西ト・山下・山下・山下

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Solution Transition matrix of given templates (A, z).
- I Patterns generated by (A, z) (SFT: subshift of finite type).

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Solution Transition matrix of given templates (A, z).
- **9** Patterns generated by (A, z) (SFT: subshift of finite type).

イロト イ押ト イヨト イヨト

Spatial entropy.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Solution Transition matrix of given templates (A, z).
- **9** Patterns generated by (A, z) (SFT: subshift of finite type).
- Spatial entropy.
- Zeta function.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(I) Partition of parameters space (a_l, a_r, a, z)

1. Sign of parameters:

 Entropy and Zeta

Functions for MCNN Jung-Chao Ban

Without input

(I) Partition of parameters space (a_l, a_r, a, z)

2. Length of parameters:

< □ ▶

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

(I) Partition of parameters space (a_l, a_r, a, z)

3. Length of parameters:

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference
(I) Partition of parameters space (a_l, a_r, a, z)

4. Relations between a, z and other parameters $[m, n]_{(J)}$:

< m.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

Without input

with input

Sofic shif

Introduction to sofic shift Entropy for shift space

Leta function

CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

(II) Ordering matrix of local patterns

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Given (A, z), the local patterns $\mathcal{B} = \mathcal{B}((A, z))$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

イロト イ押ト イヨト イヨト

Given (A, z), the local patterns $\mathcal{B} = \mathcal{B}((A, z))$.

Example: On region $[3, 2]_{(I)}$,

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

イロト イ押ト イヨト イヨト

Given (A, z), the local patterns $\mathcal{B} = \mathcal{B}((A, z))$.

Example: On region $[3,2]_{(I)}$,

 $\mathcal{B} = \{000, 001, 111, 110, 011\}.$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Given (A, z), the local patterns $\mathcal{B} = \mathcal{B}((A, z))$.

Example: On region $[3,2]_{(I)}$,

 $\mathcal{B} = \{000, 001, 111, 110, 011\}.$

.

イロト イヨト イヨト

The transition matrix

(5)
$$\mathbb{T} \equiv \mathbb{T}(A, z) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-laye

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Given (A, z), the local patterns $\mathcal{B} = \mathcal{B}((A, z))$.

Example: On region $[3,2]_{(I)}$,

$$\mathcal{B} = \{000, 001, 111, 110, 011\}.$$

.

・ロト ・ 同ト ・ ヨト ・ ヨト

The transition matrix

(5)
$$\mathbb{T} \equiv \mathbb{T}(A, z) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

 \implies subshift of finite type of $\{0,1\}^{\mathbb{Z}^1}$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofie?

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-lay

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

The same region as last example, $G = (\mathcal{V}(G), \mathcal{E}(G))$, where

$$\begin{aligned} \mathcal{V}(G) &= \{v_1, v_2, v_3, v_4\} = \{00, 01, 10, 11\}, \\ \mathcal{E}(G) &= \{e_{ij} \mid 1 \leq i, j \leq 4, t_{ij} = 1\}. \end{aligned}$$

ヘロト ヘアト ヘヨト ヘヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

Without input

With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

The same region as last example, $G = (\mathcal{V}(G), \mathcal{E}(G))$, where

$$\begin{split} \mathcal{V}(G) &= \{v_1, v_2, v_3, v_4\} = \{00, 01, 10, 11\}, \\ \mathcal{E}(G) &= \{e_{ij} | \ 1 \leq i, j \leq 4, t_{ij} = 1\}. \end{split}$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

The same region as last example, $G = (\mathcal{V}(G), \mathcal{E}(G))$, where

$$\begin{split} \mathcal{V}(G) &= \{v_1, v_2, v_3, v_4\} = \{00, 01, 10, 11\}, \\ \mathcal{E}(G) &= \{e_{ij} | \ 1 \leq i, j \leq 4, t_{ij} = 1\}. \end{split}$$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

The same region as last example, $G = (\mathcal{V}(G), \mathcal{E}(G))$, where

$$\begin{split} \mathcal{V}(G) &= \{v_1, v_2, v_3, v_4\} = \{00, 01, 10, 11\}, \\ \mathcal{E}(G) &= \{e_{ij} | \ 1 \leq i, j \leq 4, t_{ij} = 1\}. \end{split}$$

 $\mathbb{T}=\mathbb{T}(A,z): \text{ transition matrix of } G=G(A,z).$

$$\Sigma_n(A, z) = \{ \text{patterns of length } n \} \\ = \{ e_{i_1 i_2} e_{i_2 i_3} \cdots e_{i_{n-2} i_{n-1}} | t_{i_k i_{k+1}} = 1, 1 \le k \le n-2 \}.$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Given $(A, z) \Rightarrow \mathcal{B}(A, z) \Rightarrow \mathbb{T}$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function Application to one-lav

CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

< ロ > < 団 > < 三 > < 三 > < 三 > < 回 > < つ < や

Given $(A, z) \Rightarrow \mathcal{B}(A, z) \Rightarrow \mathbb{T}$

$$\begin{split} &\Gamma_{n\times 1}: \text{ number of admissible patterns on } \mathbb{Z}_{n\times 1} \\ \Rightarrow &\Gamma_{n\times 1}=|\mathbb{T}^{n-2}|, \quad \forall n\geq 3 \end{split}$$

イロト イタト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

Without input

without inpu

with input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Given
$$(A, z) \Rightarrow \mathcal{B}(A, z) \Rightarrow \mathbb{T}$$

$$\begin{split} &\Gamma_{n\times 1}: \text{ number of admissible patterns on } \mathbb{Z}_{n\times 1} \\ \Rightarrow &\Gamma_{n\times 1} = |\mathbb{T}^{n-2}|, \quad \forall n\geq 3 \end{split}$$

イロト イヨト イヨト

Spatial entropy

$$h((A, z)) \equiv \lim_{n \to \infty} \frac{\log \Gamma_{n \times 1}}{n}$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

Without input

With input

with input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Given
$$(A, z) \Rightarrow \mathcal{B}(A, z) \Rightarrow \mathbb{T}$$

$$\begin{split} &\Gamma_{n\times 1}: \text{ number of admissible patterns on } \mathbb{Z}_{n\times 1} \\ \Rightarrow &\Gamma_{n\times 1}=|\mathbb{T}^{n-2}|, \quad \forall n\geq 3 \end{split}$$

Spatial entropy

$$h((A, z)) \equiv \lim_{n \to \infty} \frac{\log \Gamma_{n \times 1}}{n}$$
$$= \lim_{n \to \infty} \frac{\log |\mathbb{T}^{n-2}|}{n} = \log \rho(\mathbb{T}),$$

where $\rho(\mathbb{T})$ is the maximum eigenvalue of \mathbb{T} .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Given
$$(A, z) \Rightarrow \mathcal{B}(A, z) \Rightarrow \mathbb{T}$$

$$\begin{split} &\Gamma_{n\times 1}: \text{ number of admissible patterns on } \mathbb{Z}_{n\times 1} \\ \Rightarrow &\Gamma_{n\times 1}=|\mathbb{T}^{n-2}|, \quad \forall n\geq 3 \end{split}$$

Spatial entropy

$$h((A, z)) \equiv \lim_{n \to \infty} \frac{\log \Gamma_{n \times 1}}{n}$$
$$= \lim_{n \to \infty} \frac{\log |\mathbb{T}^{n-2}|}{n} = \log \rho(\mathbb{T}),$$

where $\rho(\mathbb{T})$ is the maximum eigenvalue of \mathbb{T} .

$$h(\mathbb{T}) \left\{ \begin{array}{rl} > 0 : & \text{spatial chaos} \\ = 0 : & \text{pattern formation} \end{array} \right.$$

イロト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Definition 2.1

The zeta function of $\ensuremath{\mathbb{T}}$ is defined by

(6)
$$\zeta(t) := \exp(\sum_{n=1}^{\infty} \frac{p_n}{n} t^n),$$

where p_n is the number of periodic patterns with period n in \mathbb{Z}^1 .

・ロト ・ 何ト ・ ヨト ・ ヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Definition 2.1

The zeta function of $\ensuremath{\mathbb{T}}$ is defined by

(6)
$$\zeta(t) := \exp(\sum_{n=1}^{\infty} \frac{p_n}{n} t^n),$$

where p_n is the number of periodic patterns with period n in \mathbb{Z}^1 .

(8) $\zeta(t) = \exp(\sum_{n=1}^{\infty} \frac{tr(\mathbb{T}^n)}{n} t^n)$ $= (\det(I - t\mathbb{T}))^{-1}.$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Introduction

One-layer CNN

- One-layer CNN
- Without input

• With input

• Why sofic?

3 Sofic shift

- Introduction to sofic shift
- Entropy for shift space
- Zeta function
- Application to one-layer CNN with input
- Difference between CNN with and without input

4 Multi-layer CNN

- Two-layer CNN with input
- Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

伺下 イラト イラト

< □ ▶

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofic

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-laye

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Procedures

Partition of parameters space.

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

willy solid

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function Application to one-I

CNN with input Difference between CNN

with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

イロト イ押ト イヨト イヨト

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Outputs of (A, B, z) and outputs of (A, B, z) with input \mathcal{U} .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

・ロト・西ト・山下・山下・山下

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Outputs of (A, B, z) and outputs of (A, B, z) with input \mathcal{U} .

イロト イ押ト イヨト イヨト

• Labeled graph \implies Sofic shift.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Outputs of (A, B, z) and outputs of (A, B, z) with input \mathcal{U} .

イロト イ押ト イヨト イヨト

- Spatial entropy.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Procedures

- Partition of parameters space.
- Ordering matrix of all local patterns.
- Outputs of (A, B, z) and outputs of (A, B, z) with input \mathcal{U} .

- Spatial entropy.
- Seta function.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Steps

Sign of parameters (a_l, a_r, b_l, b, b_r) .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Steps

2 Length of $(|a_l|, |a_r|, |b_l|, |b|, |b_r|)$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Steps

- Sign of parameters (a_l, a_r, b_l, b, b_r) .
- 2 Length of $(|a_l|, |a_r|, |b_l|, |b|, |b_r|)$.
- Solutions between $(|a_l|, |a_r|, |b_l|, |b|, |b_r|)$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Steps

- Sign of parameters (a_l, a_r, b_l, b, b_r) .
- 2 Length of $(|a_l|, |a_r|, |b_l|, |b|, |b_r|)$.
- Solutions between $(|a_l|, |a_r|, |b_l|, |b|, |b_r|)$.
- Relations between a, z and other parameters $[m, n]_{(J)}, J = [j_1, j_2, j_3].$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Theorem 2.4

For $(A, B, z) \in \mathbb{R}^7$, there is a unique region $[m, n]_{(J)}$ defines the basic set of admissible local patterns $\mathcal{B}(A, B, z)$, where $0 \le m, n \le 32, J = [j_1, j_2, j_3], 1 \le j_1 \le 32, 1 \le j_2 \le 120,$ $1 \le j_3 \le 231.$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofic

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Example 2.5

Pick
$$A = [a_l, a, a_r]$$
 and $B = [b_l, b, b_r]$ satisfying
(1) $a_l > b_l > a_r > b > b_r > 0;$
(2) $a_l + b_r < b_l + a_r, a_l + b > a_r + b_l + b_r;$
(3) $a_r + b + b_r < a_l < b_l + b;$
(4) $b_l + b_r < a_r + b, b_l > a_r + b_r, a_r > b + b_r$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function Application to one-li

CNN with input Difference between CNN

with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

ヘロト ヘロト ヘヨト ヘヨト

Example 2.5

Pick
$$A = [a_l, a, a_r]$$
 and $B = [b_l, b, b_r]$ satisfying
(1) $a_l > b_l > a_r > b > b_r > 0$;
(2) $a_l + b_r < b_l + a_r, a_l + b > a_r + b_l + b_r$;
(3) $a_r + b + b_r < a_l < b_l + b$;
(4) $b_l + b_r < a_r + b, b_l > a_r + b_r, a_r > b + b_r$
Take $R = [23, 18]$ -region in $(a - 1) - z$ plane and input
 $\mathcal{U} = \{- + -, - + +, + - +\}$, we have the local patterns as
follows:

ヘロト ヘロト ヘヨト ヘヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-I

CNN with input Difference between CNN

with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Example 2.5

Pick
$$A = [a_l, a, a_r]$$
 and $B = [b_l, b, b_r]$ satisfying
(1) $a_l > b_l > a_r > b > b_r > 0$;
(2) $a_l + b_r < b_l + a_r, a_l + b > a_r + b_l + b_r$;
(3) $a_r + b + b_r < a_l < b_l + b$;
(4) $b_l + b_r < a_r + b, b_l > a_r + b_r, a_r > b + b_r$
Take $R = [23, 18]$ -region in $(a - 1) - z$ plane and input
 $\mathcal{U} = \{-+, -, -++, +-+\}$, we have the local patterns as
follows:

$- \ominus -$	$-\ominus -$	- ⊖ -	$- \ominus +$
$- \blacksquare -$	$-\blacksquare +$	+ ⊟ +	$- \blacksquare -$
- ⊖ +	$-\ominus+$	$+ \ominus -$	$+ \ominus -$
- ⊞ +	+ $\blacksquare+$	$- \blacksquare -$	$- \blacksquare +$
+⊕+ +⊟+	$+ \oplus + - \boxplus +$	$+ \oplus + - \boxplus -$	+⊕- +⊟+
$+\oplus -$	$\stackrel{+}{-} \stackrel{\oplus}{\boxplus} \stackrel{-}{-}$	$-\oplus +$	- ⊕+
$-\boxplus +$		+ $\blacksquare +$	- ⊞+

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

(II) Ordering matrix of $\mathbb{X}_{3\times 2}$

Motivations:

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofic'

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Motivations:

• Given $\mathcal{B} \equiv \mathcal{B}((A, B, z)) \subset \{0, 1\}^{\mathbb{Z}_{3 \times 2}}$, hope to generate $\Sigma(\mathcal{B})$.

ヘロト ヘアト ヘヨト ヘヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Motivations:

• Given $\mathcal{B} \equiv \mathcal{B}((A, B, z)) \subset \{0, 1\}^{\mathbb{Z}_{3 \times 2}}$, hope to generate $\Sigma(\mathcal{B})$.

イロト 不得 トイヨト イヨト

Consider Output space:

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-laye

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+
Motivations:

- Given $\mathcal{B} \equiv \mathcal{B}((A, B, z)) \subset \{0, 1\}^{\mathbb{Z}_{3 \times 2}}$, hope to generate $\Sigma(\mathcal{B})$.
- Consider Output space:

$$Y_U = \{ (y_i)_{i \in \mathbb{Z}} \mid \text{there exists } (u_i)_{i \in \mathbb{Z}} \text{ s.t. } (y \circ u) \in \Sigma(\mathcal{B}) \},\$$

イロト 不得 トイヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

Motivations:

- Given $\mathcal{B} \equiv \mathcal{B}((A, B, z)) \subset \{0, 1\}^{\mathbb{Z}_{3 \times 2}}$, hope to generate $\Sigma(\mathcal{B})$.
- Consider Output space:

 $Y_U = \{(y_i)_{i \in \mathbb{Z}} \mid \text{there exists } (u_i)_{i \in \mathbb{Z}} \text{ s.t. } (y \circ u) \in \Sigma(\mathcal{B})\},\$

where $(y \circ u)$ denote the $\infty \times 2$ admissible patterns generated from \mathcal{B} , i.e., $\begin{array}{c} \cdots y_{-1}y_0y_1\cdots\\ \cdots y_{-1}u_0u_1\cdots\end{array} \in \Sigma(\mathcal{B}).$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Why sofic'

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

くロット語 く 言 と 小型 マ く 白 マ

• The ordering matrix $\mathbb{X}_{3 \times 2} = \mathbb{X}(\mathcal{B}) =$

ヘロト ヘ戸ト ヘヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

why solic:

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofic

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Remark

One can see that there is self-similarity on the ordering matrix of CNN with input.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

(III) Labeled graph

Theorem 2.6 One-layer CNN with input U is a sofic shift.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Why sofic

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

・ロト ・ 日 ト ・ モ ト ・ モ ト

(III) Labeled graph

Theorem 2.6

One-layer CNN with input ${\mathcal U}$ is a sofic shift.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space Zeto function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Example 2.7 (Continued)

 $\mathbb{T}\left(\mathcal{B}\right)$ can be constructed w.r.t $\mathbb{X}\left(\mathcal{B}\right)$ as follows:

$$\mathbb{T} = \begin{bmatrix} T_1 & T_1 & 0 & 0 \\ 0 & 0 & 0 & T_3 \\ T_2 & 0 & 0 & 0 \\ 0 & 0 & T_1 & T_1 \end{bmatrix},$$

where $T_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, T_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and
 $T_3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

< ロ > < 団 > < 三 > < 三 > < 三 > < 回 > < つ < や

Outline

Introduction

One-layer CNN

- One-layer CNN
- Without input
- With input
- Why sofic?

3 Sofic shif

- Introduction to sofic shift
- Entropy for shift space
- Zeta function
- Application to one-layer CNN with input
- Difference between CNN with and without input

4 Multi-layer CNN

- Two-layer CNN with input
- Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

김 글 네 귀 글 네

< □ ▶

Why Sofic?

Given A,B and z, we have the basic set $(B)\equiv\mathcal{B}\left(A,B,z\right)$

• $|\mathbb{T}^{n-2}(\mathcal{B})|$ =the number of all admissible patterns in $\sum_{n \times 2} (\mathcal{B})$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

イロト イタト イヨト イヨト

Why Sofic?

Given $A,\,B$ and z, we have the basic set $(B)\equiv\mathcal{B}\left(A,B,z\right)$

- $|\mathbb{T}^{n-2}(\mathcal{B})|$ =the number of all admissible patterns in $\Sigma_{n\times 2}(\mathcal{B})$
- 2 To generate admissible patterns of Y_U , $S = \{s_{ijk}\}_{0 \le i,j,k \le 1}$ should be introduced to **specify** the output patterns.

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

New phenomena

Recent works and future plans

Reference

Sar

Why Sofic?

Given A, B and z, we have the basic set $(B) \equiv \mathcal{B}(A, B, z)$

- $|\mathbb{T}^{n-2}(\mathcal{B})| =$ the number of all admissible patterns in $\Sigma_{n \times 2}(\mathcal{B})$
- 2 To generate admissible patterns of Y_U , $S = \{s_{ijk}\}_{0 \le i,j,k \le 1}$ should be introduced to **specify** the output patterns.

Once

$$\mathbb{T} = \left[\begin{array}{rrrrr} T_1 & T_2 & 0 & 0 \\ 0 & 0 & T_3 & T_4 \\ T_5 & T_6 & 0 & 0 \\ 0 & 0 & T_7 & T_8 \end{array} \right]$$

is constructed, let

 $\mathcal{S} = \{s_{000}, s_{001}, s_{010}, s_{011}, s_{100}, s_{101}, s_{110}, s_{111}\}$, then symbolic transition matrix $\mathbb S$ is:

$$\mathbb{S} = \begin{bmatrix} s_{000}T_1 & s_{001}T_2 & 0 & 0\\ 0 & 0 & s_{010}T_3 & s_{011}T_4\\ s_{100}T_5 & s_{101}T_6 & 0 & 0\\ 0 & 0 & s_{110}T_7 & s_{111}T_8 \end{bmatrix}.$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

CNN with input Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with inpu Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Theorem 2.8

 Y_U is conjugate to $X_{\mathbb{S}}$ under $\phi : Y_U \to X_{\mathbb{S}}$, where ϕ is a factor map induced by the sliding block code $\Phi(y_0y_1y_2) = s_{y_0y_1y_2}$.

イロト イタト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNI One-layer CNN Without input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Theorem 2.8

 Y_U is conjugate to $X_{\mathbb{S}}$ under $\phi : Y_U \to X_{\mathbb{S}}$, where ϕ is a factor map induced by the sliding block code $\Phi(y_0y_1y_2) = s_{y_0y_1y_2}$.

Theorem 2.9

If *X* and *Y* are shift spaces, and *X* is conjugate to *Y* under conjugacy ϕ , then

•
$$h(X) = h(X);$$

•
$$\zeta_{\sigma_X}(X) = \zeta_{\sigma_Y}(Y)$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNI One-layer CNN Without input With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN

with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Theorem 2.8

 Y_U is conjugate to $X_{\mathbb{S}}$ under $\phi : Y_U \to X_{\mathbb{S}}$, where ϕ is a factor map induced by the sliding block code $\Phi(y_0y_1y_2) = s_{y_0y_1y_2}$.

Theorem 2.9

If *X* and *Y* are shift spaces, and *X* is conjugate to *Y* under conjugacy ϕ , then

•
$$h(X) = h(X);$$

•
$$\zeta_{\sigma_X}(X) = \zeta_{\sigma_Y}(Y)$$

 Thus the problem of computation the entropy and zeta function of Y_U is equivalent to compute the these two invariants of X_S.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNI One-layer CNN Without input With input

Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN

with and without input

/lulti-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{A} \circ \mathcal{A}$

Outline

- Introduction
 - One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input

ヘロト ヘタト ヘヨト ヘヨト

- 4 Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

- Introduction to sofic shift Entropy for shift space Zeta function
- Application to one-layer CNN with input
- Difference between CNN with and without input

Multi-layer CNN

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?

Sofic shift

Introduction to sofic shift

- Entropy for shift space
- Zeta function
- Application to one-layer CNN with input
- Difference between CNN with and without input

イロト イタト イヨト イヨト

4 Multi-layer CNN

- Two-layer CNN with input
- Multi-layer CNN
- 5 New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift

Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Definition 3.1

A labeled graph \mathcal{G} is a pair (G, \mathcal{L}) , where G is a graph with edge \mathcal{E} , and the labeling $\mathcal{L}: \mathcal{E} \to \mathcal{A}$ assigns to each edge e of G a label $\mathcal{L}(e)$ from the finite alphabet \mathcal{A} . The underlying graph of \mathcal{G} is G.

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift

Entropy for shift space

Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

Definition 3.1

A labeled graph \mathcal{G} is a pair (G, \mathcal{L}) , where G is a graph with edge \mathcal{E} , and the labeling $\mathcal{L} : \mathcal{E} \to \mathcal{A}$ assigns to each edge e of G a label $\mathcal{L}(e)$ from the finite alphabet \mathcal{A} . The underlying graph of \mathcal{G} is G.

신다 제 신문에 제 문 제 문 제

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift

Entropy for shift space

Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

If ζ = ··· e₋₁e₀e₁ ··· is a bi-infinite word in G, define the label of the walk ζ to be

$$\mathcal{L}_{\infty} = \cdots \mathcal{L}(e_{-1}) \mathcal{L}(e_0) \mathcal{L}(e_1) \cdots \in \mathcal{A}^{\mathbb{Z}}.$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input

With input

Sofic shift

Introduction to sofic shift

Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

If ζ = ··· e₋₁e₀e₁ ··· is a bi-infinite word in G, define the label of the walk ζ to be

$$\mathcal{L}_{\infty} = \cdots \mathcal{L}(e_{-1}) \mathcal{L}(e_0) \mathcal{L}(e_1) \cdots \in \mathcal{A}^{\mathbb{Z}}.$$

• Thus, $X_{\mathcal{G}}$ is defined,

$$X_{\mathcal{G}} = \left\{ x \in \mathcal{A}^{\mathbb{Z}} : x = \mathcal{L}_{\infty}\left(\zeta\right) \text{ for some } \zeta \in X_{G} \right\}.$$

イロト 不得 トイヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

ntroduction

One-layer CNN One-layer CNN

With input

140----

Sofic shift

Introduction to sofic shift

intropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?

Sofic shift

- Introduction to sofic shift
- Entropy for shift space
- Zeta function
- Application to one-layer CNN with input
- Difference between CNN with and without input

4 Multi-layer CNN

- Two-layer CNN with input
- Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift

Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

- イタト イヨト イヨト

< □ ▶

• X : shift space, $h(X) = \lim_{n \to \infty} \frac{\log |B_n(X)|}{n}$, where $B_n(X)$ is the *n*-block of X.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

Without inpu

with input

Sofic shif

Introduction to sofic shift

Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

イロト イ押ト イヨト イヨト

- X : shift space, $h(X) = \lim_{n \to \infty} \frac{\log |B_n(X)|}{n}$, where $B_n(X)$ is the *n*-block of X.
- The entropy of X is the growth rate of *n*-block in X, i.e., it measures the complexity of X.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

Sofic shif

Introduction to sofic shift

Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

500

- X : shift space, $h(X) = \lim_{n \to \infty} \frac{\log |B_n(X)|}{n}$, where $B_n(X)$ is the *n*-block of X.
- The entropy of X is the growth rate of *n*-block in X, i.e., it measures the complexity of X.
- For *N*-layer CNN, in some region of parameter space, we compute the entropy of the output space $h(Y_U)$, where $Y_U = \{(y_i)_{i \in \mathbb{Z}} | \exists (u_i)_{i \in \mathbb{Z}} \text{ s.t. } (y \circ u) \in \Sigma(\mathcal{B})\}$

신다 제 소리에서 신 문 제 문 제

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift

Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

Computation of Entropy for SFT

Theorem 3.2 If *X* is a SFT, and \mathbb{T} is its transition matrix, then

$$h(X) = \log \rho(\mathbb{T}).$$

イロト イ押ト イヨト イヨト

where $\rho(\mathbb{T})$ is the maximal eigenvalue of \mathbb{T} .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift

Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

500

Computation of Entropy for Sofic Shift

Definition 3.3

A label set $\mathcal{G} = (G, \mathcal{L})$ is right resolving if for every vertex I of G, the edge from I carry different labels.

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNI One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift

Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

Computation of Entropy for Sofic Shift

Definition 3.3

A label set $\mathcal{G} = (G, \mathcal{L})$ is right resolving if for every vertex I of G, the edge from I carry different labels.

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNI One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift

Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Given Y_U , and $\mathbb{S} = (G_{\mathbb{T}}, \mathcal{L})$ is the sofic shift induced by Y_U , if \mathbb{S} is **right-resolving**, then the entropy of $X_{\mathbb{S}}$ is

 $h\left(X_{\mathbb{S}}\right) = \log \rho\left(\mathbb{T}\right).$

イロト イポト イラト イラト

where $\rho(\mathbb{T})$ is the maximal eigenvalue of \mathbb{T} .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Given Y_U , and $\mathbb{S} = (G_{\mathbb{T}}, \mathcal{L})$ is the sofic shift induced by Y_U , if \mathbb{S} is **right-resolving**, then the entropy of $X_{\mathbb{S}}$ is

 $h\left(X_{\mathbb{S}}\right) = \log \rho\left(\mathbb{T}\right).$

イロト イ押ト イヨト イヨト

where $\rho(\mathbb{T})$ is the maximal eigenvalue of \mathbb{T} .

• In this case, $h(Y_U) = h(X_{\mathbb{S}}) = \log \rho(\mathbb{T})$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

Given $\mathbb{S} = (G_{\mathbb{T}}, \mathcal{L})$ is a labeled graph which is not right resolving, then there is a sofic shift $\mathcal{H} = (G_{\mathbb{H}}, \mathcal{L})$ which is right resolving that is conjugate to $X_{\mathbb{S}}$, i.e., $X_{\mathbb{S}} = X_{\mathcal{H}}$.

イロト イポト イラト イラト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Given $\mathbb{S} = (G_{\mathbb{T}}, \mathcal{L})$ is a labeled graph which is not right resolving, then there is a sofic shift $\mathcal{H} = (G_{\mathbb{H}}, \mathcal{L})$ which is right resolving that is conjugate to $X_{\mathbb{S}}$, i.e., $X_{\mathbb{S}} = X_{\mathcal{H}}$.

イロト イ押ト イヨト イヨト

• In this case $h(Y_U) = h(X_{\mathbb{S}}) = h(X_{\mathcal{H}}) = \log \rho(\mathbb{H})$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Given $\mathbb{S} = (G_{\mathbb{T}}, \mathcal{L})$ is a labeled graph which is not right resolving, then there is a sofic shift $\mathcal{H} = (G_{\mathbb{H}}, \mathcal{L})$ which is right resolving that is conjugate to $X_{\mathbb{S}}$, i.e., $X_{\mathbb{S}} = X_{\mathcal{H}}$.

- In this case $h(Y_U) = h(X_{\mathbb{S}}) = h(X_{\mathcal{H}}) = \log \rho(\mathbb{H})$.
- The method for constructing $\mathcal{H} = (G_{\mathbb{H}}, \mathcal{L})$ is called "Subset Construction".

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{A} \circ \mathcal{A}$

Example 3.6

For a sofic shift with the sign matrix is

$$B = \left[\begin{array}{cc} a & a \\ b & \varnothing \end{array} \right], \ A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right]$$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift

Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Introduce a new symbol $\{0,1\}$,and a new symbolic adjacency matrix C indexed by $\{0,1,\{0,1\}\}$ as

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

one-layer CNN

Without input

With input

Why sofic?

Sofic shif

Introduction to sofic shift

Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Thus in this case *C* is right resolving, and $X_{\mathcal{G}_B} \simeq X_{\mathcal{G}_C}$.

• Such construction is not unique, all of them are conjugate.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduce a new symbol $\{0,1\}$,and a new symbolic adjacency matrix C indexed by $\{0,1,\{0,1\}\}$ as

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

Without input

With input

Sofic shif

Introduction to sofic shift

Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Thus in this case *C* is right resolving, and $X_{\mathcal{G}_B} \simeq X_{\mathcal{G}_C}$.

- Such construction is not unique, all of them are conjugate.
- Minimal subset construction

For computation the entropy of $\mathcal{G}_B = (G_A, \mathcal{L})$, define the transition matrix of *C* by

$$D = \left[\begin{array}{rrrr} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right],$$

we have

$$h(X_{\mathcal{G}_B}) = h(X_{\mathcal{G}_C}) = \log \rho(D) = \log \frac{1 + \sqrt{5}}{2}.$$

イロト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

Why sofic?

Sofic shif

Introduction to sofic shift

Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac
Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?

Sofic shift

- Introduction to sofic shift
- Entropy for shift space
- Zeta function
- Application to one-layer CNN with input
- Difference between CNN with and without input

4 Multi-layer CNN

- Two-layer CNN with input
- Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

- イタト イヨト イヨト

< □ ▶

Definition 3.7

Let (M, ϕ) be a dynamical system for which $p_n(\phi) < \infty$ for all $n \ge 1$. The zeta function $\zeta_{\phi}(t)$ is defined as

$$\zeta_{\phi}(t) = \exp\left(\sum_{n=1}^{\infty} \frac{p_n(\phi)}{n} t^n\right).$$

Theorem 3.8

Let *A* be an $r \times r$ nonnegative integer matrix, $\chi_A(t)$ is characteristic polynomial, then

$$\zeta_{\sigma_{A}}\left(t\right) = \frac{1}{t^{r}\chi_{A}\left(t^{-1}\right)} = \frac{1}{\det\left(Id - tA\right)}$$

イロト イ押ト イヨト イヨト

Thus the zeta function of a SFT is the reciprocal of a polynomial.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Notations:

 $\mathcal{G} = (G, \mathcal{L})$: right resolving labeled graph r: the number of vertices in G $\mathcal{V} = \{1, \cdots, r\}$

B : the symbolic transition matrix of $X_{\mathcal{G}}$

 \boldsymbol{A} : obtained from \boldsymbol{B} by letting all the symbol equal to 1

•
$$F = \{f_1 \cdots f_j\}$$

 π : permutation act on F
i.e., $\pi(F) = (f_{i_1}, \cdots, f_{i_j})$ with $\pi(f_k) = f_{i_k}$ for $k = 1, \cdots, j$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Notations:

 $\mathcal{G} = (G, \mathcal{L})$: right resolving labeled graph r: the number of vertices in G $\mathcal{V} = \{1, \cdots, r\}$

- B: the symbolic transition matrix of $X_{\mathcal{G}}$
- \boldsymbol{A} : obtained from \boldsymbol{B} by letting all the symbol equal to 1

•
$$F = \{f_1 \cdots f_j\}$$

 π : permutation act on F
i.e., $\pi(F) = (f_{i_1}, \cdots, f_{i_j})$ with $\pi(f_k) = f_{i_k}$ for $k = 1, \cdots, j$.
• Define the

$$sgn\left(\pi\right) = \left\{ \begin{array}{ll} 1 & \quad \text{if } \pi \text{ is even} \\ \\ -1 & \quad \text{if } \pi \text{ is odd} \end{array} \right.$$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Output Construct
$$\mathcal{G}_j$$
 with $\{\pm a : a \in \mathcal{A}\}$, where $1 \leq j \leq r = |\mathcal{V}|$.

(日)(四)(四)(日)(日)

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Oconstruct \mathcal{G}_j with $\{\pm a : a \in \mathcal{A}\}$, where $1 \leq j \leq r = |\mathcal{V}|$.

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

2 $|\mathcal{V}_j| = \binom{r}{j}$: the number of vertices of \mathcal{G}_j .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

- Oconstruct \mathcal{G}_j with $\{\pm a : a \in \mathcal{A}\}$, where $1 \leq j \leq r = |\mathcal{V}|$.
- 2 $|\mathcal{V}_j| = \binom{r}{j}$: the number of vertices of \mathcal{G}_j .
- If there is a edge a sent $\mathcal{I} = \{I_1, \dots, I_j\}$ to $\mathcal{J} = \{J_1, \dots, J_j\}$, then there is a labeling a from \mathcal{I} to \mathcal{J} in \mathcal{G}_j if (J_1, \dots, J_j) is even, otherwise, label it by -a.

ヘロト ヘアト ヘヨト ヘヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

- Oconstruct \mathcal{G}_j with $\{\pm a : a \in \mathcal{A}\}$, where $1 \leq j \leq r = |\mathcal{V}|$.
- 2 $|\mathcal{V}_j| = \binom{r}{j}$: the number of vertices of \mathcal{G}_j .
- If there is a edge a sent $\mathcal{I} = \{I_1, \dots, I_j\}$ to $\mathcal{J} = \{J_1, \dots, J_j\}$, then there is a labeling a from \mathcal{I} to \mathcal{J} in \mathcal{G}_j if (J_1, \dots, J_j) is even, otherwise, label it by -a.

ヘロト ヘアト ヘヨト ヘヨト

• We get
$$\mathcal{G}_j, B_j$$
 and A_j .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{A} \circ \mathcal{A}$

Theorem 3.9

Let \mathcal{G} be a right resolving labeled graph with r vertices, and let A_j be its jth sign subset matrix. Then

$$\zeta_{\sigma_{\mathcal{G}}}(t) = \prod_{j=1}^{r} \left[\det\left(Id - tA_{j}\right)\right]^{(-1)^{j}}$$

• Thus the zeta function for a sofic shift is a rational function.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

500

医下颌 医下

Example 3.10 (Even Shift)

If $\mathcal{G} = (G_A, \mathcal{L})$, with $B = \begin{bmatrix} a & b \\ b & \varnothing \end{bmatrix}$ and $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$, then $\mathcal{G}_1 = \mathcal{G}$. Moreover, \mathcal{G}_2 can be constructed with $B_2 = [-b]$ and $A_2 = [-1]$.

Thus, the zeta function can be computed as

$$\zeta_{\sigma_{\mathcal{G}}}\left(t\right) = \frac{1+t}{1-t-t^2}.$$

소 曰 돈 소 圖 돈 소 플 돈 소 플.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{A} \circ \mathcal{A}$

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?

Sofic shift

- Introduction to sofic shift
- Entropy for shift space
- Zeta function

• Application to one-layer CNN with input

Difference between CNN with and without input

イロト イタト イヨト イヨト

4 Multi-layer CNN

- Two-layer CNN with input
- Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Application to one-layer CNN with input

Theorem 3.11

Given A, B, z, and \mathcal{U} , let $\widetilde{\mathbb{T}} = \mathbb{T}((A, B, z))$, $\mathbb{T} = \mathbb{T}((A, B, z); \mathcal{U}) \in \mathcal{M}_{16}(\mathbb{R})$ and $\mathbb{U} = \mathbb{T}(\mathcal{U}) \in \mathcal{M}_4(\mathbb{R})$ be the transition matrices, then

(9)
$$\mathbb{T} = \widetilde{\mathbb{T}} \circ (E_4 \otimes \mathbb{U}),$$

where \circ and \otimes are the Hadamard product and Kronecker product, resp., $E_4 = (e_{ij}) \in \mathcal{M}_4(\mathbb{R})$ with $e_{ij} = 1$ for all i, j.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

nac

Computation of entropy for CNN with input

Example 3.12 (Continued)

Same example as before, the transition matrix is

$$\mathbb{T} = \begin{bmatrix} T_1 & T_1 & 0 & 0 \\ 0 & 0 & 0 & T_3 \\ T_2 & 0 & 0 & 0 \\ 0 & 0 & T_1 & T_1 \end{bmatrix},$$

where $T_1 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, T_2 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ and
 $T_3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Computation of entropy for CNN with input

Example 3.12 (Continued)

Therefore, we have

$$\mathbb{S} = \begin{bmatrix} s_{000}T_1 & s_{001}T_1 & 0 & 0\\ 0 & 0 & 0 & s_{011}T_3\\ s_{100}T_2 & 0 & 0 & 0\\ 0 & 0 & s_{110}T_1 & s_{111}T_1 \end{bmatrix}.$$

This sofic is not right resolving. Use subset construction:

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

ntroduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Example 3.12 (Continued)

New right resolving sofic shift can be obtained as

	0	0	1	0	0	1	0	0	0	0	0	0	1
$\mathbb{H} =$	1	0	0	1	0	0	0	0	0	0	0	0	
	1	0	Õ	1	Õ	0	0	Õ	Õ	0	0	Ő	
	0	Õ	Õ	0	Õ	Õ	0	Õ	Õ	0	1	Õ	
	0	0	0	0	0	0	0	0	1	0	0	0	
	0	0	0	0	0	0	0	0	1	0	0	0	
	0	0	1	0	0	0	0	0	0	0	0	0	,
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	1	0	0	0	1	
	0	0	0	0	0	0	1	0	1	0	0	0	
	0	0	0	0	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	1	0	1	0	0	0	
n h((A	$h\left((A,B,z)\right) = \log \lambda > 0$												

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Application to one-laver CNN with input

Two-layer CNN with input

the where λ is the maximal eigenvalue of $t^6 - 2t^4 + t^2 - 1 = 0$.

> イロト イポト イヨト イヨト Э Sac

Example 3.12 (Continued)

For the computation of zeta function, we should construct the k-th sign subset matrices A_k of \mathbb{H} .

and $A_3 = \cdots = A_{12} = 0$, then

$$\zeta_{\sigma_{\mathbb{H}}} = \frac{(t+1)^2}{1-2t^2+t^4-t^6}.$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?

Sofic shift

- Introduction to sofic shift
- Entropy for shift space
- Zeta function
- Application to one-layer CNN with input

• Difference between CNN with and without input

イロト イタト イヨト イヨト

- 4 Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
- New phenomena
- Recent works and future plans
- Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Relations

Theorem 3.13

Given (A, B, z), then

If B = 0, then $\mathcal{B}(A, B, z)$ and transition matrix \mathbb{T} can be uniquely defined and

$$\Sigma\left(\mathcal{B}\left(A,B,z\right)\right)=X_{\mathbb{T}}.$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Relations

Theorem 3.13

Given (A, B, z), then

If B = 0, then $\mathcal{B}(A, B, z)$ and transition matrix \mathbb{T} can be uniquely defined and

 $\Sigma\left(\mathcal{B}\left(A,B,z\right)\right) = X_{\mathbb{T}}.$

2 If $B \neq 0$, $\mathcal{B}(A, B, z)$ and transition matrix \mathbb{T} can be uniquely defined. Let $\mathcal{S} = \{s_i\}_{i \in I}$ and construct \mathbb{S} , then

$$Y_U = X_{\mathbb{S}}$$

where

$$Y_U = \{ (y_i)_{i \in \mathbb{Z}} \mid \text{there exists } (u_i)_{i \in \mathbb{Z}} \text{ s.t. } (y \circ u) \in \Sigma(\mathcal{B}) \}.$$

and $\mathbb{S} = (G_{\mathbb{T}}, S)$ is the sofic shift with underling graph $G_{\mathbb{T}}$ and labeling by S.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Why sofic'

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

● CNN without input ⇔ SFT

・ロト・西ト・ヨト・ヨー シタぐ

• CNN without input \Leftrightarrow SFT

• Entropy

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

・ロト (四) (三) (三) (三) (つ)

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

with hiput

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

500

(日) (월) (분) (분) (분)

• CNN without input \Leftrightarrow SFT

- Entropy
- Zeta Function

- Entropy
- Zeta Function
- Ergodic Theorem (transitivity, mixing and measure)

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

Why opfied

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

イロト イポト イヨト イヨー

- Entropy
- Zeta Function
- Ergodic Theorem (transitivity, mixing and measure)

• CNN with input and MCNN Sofic.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

- Entropy
- Zeta Function
- Ergodic Theorem (transitivity, mixing and measure)

• CNN with input and MCNN \Leftrightarrow Sofic.

Entropy

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

Cofio obif

Introduction to sofi

Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

イロト イポト イヨト イヨー

• CNN without input \Leftrightarrow SFT

- Entropy
- Zeta Function
- Ergodic Theorem (transitivity, mixing and measure)

• CNN with input and MCNN \Leftrightarrow Sofic.

- Entropy
- Zeta Function

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

why sofic:

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

イロト イポト イヨト イヨー

- Entropy
- Zeta Function
- Ergodic Theorem (transitivity, mixing and measure)

• CNN with input and MCNN \Leftrightarrow Sofic.

- Entropy
- Zeta Function
- Ergodic Theory (transitivity, mixing and measure)

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN

With input

. . . .

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
 - Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
 - New phenomena
 - Recent works and future plans
 - Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

- One-layer CNN One-layer CNN Without input
- With input

Sofic shif

- Introduction to sofic shift Entropy for shift space
- Application to one-layer
- Difference between CNN with and without input

Multi-layer CNN

- Two-layer CNN with input Multi-layer CNN
- New phenomena
- Recent works and future plans

Reference

500

- イタト イヨト イヨト

< □ ▶

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
 - Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
 - New phenomena
 - Recent works and future plans
 - Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

- One-layer CNN One-layer CNN Without input
- With input

Sofic shif

- Introduction to sofic shift Entropy for shift space
- Zeta function
- CNN with input
- Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input

New phenomena

Recent works and future plans

Reference

500

- イタト イヨト イヨト

< □ ▶

MCNN: N-layer CNN with input

Equations

(10)
$$\frac{dx_i^{(n)}}{dt} = -x_i^{(n)} + \sum_{|k| \le d} a_k y_{i+k}^{(n)} + \sum_{|k| \le d} b_k u_{i+k}^{(n)} + z^{(n)},$$

where
$$u_i^{(n)} = y_i^{(n-1)}$$
 for $1 \le n \le N$, and $u_i^{(0)} = u_i$ for $i \in \mathbb{Z}$.

ヘロト ヘタト ヘヨト ヘヨト

Questions

For *N*-layer CNN with input:

 $\bullet \ \mbox{Relation between i-th and } (i+1)-\mbox{th layer?}$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input

New phenomena

Recent works and future plans

Reference

Sac

MCNN: N-layer CNN with input

Equations

(10)
$$\frac{dx_i^{(n)}}{dt} = -x_i^{(n)} + \sum_{|k| \le d} a_k y_{i+k}^{(n)} + \sum_{|k| \le d} b_k u_{i+k}^{(n)} + z^{(n)},$$

where $u_i^{(n)} = y_i^{(n-1)}$ for $1 \le n \le N$, and $u_i^{(0)} = u_i$ for $i \in \mathbb{Z}$.

Questions

For N-layer CNN with input:

- Relation between i-th and (i + 1)-th layer?
- Entropy?

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input

New phenomena

Recent works and future plans

Reference

・ロト・西ト・山下・山下・山下

MCNN: N-layer CNN with input

Equations

(10)
$$\frac{dx_i^{(n)}}{dt} = -x_i^{(n)} + \sum_{|k| \le d} a_k y_{i+k}^{(n)} + \sum_{|k| \le d} b_k u_{i+k}^{(n)} + z^{(n)},$$

where $u_i^{(n)} = u_i^{(n-1)}$ for $1 \le n \le N$, and $u_i^{(0)} = u_i$ for $i \in \mathbb{Z}$.

where
$$u_i^{(n)} = y_i^{(n-1)}$$
 for $1 \le n \le N$, and $u_i^{(0)} = u_i$ for i

Questions

For *N*-layer CNN with input:

 $\bullet \ \mbox{Relation}$ between i-th and $(i+1)-\mbox{th}$ layer?

(日) (四) (日) (日) (日)

- Entropy?
- Zeta function?

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input

New phenomena

Recent works and future plans

Reference

Sac

Denote the parameters spaces and admissible local patterns of each layer by

(11)
$$\mathcal{P}^{(i)} = \{ (A^{(i)}, B^{(i)}, z^{(i)}) \}, \ \mathcal{B}^{(i)}(A^{(i)}, B^{(i)}, z^{(i)}), \$$

for $1 \leq i \leq N$. Let

(1

2)

$$A = (A^{(1)}, A^{(2)}, \cdots, A^{(N)}),$$

$$B = (B^{(1)}, B^{(2)}, \cdots, B^{(N)}),$$

$$\mathcal{P} = (\mathcal{P}^{(1)}, \mathcal{P}^{(2)}, \cdots, \mathcal{P}^{(N)}).$$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

ヘロト ヘ戸ト ヘヨト ヘヨト

Theorem 4.1

There exists $K \in \mathbb{N}$ and unique set of open subregions $\{P_k\}_{k=1}^K$ of \mathcal{P} such that

(i)
$$\mathcal{P} = \bigcup_{k=1}^{K} \bar{P}_{k}$$
.
(ii) $P_{k} \bigcap P_{j} = \varnothing$ for $k \neq j$.
(iii) $\mathcal{B}(A, B, z) = \mathcal{B}(A', B', z') \Leftrightarrow$
 $(A, B, z), (A', B', z') \in P_{k}$ for some k .

- Linear Separation Theorem.
- Thus, $\mathcal{B}\left(A^{(i)}, B^{(i)}, z^{(i)}\right)$ for N–layer MCNN with input can be uniquely specified.

・ロト ・ 雪 ト ・ 言 ト ・ ヨ ト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sar

Given $(A^{(1)}, B^{(1)}, z^{(1)})$, $(A^{(2)}, B^{(2)}, z^{(2)})$ and \mathcal{U} , we obtain the admissible local patterns $\mathcal{B}^{(1)}$, $\mathcal{B}^{(2)}$ and the transition matrices $\mathbb{T}_1, \mathbb{T}_2, \mathbb{U}$.

Denote the transition matrix of $\mathcal{B}((A, B, z); \mathcal{U}) = \mathcal{B}^{(2)} * \mathcal{B}^{(1)}$ by \mathbb{T} .

Theorem 4.2

$$\mathbb{T} = (\mathbb{T}_2 \otimes E_4) \circ (E_4 \otimes (\mathbb{T}_1 \circ (E_4 \otimes \mathbb{U}))).$$

신다 제 신뢰 제 전 제 전 제 전 제

Theorem 4.3

Two-layer CNN is a sofic shift generated by labeled graph $(\mathcal{B}^{(2)}*\mathcal{B}^{(1)},\mathcal{L}).$

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNI One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sar

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
 - Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
 - New phenomena
 - Recent works and future plans
 - Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-laye

Difference between CNN with and without input

Multi-layer CNN

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

御下 くまとくまと

< □ ▶
Theorem 4.4

If $N \ge 2$, then given $(A^{(i)}, B^{(i)}, z^{(i)})$ for $i = 1, \dots, N$, then

The transition matrix of (i + 1)-layer associate with the i-th layer can be defined

$$\mathbb{T}_{i+1,i} = (\mathbb{T}_{i+1} \otimes E_4) \circ (E_4 \otimes \mathbb{T}_i).$$

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeto function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Theorem 4.4

If $N \ge 2$, then given $\left(A^{(i)}, B^{(i)}, z^{(i)}\right)$ for $i = 1, \cdots, N$, then

The transition matrix of (i + 1)-layer associate with the i-th layer can be defined

 $\mathbb{T}_{i+1,i} = (\mathbb{T}_{i+1} \otimes E_4) \circ (E_4 \otimes \mathbb{T}_i).$

$$\hat{\mathbb{T}}_{i+1} = \left(\mathbb{T}_{i+1} \otimes E_{4^i}\right) \circ \left(E_4 \otimes \hat{\mathbb{T}}_i\right).$$

イロト イポト イラト イラト

where $\hat{\mathbb{T}}_1 = \mathbb{T}_1$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sar

Theorem 4.4

If $N \ge 2$, then given $\left(A^{(i)}, B^{(i)}, z^{(i)}\right)$ for $i = 1, \cdots, N$, then

The transition matrix of (i + 1)-layer associate with the i-th layer can be defined

 $\mathbb{T}_{i+1,i} = (\mathbb{T}_{i+1} \otimes E_4) \circ (E_4 \otimes \mathbb{T}_i).$

The transition matrix of (i + 1)-layer associate with the first i-layers can be recurrence defined

$$\hat{\mathbb{T}}_{i+1} = \left(\mathbb{T}_{i+1} \otimes E_{4^i}\right) \circ \left(E_4 \otimes \hat{\mathbb{T}}_i\right).$$

where $\hat{\mathbb{T}}_1 = \mathbb{T}_1$.

Introduce $S = \{s_{ijk}\}_{0 \le i,j,k \le 1}$, thus \mathbb{S}_{i+1} can be recurrently defined from \mathbb{T}_{i+1} .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• Thus, we need to study the dynamics of convolution of *N*-coupled sofic shifts, i.e.,

 $\Phi_N * \Phi_{N-1} * \cdots * \Phi_1$

イロト イワト イヨト イヨト

where Φ_i is a sofic shift for all $i = 1, \cdots, N$.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

• Thus, we need to study the dynamics of convolution of *N*-coupled sofic shifts, i.e.,

 $\Phi_N * \Phi_{N-1} * \cdots * \Phi_1$

where Φ_i is a sofic shift for all $i = 1, \dots, N$.

 MCNN is a nature motivation for the convolution of "N-coupled sofic shifts".

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input

Multi-layer CNN

New phenomena

Recent works and future plans

Reference

・ロト・「聞・・」 「」・ 「 」・ 「 」・ (」・

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
- 4 Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
 - New phenomena
 - Recent works and future plans
 - Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

- One-layer CNN One-layer CNN Without input
- With input

Sofic shif

- Introduction to sofic shift Entropy for shift space
- Zeta function Application to one-lay
- CNN with input Difference between CNN
- with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

御下 くまとくまと

< □ ▶

Entropy for one-layer CNN without input

• Symmetric of entropy for 1-D CNN without input.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Entropy for one-layer CNN with input

• Symmetric of entropy for one-Layer CNN with input.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Entropy for 2-layer CNN with input

• Nonsymmetric for N-Layer CNN with input with $N \ge 2$.

< 🗆 .

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN

Without input

with input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

SQC+

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
- 4 Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
 - New phenomena
 - Recent works and future plans
 - Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

< □ ▶

Two-dimensional MCNN.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

with input

Sofic shif

Introduction to sofic shift Entropy for shift space Zeta function

Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

<ロ> < 四> < 回> < 三> < 三> < 三> 三 のへで

Two-dimensional MCNN.

Equivalent to more symbol problem.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

<ロ> < 四> < 回> < 三> < 三> < 三> < 三 > への

Two-dimensional MCNN.

- Equivalent to more symbol problem.
- Use connecting and trace operators in 2-dim patterns generation problem to estimate lower bound and upper bound of output entropy.

イロト イタト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Two-dimensional MCNN.

- Equivalent to more symbol problem.
- Use connecting and trace operators in 2-dim patterns generation problem to estimate lower bound and upper bound of output entropy.
- Entropy formula and Zeta function formula for MCNN:

$$h(Y_U^{(i)}) = h(Y_U^{(i-1)}) * \dots * h(Y_U^{(1)})$$
? for $1 \le i \le N$

$$\zeta_{\sigma}(Y_U^{(i)}) = \zeta_{\sigma}(Y_U^{(i-1)}) * \dots * \zeta_{\sigma}(Y_U^{(1)})? \text{ for } 1 \le i \le N$$

イロト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Outline

- Introduction
- One-layer CNN
 - One-layer CNN
 - Without input
 - With input
 - Why sofic?
- 3 Sofic shift
 - Introduction to sofic shift
 - Entropy for shift space
 - Zeta function
 - Application to one-layer CNN with input
 - Difference between CNN with and without input
- 4 Multi-layer CNN
 - Two-layer CNN with input
 - Multi-layer CNN
 - New phenomena
 - Recent works and future plans
 - Reference

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

Why sofic?

Sofic shif

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

御下 くまとくまと

< □ ▶

Lattice Dynamical Systems

Chua L.-O, and Yang L. [1988] "Cellular neural networks: Theory", IEEE Trans. Circuits Systems. 35, 1257-1290.

イロト イタト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Lattice Dynamical Systems

- Chua L.-O, and Yang L. [1988] "Cellular neural networks: Theory", IEEE Trans. Circuits Systems. 35, 1257-1290.
- Chua L.-O. [1988] CNN: A paradigm for complexity (World Scientific Series on Nonlinear Science, Series A, 31. World Scientific, Singapore).

イロト イワト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function Application to one-layer CNN with input Difference between CNN

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Lattice Dynamical Systems

- Chua L.-O, and Yang L. [1988] "Cellular neural networks: Theory", IEEE Trans. Circuits Systems. 35, 1257-1290.
- Chua L.-O. [1988] CNN: A paradigm for complexity (World Scientific Series on Nonlinear Science, Series A, 31. World Scientific, Singapore).
- Chow S.-N, Mallet-Paret J. Van Vleck E.S. [1996b] "Pattern formation and spatial chaos in spatially discrete evolution equations", *Random Comput. Dynam.* 4, 109-178.

イロト イワト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sar

Juang J. & Lin S.-S. [2000] "Cellular Neural Networks: Mosaic pattern and spatial chaos", SIAM J. Appl. Math. 60, 891-915.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

ntroductior

One-layer CNN One-layer CNN

With input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function Application to one-layer

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

・ロト・西ト・山川・山下・山下

- Juang J. & Lin S.-S. [2000] "Cellular Neural Networks: Mosaic pattern and spatial chaos", SIAM J. Appl. Math. 60, 891-915.
- Hsu C.-H., Juang J., Lin S.-S., & Lin W.-W [2000] "Cellular neural networks: local patterns for general template", *International J. of Bifurcation and Chaos* 10, 1645-1659.

イロト イワト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNI One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

500

- Juang J. & Lin S.-S. [2000] "Cellular Neural Networks: Mosaic pattern and spatial chaos", SIAM J. Appl. Math. 60, 891-915.
- Hsu C.-H., Juang J., Lin S.-S., & Lin W.-W [2000] "Cellular neural networks: local patterns for general template", *International J. of Bifurcation and Chaos* 10, 1645-1659.
- Juang J., Lin S.-S., Lin W.-W. & Shieh S.-F [2000] "The spatial entropy of two-dimensional subshift of finite type", *International J.* of *Bifurcation and Chaos* 10, 2845-2852.

ヘロト ヘ週ト ヘミト ヘヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNI One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

500

- Juang J. & Lin S.-S. [2000] "Cellular Neural Networks: Mosaic pattern and spatial chaos", SIAM J. Appl. Math. 60, 891-915.
- Hsu C.-H., Juang J., Lin S.-S., & Lin W.-W [2000] "Cellular neural networks: local patterns for general template", *International J. of Bifurcation and Chaos* 10, 1645-1659.
- Juang J., Lin S.-S., Lin W.-W. & Shieh S.-F [2000] "The spatial entropy of two-dimensional subshift of finite type", *International J.* of *Bifurcation and Chaos* 10, 2845-2852.
- Lin S.-S. & Yang T.-S. [2002] "On the spatial entropy and patterns of two-dimensional cellular networks", *International J. of Bifurcation and Chaos* 12, 115-128.

イロト イ押ト イヨト イヨト

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

500

- Juang J. & Lin S.-S. [2000] "Cellular Neural Networks: Mosaic pattern and spatial chaos", SIAM J. Appl. Math. 60, 891-915.
- Hsu C.-H., Juang J., Lin S.-S., & Lin W.-W [2000] "Cellular neural networks: local patterns for general template", *International J. of Bifurcation and Chaos* 10, 1645-1659.
- Juang J., Lin S.-S., Lin W.-W. & Shieh S.-F [2000] "The spatial entropy of two-dimensional subshift of finite type", *International J.* of *Bifurcation and Chaos* 10, 2845-2852.
- Lin S.-S. & Yang T.-S. [2002] "On the spatial entropy and patterns of two-dimensional cellular networks", *International J. of Bifurcation and Chaos* 12, 115-128.
- San J.-C. & Lin S.-S. [2005] "Patterns generation and transition matrices in multi-dimensional lattice models", *Discrete Contin. Dyn. Syst.* **13**(3), 637-658.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introductior

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function Application to one-layer CNN with input Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

- Juang J. & Lin S.-S. [2000] "Cellular Neural Networks: Mosaic pattern and spatial chaos", SIAM J. Appl. Math. 60, 891-915.
- Hsu C.-H., Juang J., Lin S.-S., & Lin W.-W [2000] "Cellular neural networks: local patterns for general template", *International J. of Bifurcation and Chaos* 10, 1645-1659.
- Juang J., Lin S.-S., Lin W.-W. & Shieh S.-F [2000] "The spatial entropy of two-dimensional subshift of finite type", *International J.* of *Bifurcation and Chaos* 10, 2845-2852.
- Lin S.-S. & Yang T.-S. [2002] "On the spatial entropy and patterns of two-dimensional cellular networks", *International J. of Bifurcation and Chaos* 12, 115-128.
- Ban J.-C. & Lin S.-S. [2005] "Patterns generation and transition matrices in multi-dimensional lattice models", *Discrete Contin. Dyn. Syst.* **13**(3), 637-658.
- Ban J.-C., Lin S.-S. & Lin Y.-H. [2006] "Patterns generation and spatial entropy in two-dimensional lattice models", Asian Journal of Mathematics, to appear.

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function Application to one-layer CNN with input Difference between CNN with and without input

/luiti-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

- Juang J. & Lin S.-S. [2000] "Cellular Neural Networks: Mosaic pattern and spatial chaos", SIAM J. Appl. Math. 60, 891-915.
- Hsu C.-H., Juang J., Lin S.-S., & Lin W.-W [2000] "Cellular neural networks: local patterns for general template", *International J. of Bifurcation and Chaos* 10, 1645-1659.
- Juang J., Lin S.-S., Lin W.-W. & Shieh S.-F [2000] "The spatial entropy of two-dimensional subshift of finite type", *International J.* of *Bifurcation and Chaos* 10, 2845-2852.
- Lin S.-S. & Yang T.-S. [2002] "On the spatial entropy and patterns of two-dimensional cellular networks", *International J. of Bifurcation and Chaos* 12, 115-128.
- Ban J.-C. & Lin S.-S. [2005] "Patterns generation and transition matrices in multi-dimensional lattice models", *Discrete Contin. Dyn. Syst.* **13**(3), 637-658.
- Ban J.-C., Lin S.-S. & Lin Y.-H. [2006] "Patterns generation and spatial entropy in two-dimensional lattice models", Asian Journal of Mathematics, to appear.
- Ban J.-C., Lin S.-S. & Lin Y.-H. [2007] "Three-dimensional Cellular Neural Networks and Patterns Generation Problems", International J. of Bifurcation and Chaos, to appear.

500

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input With input Why sofic?

Sofic shift

Introduction to sofic shift Entropy for shift space Zeta function Application to one-layer CNN with input Difference between CNN with and without input

Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Entropy and Zeta Functions for MCNN

Jung-Chao Ban

Introduction

One-layer CNN One-layer CNN Without input

with input

Sofic shif

Introduction to sofic shift Entropy for shift space

Zeta function

Application to one-layer CNN with input

Difference between CNN with and without input

Multi-layer CNN Two-layer CNN with input Multi-layer CNN

New phenomena

Recent works and future plans

Reference

Sac

Thanks for your attention!

(日)(四)(四)(日)(日)